Denial-of-Service and
Resource Exhaustion

Nick Feamster
CS 7260
April 2, 2007

Today’s Lecture

 What is Denial of Service?

* Attacks and Defenses
— Packet-flooding attacks
* Attack: SYN Floods
* Defenses: Ingress Filtering, SYN Cookies, Client puzzles
— Low-rate attacks
* Detection: Single-packet IP Traceback

* Network-level defenses: sinkholes and blackholes

* Inferring Denial of Service Activity
* Distributed Denial of Service

* Worms

* Otherresource exhaustion: spam

Denial of Service: What is it?

Attacker Victim

vVvyyvyYy

* Attempt to exhaust resources
— Network: Bandwidth
— Transport: TCP connections
— Application: Server resources

* Typically high-rate attacks, but not always

Pre-2000 Denial of Service

DoS Tools
* Single-source, single target tools
* |P source address spoofing
* Packet amplification (e.g., smurf)
Deployment
* Widespread scanning and exploitation via scripted tools
* Hand-installed tools and toolkits on compromised hosts
(unix)
Use
* Hand executed on source host

TCP: 3-Way Handshake

SYN.

Store data
SYN,., ACK-

Wait
ACK,

Connected

TCP handshake

* Each arriving SYN stores state at the server
— TCP Control Block (TCB)
— ~ 280 bytes

* FlowlD, timer info, Sequence number, flow
control status, out-of-band data, MSS, other
options agreed to

— Half-open TCB entries exist until timeout
— Fixed bound on half-open connections

* Resources exhausted [J requests rejected

TCP SYN flooding

* Problem: No client authentication of packets
before resources allocated

* Attacker sends many connection requests
— Spoofed source addresses
— RSTs quickly generated if source address exists
— No reply for non-existent sources

* Attacker exhausts TCP buffer to w/ half-open
connections

SYN Flooding

C S
SYN, Listening
SYN,,
Store data
SYN,,
SYN,,
SYN,.,

Idea #1: Ingress Filtering

Drop all packets with
source address other than
204.69.207.0/24

204.69.207.0/24

* RFC 2827: Routers install filters to drop packets
from networks that are not downstream

* Feasible at edges
* Difficult to configure closer to network “core”

Idea #2: URPF Checks

Accept packet from interface only if forwarding table entry
for source IP address matches ingress interface

Strict Mode

uRPE 10.0.18.3 from wrong]

interface

10.0.18.3

10.12.0.3

“A” Routing Table

Destination Next Hop
10.0.1.0/24 Int. 1
10.0.18.0/24 Int. 2

* Unicast Reverse Path Forwarding
— Cisco: “ip verify unicast reverse-path”

* Requires symmetric routing 10

Problems with uRPF

Unicast RPF applied
to S0 would not
block traffic to
site A

Unicast RPF applied
to S1 would BLOCIK
traffic from site A

* Asymmetric routing

Best route to

site A from ISP_.-.

The Internet

Best route to
ISP from site A

11

Idea #3: TCP SYN cookies

* General idea

— Client sends SYN w/ ACK number

— Server responds to Client with SYN-ACK cookie
* sgn = f(src addr, src port, dest addr, dest port, rand)
* Server does not save state

— Honest client responds with ACK(sqgn)

— Server checks response

— |If matches SYN-ACK, establishes connection

12

TCP SYN cookie
* TCP SYN/ACK segno encodes a cookie

— 32-bit sequence number

* t mod 32: counter to ensure sequence numbers
Increase every 64 seconds

* MSS: encoding of server MSS (can only have 8
settings)
* Cookie: easy to create and validate, hard to forge
— Includes timestamp, nonce, 4-tuple

32 0

! T

5 bits 3 bits

13

SYN Cookies

client

— sends SYN packet and ACK number to
server

— waits for SYN-ACK from server w/
matching ACK number

server
— responds w/ SYN-ACK packet w/ initial
SYN-cookie sequence number
— Sequence number is cryptographically
generated value based on client
address, port, and time.
client
— sends ACK to server w/ matching
sequence number
server

— If ACK is to an unopened socket,
server validates returned sequence
number as SYN-cookie

— If value is reasonable, a buffer is
allocated and socket is opened

SYN

m

SYN-ACK

seg-number as SYN-cookie,
ack-number

NO BUFFER ALLOCATED

ACK\,
seq_number

ack-number+data

SYN-ACK

seg-number, ack-number
TCP BUFFER ALLOCATED

14

IP Traceback

®

15

Logging Challenges

* Attack path reconstruction is difficult

— Packet may be transformed as it moves through the
network

* Full packet storage is problematic

— Memory requirements are prohibitive at high line
speeds (OC-192 is ~10Mpkt/sec)

