
Denial-of-Service and
Resource Exhaustion

Nick Feamster
CS 7260

April 2, 2007

2

Today’s Lecture

• What is Denial of Service?
• Attacks and Defenses

– Packet-flooding attacks
• Attack: SYN Floods
• Defenses: Ingress Filtering, SYN Cookies, Client puzzles

– Low-rate attacks
• Detection: Single-packet IP Traceback

• Network-level defenses: sinkholes and blackholes

• Inferring Denial of Service Activity
• Distributed Denial of Service
• Worms
• Other resource exhaustion: spam

3

Denial of Service: What is it?

• Attempt to exhaust resources
– Network: Bandwidth
– Transport: TCP connections
– Application: Server resources

• Typically high-rate attacks, but not always

Attacker Victim

4

Pre-2000 Denial of Service

DoS Tools
• Single-source, single target tools
• IP source address spoofing
• Packet amplification (e.g., smurf)

Deployment

• Widespread scanning and exploitation via scripted tools

• Hand-installed tools and toolkits on compromised hosts
(unix)

Use
• Hand executed on source host

5

TCP: 3-Way Handshake

C S

SYNC

SYNS, ACKC

ACKS

Listening

Store data

Wait

Connected

6

TCP handshake

• Each arriving SYN stores state at the server
– TCP Control Block (TCB)
– ~ 280 bytes

• FlowID, timer info, Sequence number, flow
control status, out-of-band data, MSS, other
options agreed to

– Half-open TCB entries exist until timeout

– Fixed bound on half-open connections

• Resources exhausted ⇒ requests rejected

7

TCP SYN flooding

• Problem: No client authentication of packets
before resources allocated

• Attacker sends many connection requests
– Spoofed source addresses
– RSTs quickly generated if source address exists
– No reply for non-existent sources

• Attacker exhausts TCP buffer to w/ half-open
connections

8

SYN Flooding

C S

SYNC1 Listening

Store data
SYNC2

SYNC3

SYNC4

SYNC5

9

Idea #1: Ingress Filtering

• RFC 2827: Routers install filters to drop packets
from networks that are not downstream

• Feasible at edges
• Difficult to configure closer to network “core”

204.69.207.0/24
Internet

Drop all packets with
source address other than
204.69.207.0/24

10

Idea #2: uRPF Checks

• Unicast Reverse Path Forwarding
– Cisco: “ip verify unicast reverse-path”

• Requires symmetric routing

Accept packet from interface only if forwarding table entry
for source IP address matches ingress interface

10.0.18.3

A
10.0.1.8

10.0.1.5

10.12.0.3

10.0.18.1/ 24

10.0.1.1/ 24

Strict Mode
uRPF

Enabled

“A” Routing Table
Destination Next Hop
10.0.1.0/24 Int. 1
10.0.18.0/24 Int. 2

10.0.18.3 from wrong
interface

11

Problems with uRPF

• Asymmetric routing

12

Idea #3: TCP SYN cookies

• General idea
– Client sends SYN w/ ACK number
– Server responds to Client with SYN-ACK cookie

• sqn = f(src addr, src port, dest addr, dest port, rand)

• Server does not save state
– Honest client responds with ACK(sqn)
– Server checks response
– If matches SYN-ACK, establishes connection

13

TCP SYN cookie
• TCP SYN/ACK seqno encodes a cookie

– 32-bit sequence number
• t mod 32: counter to ensure sequence numbers

increase every 64 seconds
• MSS: encoding of server MSS (can only have 8

settings)
• Cookie: easy to create and validate, hard to forge

– Includes timestamp, nonce, 4-tuple

t mod 32

32 0

5 bits

MSS

3 bits

Cookie=HMAC(t, N
s
, SIP, SPort, DIP, DPort)

14

SYN Cookies
• client

– sends SYN packet and ACK number to
server

– waits for SYN-ACK from server w/
matching ACK number

• server
– responds w/ SYN-ACK packet w/ initial

SYN-cookie sequence number
– Sequence number is cryptographically

generated value based on client
address, port, and time.

