Content Overlays (continued)

Nick Feamster
CS 7260
March 26, 2007



Administrivia
* Quiz date
* Remaining lectures

* Interim report

* PS3
— Out Friday, 1-2 problems



Structured vs. Unstructured Overlays

* Structured overlays have provable properties
— Guarantees on storage, lookup, performance

* Maintaining structure under churn has proven to
be difficult

— Lots of state that needs to be maintained when
conditions change

* Deployed overlays are typically unstructured



Structured [Content] Overlays



Chord: Overview

* What is Chord?

— A scalable, distributed “lookup service”

— Lookup service: A service that maps keys to values (e.g.,
DNS, directory services, etc.)

— Key technology: Consistent hashing

* Major benefits of Chord over other lookup services
— Simplicity
— Provable correctness
— Provable “performance”



Chord: Primary Motivation

Scalable location of data in a large distributed system

Publisher
Key="LetltBe”
Value=MP3 data

Lookup(“LetltBe”)

Key Problem: Lookup



Chord: Design Goals

* Load balance: Chord acts as a distributed hash function,
spreading keys evenly over the nodes.

* Decentralization: Chord is fully distributed: no node is more
important than any other.

* Scalability: The cost of a Chord lookup grows as the log of the
number of nodes, so even very large systems are feasible.

* Avallability: Chord automatically adjusts its internal tables to
reflect newly joined nodes as well as node failures, ensuring
that, the node responsible for a key can always be found.

* Flexible naming: Chord places no constraints on the structure of
the keys it looks up.



Consistent Hashing

* Uniform Hash: assigns values to “buckets”
— e.q., H(key) = f(key) mod k, where k is number of nodes
— Achieves load balance if keys are randomly distributed

* Problems with uniform hashing

— How to perform consistent hashing in a distributed
fashion?

— What happens when nodes join and leave?

Consistent hashing addresses these problems



Consistent Hashing

* Main idea: map both and nodes (node IPs) to the
same (metric) ID space

Ring is one option.
Any metric space will do

Initially proposed for relieving Web cache hotspots [Karger97, STOC] 9



Consistent Hashing

* The consistent hash function assigns each node
and key an m-bit identifier using SHA-1 as a
base hash function

* Node identifier: SHA-1 hash of IP address

* Key identifier: SHA-1 hash of key

10



Chord ldentifiers

* m bit identifier space for both keys and nodes
* Key identifier: SHA-1(key)
Key=“LetltBe” —SHA-1 ., |D=60

* Node identifier: SHA-1(IP address)
IP=198.10.10.1” —SHA-1 , |D=123

* Both are uniformly distributed

* How to map key IDs to node IDs?

11



Consistent Hashing in Chord

A key is stored at its successor: node with next higher ID

IP="198.10.10.1"

N123

/

K101

N9O

0 K5

Circular 7-bit

K20

\

ID space

N32

~——K60

Key="LetltBe”"

12



Consistent Hashing Properties

* Load balance: all nodes receive roughly the
same number of keys

* Flexibility: when a node joins (or leaves) the
network, only an fraction of the keys are moved
to a different location.

— This solution is optimal (i.e., the minimum necessary
to maintain a balanced load)

13



Consistent Hashing

* Every node knows of every other node
— requires global information

* Routing tables are large: O(N)
* Lookups are fast: O(1)
0

Where is “LetltBe”?
Hash(“LetltBe"”) = K60

N123

N32

‘N90 has K60"”

K60




Load Balance Results (Theory)

* For N nodes and K keys, with high probability
— each node holds at most (1+&)K/N keys

— when node N+1 joins or leaves, O(N/K) keys change
hands, and only to/from node N+1

15



Lookups in Chord

* Every node knows its successor in the ring
* Requires O(N) lookups

ﬁ\

N0 Where is “LetltBe”?

\TSh(“ LetltBe”) = K60

N32

N123

“N90 has K60”

€60 [N90]

NS5




Reducing Lookups: Finger Tables

* Every node knows m other nodes in the ring
* Increase distance exponentially

.........................

