
Content Overlays (continued)

Nick Feamster
CS 7260

March 26, 2007

2

Administrivia

• Quiz date

• Remaining lectures

• Interim report

• PS 3
– Out Friday, 1-2 problems

3

Structured vs. Unstructured Overlays

• Structured overlays have provable properties
– Guarantees on storage, lookup, performance

• Maintaining structure under churn has proven to
be difficult
– Lots of state that needs to be maintained when

conditions change

• Deployed overlays are typically unstructured

4

Structured [Content] Overlays

5

Chord: Overview

• What is Chord?
– A scalable, distributed “lookup service”
– Lookup service: A service that maps keys to values (e.g.,

DNS, directory services, etc.)
– Key technology: Consistent hashing

• Major benefits of Chord over other lookup services
– Simplicity
– Provable correctness
– Provable “performance”

6

Scalable location of data in a large distributed system

Key Problem: Lookup

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

Chord: Primary Motivation

7

Chord: Design Goals

• Load balance: Chord acts as a distributed hash function,
spreading keys evenly over the nodes.

• Decentralization: Chord is fully distributed: no node is more
important than any other.

• Scalability: The cost of a Chord lookup grows as the log of the
number of nodes, so even very large systems are feasible.

• Availability: Chord automatically adjusts its internal tables to
reflect newly joined nodes as well as node failures, ensuring
that, the node responsible for a key can always be found.

• Flexible naming: Chord places no constraints on the structure of
the keys it looks up.

8

Consistent Hashing

• Uniform Hash: assigns values to “buckets”
– e.g., H(key) = f(key) mod k, where k is number of nodes
– Achieves load balance if keys are randomly distributed

• Problems with uniform hashing
– How to perform consistent hashing in a distributed

fashion?
– What happens when nodes join and leave?

Consistent hashing addresses these problems

9

Consistent Hashing

• Main idea: map both keys and nodes (node IPs) to the
same (metric) ID space

Ring is one option.
Any metric space will do

Initially proposed for relieving Web cache hotspots [Karger97, STOC]

10

Consistent Hashing

• The consistent hash function assigns each node
and key an m-bit identifier using SHA-1 as a
base hash function

• Node identifier: SHA-1 hash of IP address

• Key identifier: SHA-1 hash of key

11

• m bit identifier space for both keys and nodes

• Key identifier: SHA-1(key)

Key=“LetItBe” ID=60SHA-1

IP=“198.10.10.1” ID=123SHA-1
• Node identifier: SHA-1(IP address)

• Both are uniformly distributed

• How to map key IDs to node IDs?

Chord Identifiers

12

A key is stored at its successor: node with next higher ID

N32

N90

N123 K20

K5

Circular 7-bit
ID space

0IP=“198.10.10.1”

K101

K60
Key=“LetItBe”

Consistent Hashing in Chord

13

Consistent Hashing Properties

• Load balance: all nodes receive roughly the
same number of keys

• Flexibility: when a node joins (or leaves) the
network, only an fraction of the keys are moved
to a different location.
– This solution is optimal (i.e., the minimum necessary

to maintain a balanced load)

14

N32

N90

N123

0

Hash(“LetItBe”) = K60

N10

N55

Where is “LetItBe”?

“N90 has K60”

K60

Consistent Hashing
• Every node knows of every other node

– requires global information

• Routing tables are large: O(N)
• Lookups are fast: O(1)

15

Load Balance Results (Theory)

• For N nodes and K keys, with high probability

– each node holds at most (1+ε)K/N keys

– when node N+1 joins or leaves, O(N/K) keys change
hands, and only to/from node N+1

16

N32

N90

N123

0

Hash(“LetItBe”) = K60

N10

N55

Where is “LetItBe”?

“N90 has K60”

K60

Lookups in Chord

• Every node knows its successor in the ring
• Requires O(N) lookups

17

N80
80 + 20

N112

N96

N16

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

Reducing Lookups: Finger Tables

• Every node knows m other nodes in the ring
• Increase distance exponentially

18

N120

N80
80 + 20

N112

N96

N16

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

Reducing Lookups: Finger Tables

• Finger i points to successor of n+2i

19

Finger Table Lookups

Each node knows its immediate
successor. Find the predecessor
of id and ask for its successor.

Move forward around the ring
looking for node whose
successor’s ID is > id

20

N32

N10

N5

N20
N110

N99

N80

N60

Lookup(K19)

K19

Faster Lookups

• Lookups are O(log N) hops

21

Summary of Performance Results

• Efficient: O(log N) messages per lookup

• Scalable: O(log N) state per node

• Robust: survives massive membership changes

22

Possible Applications

• Distributed indexes
• Cooperative storage
• Distributed, flat lookup services

• …

23

Joining the Chord Ring

• Nodes can join and leave at any time
– Challenge: Maintining correct information about every key

• Three step process
– Initialize all fingers of new node
– Update fingers of existing nodes
– Transfer keys from successor to new node

• Two invariants
– Each node’s successor is maintained
– successor(k) is responsible for k
– (finger tables must also be correct for fast lookups)

24

N36

1. Lookup(37,38,40,…,100,164)

N60

N40

N5

N20
N99

N80

Join: Initialize New Node’s Finger Table

• Locate any node p in the ring
• Ask node p to lookup fingers of new node

25

N36

N60

N40

N5

N20
N99

N80

Join: Update Fingers of Existing Nodes

• New node calls update function on existing nodes
– N becomes ith finger of p if (1) p precedes n by at least 2^i-1 (2) ith

finger of p succeeds n

• Existing nodes recursively update fingers of predecessors

26

Copy keys 21..36
from N40 to N36

K30
K38

N36

N60

N40

N5

N20
N99

N80

K30

K38

Join: Transfer Keys

• Only keys in the range are transferred

27

N120
N113

N102

N80

N85

N10

Lookup(90)

Handling Failures

• Problem: Failures could cause incorrect lookup
• Solution: Fallback: keep track of successor fingers

28

Handling Failures

• Use successor list
– Each node knows r immediate successors
– After failure, will know first live successor
– Correct successors guarantee correct lookups

• Guarantee is with some probability
– Can choose r to make probability of lookup failure

arbitrarily small

29

Chord: Questions

• Comparison to other DHTs
• Security concerns
• Workload imbalance

• Locality
• Search

Unstructured Overlays

31

BitTorrent

• Steps for publishing
– Peer creates torrent: contains metadata about tracker and

about the pieces of the file (checksum of each piece of
the time).

