Intradomain Topology and Routing

Nick Feamster CS 7260 January 17, 2007

Administrivia

- Problem Set 1: Slight delay
- Project groups: Next week
- Project ideas will go up over the weekend

Internet Routing Overview

- Today: Intradomain (i.e., "intra-AS") routing
- Monday: Interdomain routing

Today: Routing Inside an AS

- Intra-AS topology
 - Nodes and edges
 - Example: Abilene
- Intradomain routing protocols
 - Distance Vector
 - Split-horizon/Poison-reverse
 - Example: RIP
 - Link State
 - Example: OSPF

Key Questions

- Where to place "nodes"?
 - Typically in dense population centers
 - Close to other providers (easier interconnection)
 - Close to other customers (cheaper backhaul)
 - Note: A "node" may in fact be a group of routers, located in a single city. Called a "Point-of-Presence" (PoP)
- Where to place "edges"?
 - Often constrained by location of fiber

Point-of-Presence (PoP)

- A "cluster" of routers in a single physical location
- Inter-PoP links
 - Long distances
 - High bandwidth

- Intra-PoP links
 - Cables between racks or floors
 - Aggregated bandwidth

Example: Abilene Network Topology

 Problem Set 1 will have a problem dealing with Abilene router configurations/topology.

Where's Georgia Tech?

Recent Development: NLR Packet Net

Problem: Routing

 Routing: the process by which nodes discover where to forward traffic so that it reaches a certain node

- Within an AS: there are two "styles"
 - Distance vector
 - Link State

Distance-Vector Routing

- Routers send routing table copies to neighbors
- Routers compute costs to destination based on shortest available path
- Based on Bellman-Ford Algorithm
 - $d_x(y) = \min_{v} \{ c(x,v) + d_v(y) \}$
 - Solution to this equation is x's forwarding table

Good News Travels Quickly

When costs decrease, network converges quickly

Problem: Bad News Travels Slowly

Note also that there is a forwarding loop between y and z.

It Gets Worse

- Question: How long does this continue?
- Answer: Until z's path cost to x via y is greater than 50.

"Solution": Poison Reverse

- If z routes through y to get to x, z advertises infinite cost for x to y
- Does poison reverse always work?

Does Poison Reverse Always Work?

Example: Routing Information Protocol

- Earliest IP routing protocol (1982 BSD)
 - Version 1: RFC 1058
 - Version 2: RFC 2453
- Features
 - Edges have unit cost
 - "Infinity" = 16
- Sending Updates
 - Router listens for updates on UDP port 520
 - Message can contain up to 25 table entries

RIP Updates

- Initial
 - When router first starts, asks for copy of table for every neighbor
 - Uses it to iteratively generate own table
- Periodic
 - Table refresh every 30 seconds
- Triggered
 - When every entry changes, send copy of entry to neighbors
 - Except for one causing update (split horizon rule)
 - Neighbors use to update their tables

RIP: Staleness and Oscillation Control

- Small value for Infinity
 - Count to infinity doesn't take very long
- Route Timer
 - Every route has timeout limit of 180 seconds
 - Reached when haven't received update from next hop for 6 periods
 - If not updated, set to infinity
 - Soft-state
- Behavior
 - When router or link fails, can take minutes to stabilize

Link-State Routing

- Idea: distribute a network map
- Each node performs shortest path (SPF) computation between itself and all other nodes
- Initialization step
 - Add costs of immediate neighbors, D(v), else infinite
 - Flood costs c(u,v) to neighbors, N
- For some D(w) that is not in N
 - -D(v) = min(c(u,w) + D(w), D(v))

Link-State vs. Distance-Vector

Convergence

- DV has count-to-infinity
- DV often converges slowly (minutes)
- Odd timing dependencies in DV

Robustness

- Route calculations a bit more robust under link-state.
- DV algorithms can advertise incorrect least-cost paths
- Bandwidth Consumption for Messages
- Computation
- Security

OSPF: Salient Features

- Dijkstra, plus some additional features
- Equal-cost multipath
- Support for hierarchy: Inter-Area Routing

Example: Open Shortest Paths First (OSPF)

- Key Feature: hierarchy
- Network's routers divided into areas
- Backbone area is area 0
- Area 0 routers perform SPF computation
 - All inter-area traffic travles through Area 0 routers ("border routers")

