Content Overlays

Nick Feamster
CS 7260
March 12, 2007

Content Overlays

* Distributed content storage and retrieval

* Two primary approaches:
— Structured overlay
— Unstructured overlay

* Today’s paper: Chord

— Not strictly a content overlay, but one can build content
overlays on top of it (e.g., Dabek et al. “CFS”)

Goals and Examples

* Goals
— File distribution/exchange
— Anonymous storage and communication

* Examples
— Directory-based: Napster
— Unstructured overlays: Freenet and Gnutella
— Structured overlays: Chord, CAN, Pastry, etc.
— Content-distribution: Akamai
— Bittorrent (overview and economics)

Directory-based Search, P2P Fetch

* Centralized Database
— Join: on startup, client contacts central server
— Publish: reports list of files to central server
— Search: query the server

* Peer-to-Peer File Transfer
— Fetch: get the file directly from peer

History: Freenet (circa 1999)

Unstructured overlay (compare to Gnutella)
— No hierarchy; implemented on top of existing networks (e.g., IP)

First example of key-based routing
— Freenet’s legacy
— Unlike Chord, no provable performance guarantees

* Goals
— Censorship-resistance
— Anonymity: for producers and consumers of data
* Nodes don’t even know what they are storing
— Survivability: no central servers, etc.
— Scalability

Current status: redesign

Big Idea: Keys as First-Class Objects

Keys name both the objects being looked up and the content itself

* Keyword-signed Key (KSK)
— Key is based on human-readable description of the file
— Problem: flat, global namespace (possible collisions)

* Signed Subspace Key
— Helps prevent namespace collisions
— Allows for secure update
— User can only retrieve and decrypt a document if it knows the SSK

* Content Hash Key
— SHA-1 hash of the file that is being stored
— Allows for efficient file updates through indirection

Publishing and Querying in Freenet

* Process for both operations is the same

* Keys passed through a chain of proxy requests
— Nodes make local decisions about routing queries
— Queries have hops-to-live and a unique ID

* Two cases
— Node has local copy of file
* File returned along reverse path
* Nodes along reverse path cache file
— Node does not have local copy

* Forward request to neighbor whose key is closest to the key
of the file

Routing Queries in Freenet

© .~ = Data request

1/ "= Data reply

FRequester Py
'B - | 12 ‘/ ,--"""= Fequest failed

{} Data holder

Figure |.Typical request sequence.The request moves through the
network from node to node, backing out of a dead-end (step 3) and
a loop (step 7) before locating the desired file.

Small World Network Property

* The majority of the nodes have a few local
connections to other nodes

* Few nodes have large wide ranging connections

* Resulting properties
— Fault tolerance
— Short average path length

Freenet Design

* Strengths
— Decentralized
— Anonymous
— Scalable

* \Weaknesses

— Problem: how to find the names of keys in the first
place?

— No file lifetime guarantees

— No efficient keyword search

— No defense against DoS attacks

— Bandwidth limitations not considered

10

Freenet Security Mechanisms

* Encryption of messages
— Prevents eavesdropping

* Hops-to-live
— prevents determining originator of query

* Hashing
— checks data integrity
— prevents intentional data corruption

11

Structured [Content] Overlays

12

Chord: Overview

* What is Chord?

— A scalable, distributed “lookup service”

— Lookup service: A service that maps keys to values (e.g.,
DNS, directory services, etc.)

— Key technology: Consistent hashing

* Major benefits of Chord over other lookup services
— Simplicity
— Provable correctness
— Provable “performance”

13

Chord: Primary Motivation

Scalable location of data in a large distributed system

Publisher
Key="LetltBe”
Value=MP3 data

Lookup(“LetltBe”)

Key Problem: Lookup

14

Chord: Design Goals

* Load balance: Chord acts as a distributed hash function,
spreading keys evenly over the nodes.

* Decentralization: Chord is fully distributed: no node is more
important than any other.

* Scalability: The cost of a Chord lookup grows as the log of the
number of nodes, so even very large systems are feasible.

* Avallability: Chord automatically adjusts its internal tables to
reflect newly joined nodes as well as node failures, ensuring
that, the node responsible for a key can always be found.

* Flexible naming: Chord places no constraints on the structure of
the keys it looks up.

15

Consistent Hashing

* Uniform Hash: assigns values to “buckets”
— e.q., H(key) = f(key) mod k, where k is number of nodes
— Achieves load balance if keys are randomly distributed

* Problems with uniform hashing

— How to perform consistent hashing in a distributed
fashion?

— What happens when nodes join and leave?

