Routing Overlays and Virtualization

Nick Feamster CS 7260 March 7, 2007

Today's Lecture

- Routing Overlays: Resilient Overlay Networks
 - Motivation
 - Basic Operation
 - Problems: scaling, syncrhonization, etc.
 - Other applications: security
- Other Kinds of Network Virtualization (e.g, BGP/MPLS VPNs)

The Internet Ideal

- Dynamic routing routes around failures
- End-user is none the wiser

Lesson from Routing Overlays

End-hosts are often better informed about performance, reachability problems than routers.

- End-hosts can measure path performance metrics on the (small number of) paths that matter
- Internet routing scales well, but at the cost of performance

Reality

- Routing pathologies: Paxson's paper from a few lectures ago: 3.3% of routes had "serious problems
- Slow convergence: BGP can take a long time to converge
 - Up to 30 minutes!
 - 10% of routes available < 95% of the time [Labovitz]
- "Invisible" failures: about 50% of prolonged outages not visible in BGP [Feamster]

Slow Convergence in BGP

Given a failure, can take up to 15 minutes to see BGP. Sometimes, not at all.

Routing Convergence in Practice

Time	Prefix	Туре	AS Path	${\bf Local pref MED}$	Community
2005/11/01 00:06:23	195.78.38.0/23	A	174 5400 20703 28773		174:21100 16631:1000
2005/11/01 00:06:39	195.78.38.0/23	A	3356 5400 20703 28773		3356:2 3356:100 3356:123 3356:500 3356:2064 5400:46
2005/11/01 00:06:45	195.78.38.0/23	W			

 Route withdrawn, but stub cycles through backup path...

Resilient Overlay Networks: Goal

 Increase reliability of communication for a small (i.e., < 50 nodes) set of connected hosts

 Main idea: End hosts discover network-level path failure and cooperate to re-route.

BGP Convergence Example

Intuition for Delayed BGP Convergence

- There exists a message ordering for which BGP will explore all possible AS paths
 - Convergence is O(N!), where N number of defaultfree BGP speakers in a complete graph
 - In practice, exploration can take 15-30 minutes
 - Question: What typically prevents this exploration from happening in practice?
- Question: Why can't BGP simply eliminate all paths containing a subpath when the subpath is withdrawn?

The RON Architecture

- Outage detection
 - Active UDP-based probing
 - Uniform random in [0,14]
 - O(n²)
 - 3-way probe
 - Both sides get RTT information
 - Store latency and loss-rate information in DB
- Routing protocol: Link-state between overlay nodes
- Policy: restrict some paths from hosts
 - E.g., don't use Internet2 hosts to improve non-Internet2 paths

Main results

RON can route around failures in ~ 10 seconds

Often improves latency, loss, and throughput

- Single-hop indirection works well enough
 - Motivation for second paper (SOSR)
 - Also begs the question about the benefits of overlays

When (and why) does RON work?

- Location: Where do failures appear?
 - A few paths experience many failures, but many paths experience at least a few failures (80% of failures on 20% of links).
- Duration: How long do failures last?
 - 70% of failures last less than 5 minutes
- Correlation: Do failures correlate with BGP instability?
 - BGP updates often coincide with failures
 - Failures near end hosts less likely to coincide with BGP
 - Sometimes, BGP updates precede failures (why?)

Location of Failures

- Why it matters: failures closer to the edge are more difficult to route around, particularly lasthop failures
 - RON testbed study (2003): About 60% of failures within two hops of the edge
 - SOSR study (2004): About half of failures potentially recoverable with one-hop source routing
 - Harder to route around broadband failures (why?)

Benefits of Overlays

- Access to multiple paths
 - Provided by BGP multihoming
- Fast outage detection
 - But...requires aggressive probing; doesn't scale

Question: What benefits does overlay routing provide over traditional multihoming + intelligent routing (e.g., RouteScience)?