17



Reducing Lookups: Finger Tables

* Finger i points to successor of n+2

______________ N120
N112: N16
80 +2 % 80 + 26
N
\
oimime ! \
' N96 | “a
IR \
80 + 24 \
|
/
80 + 23 7
80 + 22 z
80 + 21
80 4+ 20




Finger Table Lookups

Each node knows its immediate
/ ask node n, to find id’s successor / successor. Find _the predecessor
n.find_successor(id) of id and ask for its successor.
n' = find_predecessor(id);

return n' .successor:

Move forward around the ring

// ask node n to find id's predecessor «—looking for node whose
n.find_predecessor(id)

f successor’s ID is > id
n' =mn;
. . ! ! finger table keys
while (2d ,&}l ::n , T ..ssscce._ssa?']} ‘ St it Jouec] [ 3]
n' = n'.closest_preceding finger(id): 1 n2] 1
return -n.’; 2 [[24)] 3
4 |[4,0)] O
A return c.’aseﬂﬁﬂgﬁ:' preceding inl‘. finger table keys
n.closest_preceding finger(id) start] int._Jsucc] [ 1]
for 1 = m downto 1 g [E-E]' g
if (finger|i].node € (n,id)) 5 Ed 0
return finger|i|.node;
return 7
finger table keys
start| int. [succ] |i|
4 |45 0
5 [[57) | O
7 |73 o 19




Faster Lookups

* Lookups are O(log N) hops

N110

N99

N80

NS

N10

N20

K19

N32

N60

Lookup(K19)

20



Summary of Performance Results

« Efficient: O(log N) messages per lookup
* Scalable: O(log N) state per node

* Robust: survives massive membership changes

21



Possible Applications

* Distributed indexes
* Cooperative storage
* Distributed, flat lookup services

22



Joining the Chord Ring

* Nodes can join and leave at any time
— Challenge: Maintining correct information about every key

* Three step process
— Initialize all fingers of new node
— Update fingers of existing nodes
— Transfer keys from successor to new node

* Two invariants
— Each node’s successor is maintained
— successor(k) is responsible for k
— (finger tables must also be correct for fast lookups)

23



Join: Initialize New Node’s Finger Table

* Locate any node p in the ring
* Ask node p to lookup fingers of new node

NS

N20

— | N99

N36
1. Lookup(37,38,40,...,100,164

N40

N80

NGO




Join: Update Fingers of Existing Nodes

* New node calls update function on existing nodes

— N becomes ith finger of p if (1) p precedes n by at least 2*/-1 (2) ith
finger of p succeeds n

* Existing nodes recursively update fingers of predecessors

N5
N20
N99
N36
. N40
N80

N60




Join: Transfer Keys

* Only keys in the range are transferred

N99

NS

N8O |

N20

N36

K30

N40

NGO

> Copy keys 21..36

K38
K38

from N40 to N36

26



Handling Failures

* Problem: Failures could cause incorrect lookup
* Solution: Fallback: keep track of successor fingers

N120
N113 MO

NTUz

e\« Lookup(90)




Handling Failures

* Use successor list
— Each node knows r immediate successors
— After failure, will know first live successor
— Correct successors guarantee correct lookups

* Guarantee is with some probability

— Can choose r to make probability of lookup failure
arbitrarily small

28



Chord: Questions

* Comparison to other DHTs
* Security concerns

* Workload imbalance

* Locality

* Search



Unstructured Overlays



BitTorrent

* Steps for publishing

— Peer creates torrent: contains metadata about tracker and
about the pieces of the file (checksum of each piece of
the time).

— Peers that create the initial copy of the file are called
seeders

* Steps for downloading
— Peer contacts tracker
— Peer downloads from seeder, eventually from other peers

* Uses basic ideas from game theory to largely
eliminate the free-rider problem

— Previous systems could not deal with this problem

31



Basic Idea

* Chop file into many pieces

* Replicate different pieces on different peers as
soon as possible

* As soon as a peer has a complete piece, it can
trade it with other peers

* Hopefully, assemble the entire file at the end

32



Basic Components
* Seed

— Peer that has the entire file
— Typically fragmented into 256KB pieces

* Leecher
— Peer that has an incomplete copy of the file

* Torrent file

— Passive component
— The torrent file lists SHA1 hashes of all the pieces to allow peers to

verify integrity
— Typically hosted on a web server

* Tracker
— Allows peers to find each other

— Returns a random list of peers

33



Pieces and Sub-Pieces

* A piece is broken into sub-pieces ... Typically
from 64kB to 1MB

* Policy: Until a piece is assembled, only
download sub-pieces for that piece

* This policy lets complete pieces assemble
quickly

34



Classic Prisoner’s Dilemma

Pareto Efficient
Outcome

Cooperate | Defect

A

Cooperate |3, 3 0, o

Defect |45, 0 1,1
Nash Equilibrium (and the dominant
strategy for both players)