Consistent hashing addresses these problems

16

Consistent Hashing

* Main idea: map both and nodes (node IPs) to the
same (metric) ID space

Ring is one option.
Any metric space will do

Initially proposed for relieving Web cache hotspots [Karger97, STOC] 17

Consistent Hashing

* The consistent hash function assigns each node
and key an m-bit identifier using SHA-1 as a
base hash function

* Node identifier: SHA-1 hash of IP address

* Key identifier: SHA-1 hash of key

18

Chord ldentifiers

* m bit identifier space for both keys and nodes
* Key identifier: SHA-1(key)
Key=“LetltBe” —SHA-1 ., |D=60

* Node identifier: SHA-1(IP address)
IP=198.10.10.1” —SHA-1 , |D=123

* Both are uniformly distributed

* How to map key IDs to node IDs?

19

Consistent Hashing in Chord

A key is stored at its successor: node with next higher ID

IP="198.10.10.1"

N123

/

K101

N9O

0 K5

Circular 7-bit

K20

\

ID space

N32

~——K60

Key="LetltBe”"

20

Consistent Hashing Properties

* Load balance: all nodes receive roughly the
same number of keys

* Flexibility: when a node joins (or leaves) the
network, only an fraction of the keys are moved
to a different location.

— This solution is optimal (i.e., the minimum necessary
to maintain a balanced load)

21

Consistent Hashing

* Every node knows of every other node
— requires global information

* Routing tables are large: O(N)
* Lookups are fast: O(1)
0

Where is “LetltBe”?
Hash(“LetltBe"”) = K60

N123

N32

‘N90 has K60"”

K60

Load Balance Results (Theory)

* For N nodes and K keys, with high probability
— each node holds at most (1+&)K/N keys

— when node N+1 joins or leaves, O(N/K) keys change
hands, and only to/from node N+1

23

Lookups in Chord

* Every node knows its successor in the ring
* Requires O(N) lookups

ﬁ\

N0 Where is “LetltBe”?

\TSh(“ LetltBe”) = K60

N32

N123

“N90 has K60”

€60 [N90]

NS5

Reducing Lookups: Finger Tables

* Every node knows m other nodes in the ring
* Increase distance exponentially

.........................

25

Reducing Lookups: Finger Tables

* Finger i points to successor of n+2

______________ N120
N112: N16
80 +2 % 80 + 26
N
\
oimime ! \
' N96 | “a
IR \
80 + 24 \
|
/
80 + 23 7
80 + 22 z
80 + 21
80 4+ 20

Finger Table Lookups

Each node knows its immediate

/ ask node . to find id’s successor successor. Find the predecessor
n.find_successor(id) / of id and ask for its successor.

n' = find_predecessor(id):

return n' .successor:

o Move forward around the ring
/ ask node n to find id’s predecessor .
n.find_predecessor(id) 4/|00k|ng for node whose

ne successor’s ID is > id

while (id & (n',n'.successor]|)
n' = n'.closest_preceding finger(id):

return n’;
. . finger table ke
// return closest finger preceding id Sfm T I::Sl
n.closest_preceding finger(id) T 2] 1
for ¢ = m downto 1 i [i.g} g
if (finger(i].node € (n,1d)) [+.0)
return finger|i|.node; finger table keys
return ri; start] int. [succ E
2 | [23)] 3
3 | [3,5))] 3
5 |[51)) 0
finger table keys
start] int. [succ)
4 ([45)(0
5 |57 0
7T [[7.3) | 0 27

Faster Lookups

* Lookups are O(log N) hops

N110

N99

N80

NS

N10

N20

K19

N32

N60

Lookup(K19)

28

Summary of Performance Results

« Efficient: O(log N) messages per lookup
* Scalable: O(log N) state per node

* Robust: survives massive membership changes

29

Joining the Ring

* Three step process
— Initialize all fingers of new node
— Update fingers of existing nodes
— Transfer keys from successor to new node

* Two Invariants to maintain
— Each node’s successor is maintained
— successor(k) is responsible for k

30

Join: Initialize New Node’s Finger Table

* Locate any node p in the ring
* Ask node p to lookup fingers of new node

NS

N20

— | N99

N36
1. Lookup(37,38,40,...,100,164

N40

N80

NGO

Join: Update Fingers of Existing Nodes

* New node calls update function on existing nodes

* Existing nodes recursively update fingers of other
nodes

NS

N20

N99

N36

N40

N8O

N60

Join: Transfer Keys

* Only keys in the range are transferred

N99

NS

N8O |

N20

N36

K30

N40

NGO

> Copy keys 21..36

K38
K38

from N40 to N36

33

Handling Failures

* Problem: Failures could cause incorrect lookup
* Solution: Fallback: keep track of successor fingers

N120
N113 MO

NTUz

e\« Lookup(90)

Handling Failures

* Use successor list
— Each node knows r immediate successors
— After failure, will know first live successor
— Correct successors guarantee correct lookups

* Guarantee is with some probability

— Can choose r to make probability of lookup failure
arbitrarily small

35

Structured vs. Unstructured Overlays

* Structured overlays have provable properties
— Guarantees on storage, lookup, performance

* Maintaining structure under churn has proven to
be difficult

— Lots of state that needs to be maintained when
conditions change

* Deployed overlays are typically unstructured

36

