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Today’s Lecture

 What is Denial of Service?

* Attacks and Defenses
— Packet-flooding attacks
* Attack: SYN Floods
* Defenses: Ingress Filtering, SYN Cookies, Client puzzles
— Low-rate attacks
* Detection: Single-packet IP Traceback

* Network-level defenses: sinkholes and blackholes

* Inferring Denial of Service Activity
* Distributed Denial of Service

* Worms

* Otherresource exhaustion: spam



Denial of Service: What is it?

Attacker Victim
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* Attempt to exhaust resources
— Network: Bandwidth
— Transport: TCP connections
— Application: Server resources

* Typically high-rate attacks, but not always



Pre-2000 Denial of Service

DoS Tools
* Single-source, single target tools
* |P source address spoofing
* Packet amplification (e.g., smurf)
Deployment
* Widespread scanning and exploitation via scripted tools
* Hand-installed tools and toolkits on compromised hosts
(unix)
Use
* Hand executed on source host



TCP: 3-Way Handshake

SYN.

Store data
SYN,., ACK-

Wait
ACK,

Connected



TCP handshake

* Each arriving SYN stores state at the server
— TCP Control Block (TCB)
— ~ 280 bytes

* FlowlD, timer info, Sequence number, flow
control status, out-of-band data, MSS, other
options agreed to

— Half-open TCB entries exist until timeout
— Fixed bound on half-open connections

* Resources exhausted [J requests rejected



TCP SYN flooding

* Problem: No client authentication of packets
before resources allocated

* Attacker sends many connection requests
— Spoofed source addresses
— RSTs quickly generated if source address exists
— No reply for non-existent sources

* Attacker exhausts TCP buffer to w/ half-open
connections



SYN Flooding
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Idea #1: Ingress Filtering

Drop all packets with
source address other than
204.69.207.0/24

204.69.207.0/24

* RFC 2827: Routers install filters to drop packets
from networks that are not downstream

* Feasible at edges
* Difficult to configure closer to network “core”




Idea #2: URPF Checks

Accept packet from interface only if forwarding table entry
for source IP address matches ingress interface

Strict Mode

uRPE 10.0.18.3 from wrong ]

interface

10.0.18.3

10.12.0.3

“A” Routing Table

Destination Next Hop
10.0.1.0/24 Int. 1
10.0.18.0/24 Int. 2

* Unicast Reverse Path Forwarding
— Cisco: “ip verify unicast reverse-path”

* Requires symmetric routing 10



Problems with uRPF

Unicast RPF applied
to S0 would not
block traffic to
site A

Unicast RPF applied
to S1 would BLOCIK
traffic from site A

* Asymmetric routing

Best route to

site A from ISP_.-.

The Internet

Best route to
ISP from site A
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Idea #3: TCP SYN cookies

* General idea

— Client sends SYN w/ ACK number

— Server responds to Client with SYN-ACK cookie
* sgn = f(src addr, src port, dest addr, dest port, rand)
* Server does not save state

— Honest client responds with ACK(sqgn)

— Server checks response

— |If matches SYN-ACK, establishes connection
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TCP SYN cookie
* TCP SYN/ACK segno encodes a cookie

— 32-bit sequence number

* t mod 32: counter to ensure sequence numbers
Increase every 64 seconds

* MSS: encoding of server MSS (can only have 8
settings)
* Cookie: easy to create and validate, hard to forge
— Includes timestamp, nonce, 4-tuple

32 0

! T

5 bits 3 bits
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SYN Cookies

client

— sends SYN packet and ACK number to
server

— waits for SYN-ACK from server w/
matching ACK number

server
— responds w/ SYN-ACK packet w/ initial
SYN-cookie sequence number
— Sequence number is cryptographically
generated value based on client
address, port, and time.
client
— sends ACK to server w/ matching
sequence number
server

— If ACK is to an unopened socket,
server validates returned sequence
number as SYN-cookie

— If value is reasonable, a buffer is
allocated and socket is opened

SYN

m

SYN-ACK

seg-number as SYN-cookie,
ack-number

NO BUFFER ALLOCATED

ACK\,
seq_number

ack-number+data

SYN-ACK

seg-number, ack-number
TCP BUFFER ALLOCATED
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IP Traceback

®
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Logging Challenges

* Attack path reconstruction is difficult

— Packet may be transformed as it moves through the
network

* Full packet storage is problematic

— Memory requirements are prohibitive at high line
speeds (OC-192 is ~10Mpkt/sec)