• client
– sends ACK to server w/ matching

sequence number
• server

– If ACK is to an unopened socket,
server validates returned sequence
number as SYN-cookie

– If value is reasonable, a buffer is
allocated and socket is opened

SYN

ack-number

SYN-ACK

seq-number as SYN-cookie,
ack-number

NO BUFFER ALLOCATED

ACK

seq_number
ack-number+data

SYN-ACK

seq-number, ack-number

TCP BUFFER ALLOCATED

15

IP Traceback

V

R

R1 R2

R3

RR

RR

R4

A R

RR7

R6R5

16

Logging Challenges

• Attack path reconstruction is difficult
– Packet may be transformed as it moves through the

network

• Full packet storage is problematic
– Memory requirements are prohibitive at high line

speeds (OC-192 is ~10Mpkt/sec)

• Extensive packet logs are a privacy risk
– Traffic repositories may aid eavesdroppers

17

Single-Packet Traceback: Goals

• Trace a single IP packet back to source
– Asymmetric attacks (e.g., Fraggle, Teardrop,

ping-of-death)

• Minimal cost (resource usage)

One solution: Source Path Isolation Engine (SPIE)

18

Packet Digests

• Compute hash(p)
– Invariant fields of p only
– 28 bytes hash input, 0.00092% WAN collision rate
– Fixed sized hash output, n-bits

• Compute k independent digests
– Increased robustness
– Reduced collisions, reduced false positive rate

19

Hash input: Invariant Content

Total Length

Identification

Checksum

Ver TOSHLen

TTL Protocol

Source Address

Destination Address

Fragment OffsetM
F

D
F

Options

Remainder of Payload

First 8 bytes of Payload

28
bytes

20

Hashing Properties

• Each hash function
– Uniform distribution of input -> output

 H1(x) = H1(y) for some x,y -> unlikely

• Use k independent hash functions
– Collisions among k functions independent
– H1(x) = H2(y) for some x,y -> unlikely

• Cycle k functions every time interval, t

21

Digest Storage: Bloom Filters

• Fixed structure size
– Uses 2n bit array
– Initialized to zeros

• Insertion
– Use n-bit digest as indices

into bit array
– Set to ‘1’

• Membership
– Compute k digests, d1, d2,

etc…
– If (filter[di]=1) for all i, router

forwarded packet

1
n bits

2n

bits

H(P)H2(P)

Hk(P)

H3(P)

H1(P)

1

1

1

.
. .

22

Other In-Network Defenses

• Automatic injection of blackhole routes
• Rerouting through traffic “scrubbers”

23

Inferring DoS Activity

IP address spoofing creates random backscatter.

24

Backscatter Analysis

• Monitor block of n IP addresses
• Expected # of backscatter packets given an

attack of m packets:
– E(X) = nm / 232

– Hence, m = x * (232 / n)

• Attack Rate R >= m/T = x/T * (232 / n)

25

Inferred DoS Activity

• Over 4000 DoS/DDoS attacks
per week

• Short duration: 80% last less
than 30 minutes

Moore et al. Inferring Internet Denial of Service Activity

26

DDoS: Setting up the Infrastructure

• Zombies
– Slow-spreading installations can be difficult to detect
– Can be spread quickly with worms

• Indirection makes attacker harder to locate
– No need to spoof IP addresses

27

What is a Worm?

• Code that replicates and propagates across the network
– Often carries a “payload”

• Usually spread via exploiting flaws in open services
– “Viruses” require user action to spread

• First worm: Robert Morris, November 1988
– 6-10% of all Internet hosts infected (!)

