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Content Overlays

• Distributed content storage and retrieval
• Two primary approaches:

– Structured overlay
– Unstructured overlay

• Today’s paper: Chord 
– Not strictly a content overlay, but one can build content 

overlays on top of it (e.g., Dabek et al. “CFS”)
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Goals and Examples

• Goals
– File distribution/exchange
– Anonymous storage and communication

• Examples
– Directory-based: Napster
– Unstructured overlays: Freenet and Gnutella
– Structured overlays: Chord, CAN, Pastry, etc.
– Content-distribution: Akamai
– Bittorrent (overview and economics)
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Directory-based Search, P2P Fetch

• Centralized Database
– Join: on startup, client contacts central server
– Publish: reports list of files to central server
– Search: query the server

• Peer-to-Peer File Transfer
– Fetch: get the file directly from peer



  
5

History: Freenet (circa 1999)
• Unstructured overlay (compare to Gnutella)

– No hierarchy; implemented on top of existing networks (e.g., IP)

• First example of key-based routing
– Freenet’s legacy
– Unlike Chord, no provable performance guarantees

• Goals
– Censorship-resistance
– Anonymity: for producers and consumers of data

• Nodes don’t even know what they are storing
– Survivability: no central servers, etc.
– Scalability

• Current status: redesign
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Big Idea: Keys as First-Class Objects

• Keyword-signed Key (KSK)
– Key is based on human-readable description of the file 
– Problem: flat, global namespace (possible collisions)

• Signed Subspace Key
– Helps prevent namespace collisions
– Allows for secure update
– User can only retrieve and decrypt a document if it knows the SSK

• Content Hash Key
– SHA-1 hash of the file that is being stored
– Allows for efficient file updates through indirection

Keys name both the objects being looked up and the content itself
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Publishing and Querying in Freenet

• Process for both operations is the same
• Keys passed through a chain of proxy requests

– Nodes make local decisions about routing queries

– Queries have hops-to-live and a unique ID

• Two cases
– Node has local copy of file

• File returned along reverse path
• Nodes along reverse path cache file

– Node does not have local copy
• Forward request to neighbor whose key is closest to the key 

of the file
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Routing Queries in Freenet
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Small World Network Property

• The majority of the nodes have a few local 
connections to other nodes

• Few nodes have large wide ranging connections

• Resulting properties
– Fault tolerance

– Short average path length
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Freenet Design
• Strengths

– Decentralized
– Anonymous
– Scalable

• Weaknesses
– Problem: how to find the names of keys in the first 

place?
– No file lifetime guarantees
– No efficient keyword search

– No defense against DoS attacks
– Bandwidth limitations not considered
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Freenet Security Mechanisms

• Encryption of messages
– Prevents eavesdropping

• Hops-to-live 
– prevents determining originator of query

• Hashing 
– checks data integrity 
– prevents intentional data corruption
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Structured [Content] Overlays
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Chord: Overview

• What is Chord?
– A scalable, distributed “lookup service”
– Lookup service: A service that maps keys to values (e.g., 

DNS, directory services, etc.)
– Key technology: Consistent hashing

• Major benefits of Chord over other lookup services
– Simplicity
– Provable correctness
– Provable “performance”
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Scalable location of data in a large distributed system

Key Problem: Lookup

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

Chord: Primary Motivation
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Chord: Design Goals

• Load balance: Chord acts as a distributed hash function, 
spreading keys evenly over the nodes.

• Decentralization: Chord is fully distributed: no node is more 
important than any other.

• Scalability: The cost of a Chord lookup grows as the log of the 
number of nodes, so even very large systems are feasible. 

• Availability: Chord automatically adjusts its internal tables to 
reflect newly joined nodes as well as node failures, ensuring 
that, the node responsible for a key can always be found.

• Flexible naming: Chord places no constraints on the structure of 
the keys it looks up.
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Consistent Hashing

• Uniform Hash: assigns values to “buckets”
– e.g., H(key) = f(key) mod k, where k is number of nodes
– Achieves load balance if keys are randomly distributed

• Problems with uniform hashing
– How to perform consistent hashing in a distributed 

fashion?
– What happens when nodes join and leave?