* Extensive packet logs are a privacy risk
— Traffic repositories may aid eavesdroppers

16

Single-Packet Traceback: Goals

* Trace a single |IP packet back to source

— Asymmetric attacks (e.g., Fraggle, Teardrop,
ping-of-death)

* Minimal cost (resource usage)

One solution: Source Path Isolation Engine (SPIE)

17

Packet Digests

* Compute hash(p)

— Invariant fields of p only
— 28 bytes hash input, 0.00092% WAN collision rate
— Fixed sized hash output, n-bits

* Compute k independent digests
— Increased robustness
— Reduced collisions, reduced false positive rate

18

Hash input: Invariant Content

28
bytes

Ver | HLen

|dentification

Protocol
Source Address

Destination Address

Total Length
Fragment Offset

Options

First 8 bytes of Payload

Remainder of Payload

19

Hashing Properties

* Each hash function
— Uniform distribution of input -> output
H1(x) = H1(y) for some x,y -> unlikely

* Use k independent hash functions
— Collisions among k functions independent
— H1(x) = H2(y) for some X,y -> unlikely

* Cycle k functions every time interval, t

20

Digest Storage: Bloom Filters

* Fixed structure size
— Uses 27 bit array
— Initialized to zeros

* |nsertion

— Use n-bit digest as indices
into bit array

— Setto ‘1’

* Membership
— Compute k digests, d,, d,,
etc...
— If (filter[d]=1) for all i, router
forwarded packet

H,(P)

2n
bits

21

Other In-Network Defenses

* Automatic injection of blackhole routes
* Rerouting through traffic “scrubbers”

22

Inferring DoS Activity

IP address spoofing creates random backscatter.

SYN+ACK backscatter

Attacker

- Attack
<€ Backscatter

23

Backscatter Analysis

 Monitor block of n IP addresses

* Expected # of backscatter packets given an
attack of m packets:
— E(X)=nm |/ 2%
— Hence, m=x*(2%2/n)

* Attack Rate R>=m/T =x/T * (2% /n)

24

Inferred DoS Activity

|

° 202 2502 0502 82199 92e 8392 02120 5223

3_

e Over 4000 DoS/DDoS attacks

9 21 per week
Q
[1+]
Z * Short duration: 80% last less
= than 30 minutes

0 I T I I ! T

[| | I
1 2 5 10 30 1 2 6 12 1 2 7
min hour day
Attack Duration Moore et al. Inferring Internet Denial of Service Activity 25

DDoS: Setting up the Infrastructure

* Zombies
— Slow-spreading installations can be difficult to detect
— Can be spread quickly with worms

* |Indirection makes attacker harder to locate
— No need to spoof IP addresses

26

What is a Worm?

Code that replicates and propagates across the network
— Often carries a “payload”

* Usually spread via exploiting flaws in open services
— “Viruses” require user action to spread

* First worm: Robert Morris, November 1988
— 6-10% of all Internet hosts infected (!)

* Many more since, but none on that scale until July 2001

27

Example Worm: Code Red

Initial version: July 13, 2001

Exploited known ISAPI vulnerabilty in Microsoft IS
Web servers

1st through 20" of each month: spread
20" through end of each month: attack

Payload: Web site defacement
Scanning: Random IP addresses
Bug: failure to seed random number generator

28

Code Red: Revisions

Released July 19, 2001

Payload: flooding attack on
www.whitehouse.gov

— Attack was mounted at the IP address of the Web site

Bug: died after 20" of each month

* Random number generator for IP scanning fixed

29

Code Red: Host Infection Rate

Measured using backscatter technique

Code Red Horm - infected hosts
408884 T T T T T T T

2568686848 -

ﬁﬁﬁﬁﬁﬁ —

Exponential infection rate

[1o R R =1

coEEas - -

infected hosts

15868688 -

laaaaa - -

Jaaaa - -

8 i I | | | |
BE:EA Bd:E8 BE:AA 12:88 16: 88 £H:Ea BE: A8 Bd: B8

BF-19 time C(UTCH BF- 28

30

Modeling the Spread of Code Red

 Random Constant Spread model
— K: initial compromise rate
— N: number of vulnerable hosts

— a: fraction of vulnerable machines already
compromised

Nda = (Na)K(1 — a)dt
\ J
/ —
Newly infected Machines Rate at which uninfected
machines in dt already infected @ machines are compromised

31

Bristling Pace of Innovation

Various improvements to increase the infection rate

* Code Red 2: August 2001

— Localized scanning
— Same exploit, different codebase
— Payload: root backdoor

* Nimda: September 2001

— Spread via multiple exploits (IS vulnerability, email,
CR2 root backdoor, copying itself over network shares,
etc.)