Repeated Games

* Repeated game: play single-shot game repeatedly

* Subgame Perfect Equilibrium: Analog to NE for
repeated games

— The strategy is an NE for every subgame of the repeated
game

* Problem: a repeated game has many SPEs

* Single Period Deviation Principle (SPDP) can be
used to test SPEs

36



Repeated Prisoner’s Dilemma

* Example SPE: Tit-for-Tat (TFT) strategy
— Each player mimics the strategy of the other player in the last round

Cooperate | Defect

Cooperate |3, 3 0 5

Defect |5, [0 1,1

Question: Use the SPDP to argue that TFT is an SPE.



Tit-for-Tat in BitTorrent: Choking

* Choking is a temporary refusal to upload;
downloading occurs as normal

— |f a node is unable to download from a peer, it does
not upload to it

— Ensures that nodes cooperate and eliminates the
free-rider problem

— Cooperation involves uploaded sub-pieces that you
have to your peer

* Connection is kept open

38



Choking Algorithm

 Goal is to have several bidirectional connections
running continuously

* Upload to peers who have uploaded to you
recently

* Unutilized connections are uploaded to on a trial
basis to see if better transfer rates could be
found using them

39



Choking Specifics

A peer always unchokes a fixed number of its peers
(default of 4)

Decision to choke/unchoke done based on current
download rates, which is evaluated on a rolling 20-
second average

Evaluation on who to choke/unchoke is performed
every 10 seconds

— This prevents wastage of resources by rapidly choking/unchoking
peers

— Supposedly enough for TCP to ramp up transfers to their full
capacity
Which peer is the optimistic unchoke is rotated every
30 seconds

40



Rarest Piece First

* Policy: Determine the pieces that are most rare
among your peers and download those first

* This ensures that the most common pieces are
left till the end to download

* Rarest first also ensures that a large variety of
pieces are downloaded from the seed
(Question: Why is this important?)

41



Piece Selection

* The orderin which pieces are selected by different peers
IS critical for good performance

* If a bad algorithm is used, we could end up in a situation
where every peer has all the pieces that are currently
available and none of the missing ones

* If the original seed is taken down, the file cannot be
completely downloaded!

42



Random First Piece

* |nitially, a peer has nothing to trade
* Important to get a complete piece ASAP

* Rare pieces are typically available at fewer
peers, so downloading a rare piece initially is not
a good idea

* Policy: Select a random piece of the file and
download it

43



Endgame Mode

* When all the sub-pieces that a peer doesn’t have are

actively being requested, these are requested from every
peer

* Redundant requests cancelled when piece arrives

* Ensures that a single peer with a slow transfer rate
doesn’t prevent the download from completing

44



Questions

* Peers going offline when download completes
* Integrity of downloads

45



Distributing Content: Coding



Digital Fountains

* Analogy: water fountain
— Doesn’t matter which bits of water you get
— Hold the glass out until it is full

* |deal: Infinite stream

* Practice: Approximate, using erasure codes
— Reed-solomon
— Tornado codes (faster, slightly less efficient)

47



Applications

* Reliable multicast

* Parallel downloads

* Long-distance transmission (avoiding TCP)
* One-to-many TCP

* Content distribution on overlay networks

* Streaming video

48



Point-to-Point Data Transmission

* TCP has problems over long-distance connections.

— Packets must be acknowledged to increase sending window
(packets in flight).

— Long round-trip time leads to slow acks, bounding transmission
window.

— Any loss increases the problem.

* Using digttal fountain + TCP-friendly congestion control
can greatly speed up connections.

* Separates the “what you send” from “how much” you

send.
— Do not need to buffer for retransmission.

49



Other Applications

* Other possible applications outside of networking
— Storage systems

— Digital fountain codes for errors
— 77

50