* Extensive packet logs are a privacy risk
— Traffic repositories may aid eavesdroppers
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Single-Packet Traceback: Goals

* Trace a single |IP packet back to source

— Asymmetric attacks (e.g., Fraggle, Teardrop,
ping-of-death)

* Minimal cost (resource usage)

One solution: Source Path Isolation Engine (SPIE)
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Packet Digests

* Compute hash(p)

— Invariant fields of p only
— 28 bytes hash input, 0.00092% WAN collision rate
— Fixed sized hash output, n-bits

* Compute k independent digests
— Increased robustness
— Reduced collisions, reduced false positive rate

18



Hash input: Invariant Content

28
bytes

Ver | HLen

|dentification

Protocol
Source Address

Destination Address

Total Length
Fragment Offset

Options

First 8 bytes of Payload

Remainder of Payload
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Hashing Properties

* Each hash function
— Uniform distribution of input -> output
H1(x) = H1(y) for some x,y -> unlikely

* Use k independent hash functions
— Collisions among k functions independent
— H1(x) = H2(y) for some X,y -> unlikely

* Cycle k functions every time interval, t

20



Digest Storage: Bloom Filters

* Fixed structure size
— Uses 27 bit array
— Initialized to zeros

* |nsertion

— Use n-bit digest as indices
into bit array

— Setto ‘1’

* Membership
— Compute k digests, d,, d,,
etc...
— If (filter[d]=1) for all i, router
forwarded packet

H,(P)

2n
bits
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Other In-Network Defenses

* Automatic injection of blackhole routes
* Rerouting through traffic “scrubbers”
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Inferring DoS Activity

IP address spoofing creates random backscatter.

SYN+ACK backscatter

Attacker

- Attack
<€ Backscatter
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Backscatter Analysis

 Monitor block of n IP addresses

* Expected # of backscatter packets given an
attack of m packets:
— E(X)=nm |/ 2%
— Hence, m=x*(2%2/n)

* Attack Rate R>=m/T =x/T * (2% /n)
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Inferred DoS Activity

|

° 202 2502 0502 82199 92e 8392 02120 5223

3_

e Over 4000 DoS/DDoS attacks

9 21 per week
Q
[1+]
Z * Short duration: 80% last less
= than 30 minutes

0 I T I I ! T

[ | | I
1 2 5 10 30 1 2 6 12 1 2 7
min hour day
Attack Duration Moore et al. Inferring Internet Denial of Service Activity 25



DDoS: Setting up the Infrastructure

* Zombies
— Slow-spreading installations can be difficult to detect
— Can be spread quickly with worms

* |Indirection makes attacker harder to locate
— No need to spoof IP addresses
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What is a Worm?

Code that replicates and propagates across the network
— Often carries a “payload”

* Usually spread via exploiting flaws in open services
— “Viruses” require user action to spread

* First worm: Robert Morris, November 1988
— 6-10% of all Internet hosts infected (!)

* Many more since, but none on that scale until July 2001

27



Example Worm: Code Red

Initial version: July 13, 2001

Exploited known ISAPI vulnerabilty in Microsoft IS
Web servers

1st through 20" of each month: spread
20" through end of each month: attack

Payload: Web site defacement
Scanning: Random IP addresses
Bug: failure to seed random number generator
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Code Red: Revisions

Released July 19, 2001

Payload: flooding attack on
www.whitehouse.gov

— Attack was mounted at the IP address of the Web site

Bug: died after 20" of each month

* Random number generator for IP scanning fixed

29



Code Red: Host Infection Rate

Measured using backscatter technique

Code Red Horm - infected hosts
408884 T T T T T T T

2568686848 -

ﬁﬁﬁﬁﬁﬁ —

Exponential infection rate

[ 1o R R =1

coEEas - -

infected hosts

15868688 -

laaaaa - -

Jaaaa - -

8 i I | | | |
BE:EA Bd:E8 BE:AA 12:88 16: 88 £H:Ea BE: A8 Bd: B8

BF-19 time C(UTCH BF- 28
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Modeling the Spread of Code Red

 Random Constant Spread model
— K: initial compromise rate
— N: number of vulnerable hosts

— a: fraction of vulnerable machines already
compromised

Nda = (Na)K(1 — a)dt
\ J
/ —
Newly infected Machines Rate at which uninfected
machines in dt already infected @ machines are compromised
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Bristling Pace of Innovation

Various improvements to increase the infection rate

* Code Red 2: August 2001

— Localized scanning
— Same exploit, different codebase
— Payload: root backdoor

* Nimda: September 2001

— Spread via multiple exploits (IS vulnerability, email,
CR2 root backdoor, copying itself over network shares,
etc.)

