
Homework 1 (due 9/18/2008 at 12:05pm)
via email to ada@cc or hardcopy in class

1. Regular mutexes block when they are already locked and a thread A tries to lock them,
even if the current holder is the same thread. In contrast, a recursive mutex is one that can
be locked multiple times by the same thread and needs to be unlocked the same number
of times before other threads can enter the critical section. Using the primitives shown in
class, or any equivalent set you are familiar with, implement a recursive mutex. That is,
with pseudo code (or pthreads if you want to) show the implementation of:

• a type RecMutex
• three routines rec_mutex_lock, rec_mutex_unlock, and

rec_mutex_init that operate on entities of type RecMutex and implement the
entry and exit from the critical section protected by a recusive mutex, as well as the
initialization of the recursive mutex data.

You may assume a function CurrentThread(), returning a unique identifier for the
currently executed thread.

2. Consider a system running ten I/O-bound tasks and one CPU-bound task. Assume that
the I/O-bound tasks issue an I/O operation once for every millisecond of CPU computing
and that each I/O operation takes 10 milliseconds to complete. Also assume that the
context switching overhead is 0.1millisecond and that all processes are long-running
tasks.
a) What is the CPU utilization for a round-robin scheduler when the time quantum is 1
millisecond?
b) What is the CPU utilization for a round-robin scheduler when the time quantum is 10
milliseconds?
c) Explain how may the following scheduling criteria conflict in certain cases: I/O device
utilization and CPU utilization.

