Multihoming and Multi-path Routing

CS 7260 Nick Feamster January 29. 2007

Today's Topic

- IP-Based Multihoming
 - What is it?
 - What problem is it solving? (Why multihome?)
 - How is it implemented today (in IP)?
 - Traffic Engineering
 - How many upstream ISPs are enough?
- Problems with IP-based multihoming
 - Inbound route control
 - Routing table growth
- Another approach: host-based multihoming

What is Multihoming?

- The use of redundant network links for the purposes of external connectivity
- Can be achieved at many layers of the protocol stack and many places in the network
 - Multiple network interfaces in a PC
 - An ISP with multiple upstream interfaces
- Can refer to having multiple connections to
 - The same ISP
 - Multiple ISPs

Why Multihome?

- Redundancy
- Availability
- Performance
- Cost

Interdomain traffic engineering: the process by which a multihomed network configures its network to achieve these goals

Redundancy

- Maintain connectivity in the face of:
 - Physical connectivity problems (fiber cut, device failures, etc.)
 - Failures in upstream ISP

Performance

- Use multiple network links at once to achieve higher throughput than just over a single link.
- Allows incoming traffic to be load-balanced.

Multihoming in IP Networks Today

- Stub AS: no transit service for other ASes
 - No need to use BGP
- Multi-homed stub AS: has connectivity to multiple immediate upstream ISPs
 - Need BGP
 - No need for a public AS number
 - No need for IP prefix allocation
- Multi-homed transit AS: connectivity to multiple ASes and transit service
 - Need BGP, public AS number, IP prefix allocation

BGP or no?

- Advantages of static routing
 - Cheaper/smaller routers (less true nowadays)
 - Simpler to configure
- Advantages of BGP
 - More control of your destiny (have providers stop announcing you)
 - Faster/more intelligent selection of where to send outbound packets.
 - Better debugging of net problems (you can see the Internet topology now)

Same Provider or Multiple?

- If your provider is reliable and fast, and affordably, and offers good tech-support, you may want to multi-home initially to them via some backup path (slow is better than dead).
- Eventually you'll want to multi-home to different providers, to avoid failure modes due to one provider's architecture decisions.

Multihomed Stub: One Link

- Downstream ISP's routers configure default ("static") routes pointing to border router.
- Upstream ISP advertises reachability

Multihomed Stub: Multiple Links

- Use BGP to share load
- Use private AS number (why is this OK?)
- As before, upstream ISP advertises prefix

Multihomed Stub: Multiple ISPs

- Many possibilities
 - Load sharing
 - Primary-backup
 - Selective use of different ISPs
- Requires BGP, public AS number, etc.

Multihomed Transit Network

- BGP everywhere
- Incoming and outcoming traffic
- Challenge: balancing load on intradomain and egress links, given an offered traffic load

Interdomain Traffic Engineering

- The process by which a network operator configures the network to achieve
 - Traffic load balance
 - Redundancy (primary/backup), etc.
- Two tasks
 - Outbound traffic control
 - Inbound traffic control
- Key Problems: Predictability and Scalability

Outbound Traffic Control

- Easier to control than inbound traffic
 - Destination-based routing: sender determines where the packets go
- Control over next-hop AS only
 - Cannot control selection of the entire path

Outbound Traffic: Load Balancing

- Control routes to provider per-prefix
 - Assign local preference across destination prefixes
 - Change the local preference assignments over time
- Useful inputs to load balancing
 - End-to-end path performance data
 - Outbound traffic statistics per destination prefix
- Challenge: Getting from traffic volumes to groups of prefixes that should be assigned to each link

Traffic Engineering Goals

- Predictability
 - Ensure the BGP decision process is deterministic
 - Assume that BGP updates are (relatively) stable
- Limit overhead introduced by routing changes
 - Minimize frequency of changes to routing policies
 - Limit number of prefixes affected by changes
- Limit impact on how traffic enters the network
 - Avoid new routes that might change neighbor's mind
 - Select route with same attributes, or at least path length

Managing Scale

- Destination prefixes
 - More than 90,000 destination prefixes
 - Don't want to have per-prefix routing policies
 - Small fraction of prefixes contribute most of the traffic
 - Focus on the small number of heavy hitters
 - Define routing policies for selected prefixes
- Routing choices
 - About 27,000 unique "routing choices"
 - Help in reducing the scale of the problem
 - Small fraction of "routing choices" contribute most traffic
 - Focus on the very small number of "routing choices"
 - Define routing policies on common attributes

Achieving Predictability

- Route prediction with static analysis
 - Helpful to know effects before deployment
 - Static analysis can help

Flow of traffic through the network

Challenges to Predictability

- For transit ISPs: effects on incoming traffic
 - Lack of coordination strikes again!

Inter-AS Negotiation

- Coordination aids predictability
 - Negotiate where to send
 - Inbound and outbound
 - Mutual benefits

How to implement?

- What info to exchange?
- Protecting privacy?
- How to prioritize choices?
- How to prevent cheating?

21

Outbound: Multihoming Goals

Redundancy

Dynamic routing will failover to backup link

Performance

- Select provider with best performance per prefix
- Requires active probing

Cost

 Select provider per prefix over time to minimize the total financial cost

Inbound Traffic Control

More difficult: no control over neighbors' decisions.

- Three common techniques (previously discussed)
 - AS path prepending
 - Communities and local preference
 - Prefix splitting

How does today's paper (MONET) control inbound traffic?

How many links are enough?

Problems with Multihoming in IPv4

- Routing table growth
 - Provider-based addressing
 - Advertising prefix out multiple ISPs can't aggregate
- Poor control over inbound traffic
 - Existing mechanisms do not allow hosts to control inbound traffic

Today's Reading

- Source Selectable Path Diversity via Routing Deflections, Yang et al.
- Main idea: Sources can detect and react to failures more quickly than the routing protocols often can.
- Source routing is appealing, but...
 - Scaling problems
 - Routers designed to forward on destination address

Benefits

No need for coordination across ISPs

 No need for additional machinery (simple tweaks to shortest path routing work well)

Two Key Components

- Deflection Rules
 - Needed to prevent loops when packets are deflected
 - Simple idea: deflect packets only to hopes that are closer to the destination
 - Complication: may not expose enough path diversity
 - Deflections may come straight back

Enhancement #1: Two Hops Down

- Rule: Packet can be forwarded to any intermediate node for which the length of the path decreases along a two-hop sequence
- Question: Why will this not cause loops?
- Answer: 2-hop sequence always decreases cost.
- Additional cost: Forwarding decisions also depend on incoming link

Enhancement #2: Two Hops Forward

 Same as previous rule, but remove the incoming link used to reach the node in question

Can cause more roundabout paths

Discussion Questions

- How does it work with BGP?
- Who's responsible for tagging packets?
- Is this enough diversity?
- Is it too much? (i.e., is latency too high?)
- Overload?
 - Opposite: Better balancing/QoS?
- Stability problems?
- Selfish behavior?
- How good is random?