• Many more since, but none on that scale until July 2001

28

Example Worm: Code Red

• Initial version: July 13, 2001

• Exploited known ISAPI vulnerability in Microsoft IIS
Web servers

• 1st through 20th of each month: spread
20th through end of each month: attack

• Payload: Web site defacement
• Scanning: Random IP addresses
• Bug: failure to seed random number generator

29

Code Red: Revisions

• Released July 19, 2001

• Payload: flooding attack on
www.whitehouse.gov
– Attack was mounted at the IP address of the Web site

• Bug: died after 20th of each month

• Random number generator for IP scanning fixed

30

Code Red: Host Infection Rate

Exponential infection rate

Measured using backscatter technique

31

Modeling the Spread of Code Red

• Random Constant Spread model
– K: initial compromise rate
– N: number of vulnerable hosts
– a: fraction of vulnerable machines already

compromised

Newly infected
machines in dt

Machines
already infected

Rate at which uninfected
machines are compromised

32

Bristling Pace of Innovation

• Code Red 2: August 2001
– Localized scanning
– Same exploit, different codebase
– Payload: root backdoor

• Nimda: September 2001
– Spread via multiple exploits (IIS vulnerability, email,

CR2 root backdoor, copying itself over network shares,
etc.)

– Firewalls were not sufficient protection

Various improvements to increase the infection rate

33

Designing Fast-Spreading Worms

• Hit-list scanning
– Time to infect first 10k hosts dominates infection time
– Solution: Reconnaissance (stealthy scans, etc.)

• Permutation scanning
– Observation: Most scanning is redundant
– Idea: Shared permutation of address space. Start scanning

from own IP address. Re-randomize when another infected
machine is found.

• Internet-scale hit lists
– Flash worm: complete infection within 30 seconds

34

Recent Advances: Slammer

• February 2003
• Exploited vulnerability in MS SQL server
• Exploit fit into a single UDP packet

– Send and forget!

• Lots of damage
– BofA, Wash. Mutual ATMs unavailable
– Continental Airlines ticketing offline

– Seattle E911 offline

35

Scary recent advances: Witty

• March 19, 2004

• Single UDP packet exploits flaw in the passive
analysis of Internet Security Systems products.

• “Bandwidth-limited” UDP worm ala’ Slammer.

• Initial spread seeded via a hit-list.

• All 12,000 vulnerable hosts infected within 45 mins

• Payload: slowly corrupt random disk blocks

36

Why does DDoS work?

• Simplicity
• “On by default” design
• Readily available zombie machines

• Attacks look like normal traffic
• Internet’s federated operation obstructs

cooperation for diagnosis/mitigation

37

Resource Exhaustion: Spam

• Unsolicited commercial email
• As of about February 2005, estimates indicate

that about 90% of all email is spam
• Common spam filtering techniques

– Content-based filters
– DNS Blacklist (DNSBL) lookups: Significant fraction of

today’s DNS traffic!

Can IP addresses from which spam is received be spoofed?

38

BGP Spectrum Agility

• Log IP addresses of SMTP relays
• Join with BGP route advertisements seen at network

where spam trap is co-located.

A small club of persistent
players appears to be using

this technique.

Common short-lived
prefixes and ASes

61.0.0.0/8 4678
66.0.0.0/8 21562
82.0.0.0/8 8717

~ 10 minutes

Somewhere between 1-10% of all
spam (some clearly intentional,

others might be flapping)

39

A Slightly Different Pattern

40

Why Such Big Prefixes?

• Flexibility: Client IPs can be scattered
throughout dark space within a large /8
– Same sender usually returns with different IP

addresses

• Visibility: Route typically won’t be filtered (nice
and short)

41

Characteristics of IP-Agile Senders

• IP addresses are widely distributed across the /8 space
• IP addresses typically appear only once at our sinkhole
• Depending on which /8, 60-80% of these IP addresses

were not reachable by traceroute when we spot-checked

• Some IP addresses were in allocated, albeing
unannounced space

• Some AS paths associated with the routes contained
reserved AS numbers

42

Some evidence that it’s working

Spam from IP-agile senders tend to be listed in fewer blacklists

Only about half of the IPs
spamming from short-lived BGP
are listed in any blacklist

Vs. ~80% on average