Example: IS-IS

- Originally: ISO Connectionless Network Protocol (CLNP).
 - CLNP: ISO equivalent to IP for datagram delivery services
 - ISO 10589 or RFC 1142
- Later: Integrated or Dual IS-IS (RFC 1195)
 - IS-IS adapted for IP
 - Doesn't use IP to carry routing messages
- OSPF more widely used in enterprise, IS-IS in large service providers

Hierarchical Routing in IS-IS

- Like OSPF, 2-level routing hierarchy
 - Within an area: level-1
 - Between areas: level-2
 - Level 1-2 Routers: Level-2 routers may also participate in L1 routing

Level-1 vs. Level-2 Routing

Level 1 routing

- Routing within an area
- Level 1 routers track links, routers, and end systems within L1 area
- L1 routers do not know the identity of destinations outside their area.
- A L 1 router forwards all traffic for destinations outside its area to the nearest L2 router within its area.

Level 2 routing

- Routing between areas
- Level 2 routers know the level 2 topology and know which addresses are reachable via each level 2 router.
- Level 2 routers track the location of each level 1 area.
- Level 2 routers are not concerned with the topology within any level 1 area (for example, the details internal to each level 1 area).
- Level 2 routers can identify when a level 2 router is also a level 1 router within the same area.
- Only a level 2 router can exchange packets with external routers located outside its routing domain.

CLNS Addressing: "NSAPs"

- NSAP: Network-Service Attachment Point (a network-layer address)
- All routers in the same area must have a common Area ID
- System ID constraints
 - Each node in an area must have a unique System ID
 - All level 2 routers in a domain must have unique System IDs
 - All NSAPs on the same router must have the same system ID.
 - All systems belonging to a given domain must have System IDs of the same length in their NSAP addresses

ISIS on the Wire...

IS-IS Configuration on Abilene (atlang)

```
lo0 {
                                           ISO Address Configured on
    unit 0 {
                                           Loopback Interface
        family iso {
         address 49.0000.0000.0000.0014.00;
                                          Only Level 2 IS-IS in Abilene
isis {
    level 2 wide-metrics-only;
    /* OC192 to WASHng */
     interface so-0/0/0.0 {
       level 2 metric 846;
       level 1 disable;
```

IS-IS vs. OSPF

- Cisco ships OSPF in 1991
- Cisco ships dual IS-IS in 1992
- Circa 1995: ISPs need to run IGPs, IS-IS is recommended due to the recent rewrite
- IS-IS became very popular in late 1990s
 - Deployed in most large ISPs (also Abilene)
 - Some ISPs (e.g., AOL backbone) even switched

Monitoring OSPF

 Challenge: How to get the OSPF Link State Advertisements (LSAs)?

Challenge #1: Capturing LSAs

- Wire-tap mode
 - Invasive
 - Dependent on Layer-2
- Host mode
 - Distribute LSAs over multicast
 - LSAR joins multicast group
- Full adjacency mode
 - Form high-cost adjacency with network
- Partial adjacency mode

Challenge #2: Dealing with Areas

 Problem: OSPF LSAs not advertised across area boundaries.

Today's Papers: Alternative Intradomain Routing Mechanisms

- A Key Question: How to set weights in a shortest-path routing protocol?
- Problem: Link cost becomes a protocol knob, not a reflection of the topology
- Options:
 - Link-weight tuning
 - Set up circuits (MPLS, and route on different circuits)
 - Random perturbations on link weights

– ...

Valiant Load Balanced Networks

- Problem: Impossible to have the perfectly tuned network
 - Traffic matrix hard to estimate
 - ...and it's always changing
 - Links and nodes fail, and the failure mode scenario may not be desirable
 - Networks continually growing, changing, etc.
- Idea: Valiant load-balanced networks

Valiant Load-Balancing

- Suppose each node has capacity r
- How much capacity for each link?
- What if a node fails?

Thought Questions

- How might you use VLB types of routing to reduce per-router routing table state?
- Is there an alternate constrained VLB design that might put better bounds on latency increases?
- What would an internet of all VLB-routed ISPs look like? (How might traffic flow, etc.?)
- What other ways can you think of to design an intradomain routing protocol that handles traffic dynamism and failures and yet still scales well?