— Firewalls were not sufficient protection

32

Designing Fast-Spreading Worms

* Hit-list scanning
— Time to infect first 10k hosts dominates infection time
— Solution: Reconnaissance (stealthy scans, etc.)

* Permutation scanning
— Observation: Most scanning is redundant

— ldea: Shared permutation of address space. Start scanning
from own IP address. Re-randomize when another infected
machine is found.

* Internet-scale hit lists
— Flash worm: complete infection within 30 seconds

33

Recent Advances: Slammer

February 2003
Exploited vulnerability in MS SQL server

Exploit fit into a single UDP packet
— Send and forget!

Lots of damage
— BofA, Wash. Mutual ATMs unavailable

— Continental Airlines ticketing offline
— Seattle E911 offline

34

Scary recent advances: Witty

* March 19, 2004

* Single UDP packet exploits flaw in the passive
analysis of Internet Security Systems products.

* “Bandwidth-limited” UDP worm ala’ Slammer.
* Initial spread seeded via a hit-list.
* All 12,000 vulnerable hosts infected within 45 mins

* Payload: slowly corrupt random disk blocks

35

Why does DDoS work?

* Simplicity

* “On by default” design

* Readily available zombie machines
* Attacks look like normal traffic

* Internet’'s federated operation obstructs
cooperation for diagnosis/mitigation

36

Resource Exhaustion: Spam

* Unsolicited commercial email
* As of about February 2005, estimates indicate
that about 90% of all email is spam

* Common spam filtering techniques

— Content-based filters
— DNS Blacklist (DNSBL) lookups: Significant fraction of
today’s DNS traffic!

Can IP addresses from which spam is received be spoofed?

37

BGP Spectrum Agility

Log IP addresses of SMTP relays

Join with BGP route advertisements seen at network
where spam trap is co-located.

. . . . :
Announcement
Spam

Withdrawal = A small club of persistent
players appears to be using
this technique.

Common short-lived
prefixes and ASes

~ 10 minutes 61.0.0.0/8 4678
66.0.0.0/8 21562
82.0.0.0/8 8717

A
\ 4

Announcements, Withdrawals, and Spam from 61.0.0.0/8

1 i i i i 1 i i i i 1 i i i i 1
13:20:00 13:25:00 13:30:00 13:35:00
2005/09/30 2005/09/30 2005/09/30 2005/09/30

Time

Somewhere between 1-10% of all
spam (some clearly intentional,
others might be flapping)

A Slightly Different Pattern

T I T T T T
Announcement *
Spam ®
Withdrawal L

x x X X o X .1 =
L]] L N L L L &
[[L E = | [

Announcements, Withdrawals, and Spam from 82.0.0.0/8

| L 1 L 1 1 L L 1 L 1 1 L L 1 L 1 1 L L
22:00:00 03:00:00 12:00:00 19:00:00 02:00:00 09:00:00 16:00:00
2004/12/28 2004/12/29 2004/12/29 2004/12/29 2004/12/30 2004/12/300 2004/12/30

Time

Why Such Big Prefixes?

* Flexibility: Client IPs can be scattered
throughout dark space within a large /8

— Same sender usually returns with different IP
addresses

* Visibility: Route typically won't be filtered (nice
and short)

40

Characteristics of IP-Agile Senders

* |P addresses are widely distributed across the /8 space
* |P addresses typically appear only once at our sinkhole

* Depending on which /8, 60-80% of these IP addresses
were not reachable by traceroute when we spot-checked

 Some |IP addresses were in allocated, albeing
unannounced space

* Some AS paths associated with the routes contained
reserved AS numbers

41

Some evidence that it’s working

Spam from IP-agile senders tend to be listed in fewer blacklists

Slpmn from blr:nbax dl‘DIlE:!. ——
All spam —»—
Spam from transient BGP announcements —%—
0.8 - -
3 Vs. ~80% on average
2 06 _
=]
= *
5]
g 04 -
g Only about half of the IPs
. - spamming from short-lived BGP
02 L . are listed in any blacklist
.
{] | | | _JluI=
0 | 2 3 4 5 6 7 8

Minimum number of DNSBLS listing this spammer 42