— Firewalls were not sufficient protection
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Designing Fast-Spreading Worms

* Hit-list scanning
— Time to infect first 10k hosts dominates infection time
— Solution: Reconnaissance (stealthy scans, etc.)

* Permutation scanning
— Observation: Most scanning is redundant

— ldea: Shared permutation of address space. Start scanning
from own IP address. Re-randomize when another infected
machine is found.

* Internet-scale hit lists
— Flash worm: complete infection within 30 seconds
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Recent Advances: Slammer

February 2003
Exploited vulnerability in MS SQL server

Exploit fit into a single UDP packet
— Send and forget!

Lots of damage
— BofA, Wash. Mutual ATMs unavailable

— Continental Airlines ticketing offline
— Seattle E911 offline
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Scary recent advances: Witty

* March 19, 2004

* Single UDP packet exploits flaw in the passive
analysis of Internet Security Systems products.

* “Bandwidth-limited” UDP worm ala’ Slammer.
* Initial spread seeded via a hit-list.
* All 12,000 vulnerable hosts infected within 45 mins

* Payload: slowly corrupt random disk blocks

35



Why does DDoS work?

* Simplicity

* “On by default” design

* Readily available zombie machines
* Attacks look like normal traffic

* Internet’'s federated operation obstructs
cooperation for diagnosis/mitigation
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Resource Exhaustion: Spam

* Unsolicited commercial email
* As of about February 2005, estimates indicate
that about 90% of all email is spam

* Common spam filtering techniques

— Content-based filters
— DNS Blacklist (DNSBL) lookups: Significant fraction of
today’s DNS traffic!

Can IP addresses from which spam is received be spoofed?
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BGP Spectrum Agility

Log IP addresses of SMTP relays

Join with BGP route advertisements seen at network
where spam trap is co-located.

. . . . :
Announcement
Spam

Withdrawal = A small club of persistent
players appears to be using
this technique.

Common short-lived
prefixes and ASes

~ 10 minutes 61.0.0.0/8 4678
66.0.0.0/8 21562
82.0.0.0/8 8717

A
\ 4

Announcements, Withdrawals, and Spam from 61.0.0.0/8

1 i i i i 1 i i i i 1 i i i i 1
13:20:00 13:25:00 13:30:00 13:35:00
2005/09/30 2005/09/30 2005/09/30 2005/09/30

Time

Somewhere between 1-10% of all
spam (some clearly intentional,
others might be flapping)



A Slightly Different Pattern

T I T T T T
Announcement *
Spam ®
Withdrawal L

x x X X o X .1 =
L] ] L N L L L &
[ [ L E = | [

Announcements, Withdrawals, and Spam from 82.0.0.0/8

| L 1 L 1 1 L L 1 L 1 1 L L 1 L 1 1 L L
22:00:00 03:00:00 12:00:00 19:00:00 02:00:00 09:00:00 16:00:00
2004/12/28  2004/12/29  2004/12/29  2004/12/29  2004/12/30  2004/12/300  2004/12/30

Time




Why Such Big Prefixes?

* Flexibility: Client IPs can be scattered
throughout dark space within a large /8

— Same sender usually returns with different IP
addresses

* Visibility: Route typically won't be filtered (nice
and short)
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Characteristics of IP-Agile Senders

* |P addresses are widely distributed across the /8 space
* |P addresses typically appear only once at our sinkhole

* Depending on which /8, 60-80% of these IP addresses
were not reachable by traceroute when we spot-checked

 Some |IP addresses were in allocated, albeing
unannounced space

* Some AS paths associated with the routes contained
reserved AS numbers
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Some evidence that it’s working

Spam from IP-agile senders tend to be listed in fewer blacklists

Slpmn from blr:nbax dl‘DIlE:!. ——
All spam —»—
Spam from transient BGP announcements —%—
0.8 - -
3 Vs. ~80% on average
2 06 _
=]
= *
5]
g 04 -
g Only about half of the IPs
. - spamming from short-lived BGP
02 L . are listed in any blacklist
.
{] | | | _JluI=
0 | 2 3 4 5 6 7 8

Minimum number of DNSBLS listing this spammer 42