– Peers that create the initial copy of the file are called
seeders

• Steps for downloading
– Peer contacts tracker
– Peer downloads from seeder, eventually from other peers

• Uses basic ideas from game theory to largely
eliminate the free-rider problem
– Previous systems could not deal with this problem

32

Basic Idea

• Chop file into many pieces

• Replicate different pieces on different peers as
soon as possible

• As soon as a peer has a complete piece, it can
trade it with other peers

• Hopefully, assemble the entire file at the end

33

Basic Components
• Seed

– Peer that has the entire file
– Typically fragmented into 256KB pieces

• Leecher
– Peer that has an incomplete copy of the file

• Torrent file
– Passive component
– The torrent file lists SHA1 hashes of all the pieces to allow peers to

verify integrity
– Typically hosted on a web server

• Tracker
– Allows peers to find each other
– Returns a random list of peers

34

Pieces and Sub-Pieces

• A piece is broken into sub-pieces ... Typically
from 64kB to 1MB

• Policy: Until a piece is assembled, only
download sub-pieces for that piece

• This policy lets complete pieces assemble
quickly

35

Classic Prisoner’s Dilemma

Nash Equilibrium (and the dominant
strategy for both players)

Pareto Efficient
Outcome

36

Repeated Games

• Repeated game: play single-shot game repeatedly
• Subgame Perfect Equilibrium: Analog to NE for

repeated games
– The strategy is an NE for every subgame of the repeated

game

• Problem: a repeated game has many SPEs
• Single Period Deviation Principle (SPDP) can be

used to test SPEs

37

Repeated Prisoner’s Dilemma

• Example SPE: Tit-for-Tat (TFT) strategy
– Each player mimics the strategy of the other player in the last round

Question: Use the SPDP to argue that TFT is an SPE.

38

Tit-for-Tat in BitTorrent: Choking

• Choking is a temporary refusal to upload;
downloading occurs as normal
– If a node is unable to download from a peer, it does

not upload to it
– Ensures that nodes cooperate and eliminates the

free-rider problem
– Cooperation involves uploaded sub-pieces that you

have to your peer

• Connection is kept open

39

Choking Algorithm

• Goal is to have several bidirectional connections
running continuously

• Upload to peers who have uploaded to you
recently

• Unutilized connections are uploaded to on a trial
basis to see if better transfer rates could be
found using them

40

Choking Specifics

• A peer always unchokes a fixed number of its peers
(default of 4)

• Decision to choke/unchoke done based on current
download rates, which is evaluated on a rolling 20-
second average

• Evaluation on who to choke/unchoke is performed
every 10 seconds
– This prevents wastage of resources by rapidly choking/unchoking

peers
– Supposedly enough for TCP to ramp up transfers to their full

capacity

• Which peer is the optimistic unchoke is rotated every
30 seconds

41

Rarest Piece First

• Policy: Determine the pieces that are most rare
among your peers and download those first

• This ensures that the most common pieces are
left till the end to download

• Rarest first also ensures that a large variety of
pieces are downloaded from the seed
(Question: Why is this important?)

42

Piece Selection

• The order in which pieces are selected by different peers
is critical for good performance

• If a bad algorithm is used, we could end up in a situation
where every peer has all the pieces that are currently
available and none of the missing ones

• If the original seed is taken down, the file cannot be
completely downloaded!

43

Random First Piece

• Initially, a peer has nothing to trade
• Important to get a complete piece ASAP
• Rare pieces are typically available at fewer

peers, so downloading a rare piece initially is not
a good idea

• Policy: Select a random piece of the file and
download it

44

Endgame Mode

• When all the sub-pieces that a peer doesn’t have are
actively being requested, these are requested from every
peer

• Redundant requests cancelled when piece arrives

• Ensures that a single peer with a slow transfer rate
doesn’t prevent the download from completing

45

Questions

• Peers going offline when download completes
• Integrity of downloads

Distributing Content: Coding

47

Digital Fountains

• Analogy: water fountain
– Doesn’t matter which bits of water you get
– Hold the glass out until it is full

• Ideal: Infinite stream

• Practice: Approximate, using erasure codes
– Reed-solomon
– Tornado codes (faster, slightly less efficient)

48

Applications

• Reliable multicast
• Parallel downloads
• Long-distance transmission (avoiding TCP)

• One-to-many TCP
• Content distribution on overlay networks
• Streaming video

49

Point-to-Point Data Transmission

• TCP has problems over long-distance connections.
– Packets must be acknowledged to increase sending window

(packets in flight).
– Long round-trip time leads to slow acks, bounding transmission

window.
– Any loss increases the problem.

• Using digital fountain + TCP-friendly congestion control
can greatly speed up connections.

• Separates the “what you send” from “how much” you
send.
– Do not need to buffer for retransmission.

50

Other Applications

• Other possible applications outside of networking
– Storage systems
– Digital fountain codes for errors
– ??