Consistent hashing addresses these problems
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Consistent Hashing

• Main idea: map both keys and nodes (node IPs) to the 
same (metric) ID space

Ring is one option.
Any metric space will do

Initially proposed for relieving Web cache hotspots [Karger97, STOC]
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Consistent Hashing

• The consistent hash function assigns each node 
and key an m-bit identifier using SHA-1 as a 
base hash function

• Node identifier: SHA-1 hash of IP address

• Key identifier: SHA-1 hash of key
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• m  bit identifier space for both keys and nodes

• Key identifier: SHA-1(key)

Key=“LetItBe” ID=60SHA-1

IP=“198.10.10.1” ID=123SHA-1
• Node identifier: SHA-1(IP address)

• Both are uniformly distributed

• How to map key IDs to node IDs? 

Chord Identifiers
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A key is stored at its successor: node with next higher ID

N32

N90

N123 K20

K5

Circular 7-bit
ID space

0IP=“198.10.10.1”

K101

K60
Key=“LetItBe”

Consistent Hashing in Chord
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Consistent Hashing Properties

• Load balance: all nodes receive roughly the 
same number of keys

• Flexibility: when a node joins (or leaves) the 
network, only an fraction of the keys are moved 
to a different location.
– This solution is optimal (i.e., the minimum necessary 

to maintain a balanced load)
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N32

N90

N123

0

Hash(“LetItBe”) = K60

N10

N55

Where is “LetItBe”? 

“N90 has K60”

K60

Consistent Hashing
• Every node knows of every other node

–  requires global information

•  Routing tables are large:  O(N)
•  Lookups are fast:  O(1)
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Load Balance Results (Theory)

• For N nodes and K keys, with high probability

– each node holds at most (1+ε)K/N keys

– when node N+1 joins or leaves, O(N/K) keys change 
hands, and only to/from node N+1
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N32

N90

N123

0

Hash(“LetItBe”) = K60

N10

N55

Where is “LetItBe”? 

“N90 has K60”

K60

Lookups in Chord

• Every node knows its successor in the ring
• Requires O(N) lookups
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N80
80 + 20

N112

N96

N16

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

Reducing Lookups: Finger Tables

•  Every node knows m other nodes in the ring
•  Increase distance exponentially



  
26

N120

N80
80 + 20

N112

N96

N16

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

Reducing Lookups: Finger Tables

• Finger i  points to successor of n+2i
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Finger Table Lookups

Each node knows its immediate
successor.  Find the predecessor 
of id and ask for its successor.

Move forward around the ring 
looking for node whose 
successor’s ID is > id
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N32

N10

N5

N20
N110

N99

N80

N60

Lookup(K19)

K19

Faster Lookups

• Lookups are O(log N) hops
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Summary of Performance Results

• Efficient: O(log N) messages per lookup

• Scalable: O(log N) state per node

• Robust: survives massive membership changes
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Joining the Ring

• Three step process
–  Initialize all fingers of new node
–  Update fingers of existing nodes
–  Transfer keys from successor to new node

•  Two invariants to maintain
– Each node’s successor is maintained
– successor(k) is responsible for k
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N36

1. Lookup(37,38,40,…,100,164)

N60

N40

N5

N20
N99

N80

Join: Initialize New Node’s Finger Table

• Locate any node p in the ring
•  Ask node p to lookup fingers of new node
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N36

N60

N40

N5

N20
N99

N80

Join: Update Fingers of Existing Nodes

• New node calls update function on existing nodes
• Existing nodes recursively update fingers of other 

nodes



  
33

Copy keys 21..36
from N40 to N36

K30
K38

N36

N60

N40

N5

N20
N99

N80

K30

K38

Join: Transfer Keys

• Only keys in the range are transferred 
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N120
N113

N102

N80

N85

N10

Lookup(90)

Handling Failures

• Problem: Failures could cause incorrect lookup
• Solution: Fallback: keep track of successor fingers
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Handling Failures

•  Use successor list
–  Each node knows r immediate successors
–  After failure, will know first live successor
–  Correct successors guarantee correct lookups

•  Guarantee is with some probability
–  Can choose r  to make probability of lookup failure 

arbitrarily small
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Structured vs. Unstructured Overlays

• Structured overlays have provable properties
– Guarantees on storage, lookup, performance

• Maintaining structure under churn has proven to 
be difficult
– Lots of state that needs to be maintained when 

conditions change

• Deployed overlays are typically unstructured