Open Questions

- Efficiency
 - Requires redundant traffic on access links
- Scaling
 - Can a RON be made to scale to > 50 nodes?
 - How to achieve probing efficiency?
- Interaction of overlays and IP network
- Interaction of multiple overlays

Efficiency

 Problem: traffic must traverse bottleneck link both inbound and outbound

- Solution: in-network support for overlays
 - End-hosts establish reflection points in routers
 - Reduces strain on bottleneck links
 - Reduces packet duplication in application-layer multicast (next lecture)

Scaling

• Problem: $O(n^2)$ probing required to detect path failures. Does not scale to large numbers of hosts.

Solution: ?

- Probe some subset of paths (which ones)
- Is this any different than a routing protocol, one layer higher?

Performance (convergence speed, etc.)

Interaction of Overlays and IP Network

- Supposed outcry from ISPs: "Overlays will interfere with our traffic engineering goals."
 - Likely would only become a problem if overlays became a significant fraction of all traffic
 - Control theory: feedback loop between ISPs and overlays
 - Philosophy/religion: Who should have the final say in how traffic flows through the network?

Interaction of multiple overlays

- End-hosts observe qualities of end-to-end paths
- Might multiple overlays see a common "good path"
- Could these multiple overlays interact to create increase congestion, oscillations, etc.?

"Selfish routing" problem.

The "Price of Anarchy"

cost of worst Nash equilibrium

"socially optimum" cost

- A directed graph G = (V, E)
- source—sink pairs si,ti for i=1,..,k
- rate ri ≥ 0 of traffic between si and ti for each i=1,..,k
- For each edge e, a latency function le(•)

Flows and Their Cost

- Traffic and Flows:
- A flow vector f specifies a traffic pattern
 - f_P = amount routed on s_i-t_i path P

The Cost of a Flow:

- $\ell_P(f)$ = sum of latencies of edges along P (w.r.t. flow f)
- C(f) = cost or total latency of a flow f: Σ_P f_P ℓ_P(f)

Example

Traffic on lower edge is "envious".

An envy free flow:

Cost of flow = $1 \cdot 1 + 0 \cdot 1 = 1$

Flows and Game Theory

- Flow: routes of many noncooperative agents
 - each agent controlling infinitesimally small amount
 - cars in a highway system
 - packets in a network
- The toal latency of a flow represents social welfare
- Agents are selfish, and want to minimize their own latency

Flows at Nash Equilibrium

- A flow is at Nash equilibrium (or is a Nash flow) if no agent can improve its latency by changing its path
 - Assumption: edge latency functions are continuous, and nondecreasing
- Lemma: a flow f is at Nash equilibrium if and only if all flow travels along minimum-latency paths between its source and destination (w.r.t. f)
- Theorem: The Nash equilibrium exists and is unique

Braess's Paradox

Traffic rate: r = 1

Cost of Nash flow = 1.5

Cost of Nash flow = 2

All the flows have increased delay

Existing Results and Open Questions

- Theoretical results on bounds of the price of anarchy: 4/3
- Open question: study of the dynamics of this routing game
 - Will the protocol/overlays actually converge to an equilibrium, or will the oscillate?
- Current directions: exploring the use of taxation to reduce the cost of selfish routing.

Overlays on IP Networks

MPLS Overview

- Main idea: Virtual circuit
 - Packets forwarded based only on circuit identifier

Router can forward traffic to the same destination on different interfaces/paths.

Circuit Abstraction: Label Swapping

- Label-switched paths (LSPs): Paths are "named" by the label at the path's entry point
- At each hop, label determines:
 - Outgoing interface
 - New label to attach
- Label distribution protocol: responsible for disseminating signalling information

Layer 3 Virtual Private Networks

- Private communications over a public network
- A set of sites that are allowed to communicate with each other

- Defined by a set of administrative policies
 - determine both connectivity and QoS among sites
 - established by VPN customers
 - One way to implement: BGP/MPLS VPN mechanisms (RFC 2547)

Building Private Networks

- Separate physical network
 - Good security properties
 - Expensive!
- Secure VPNs
 - Encryption of entire network stack between endpoints
- Layer 2 Tunneling Protocol (L2TP)
 - "PPP over IP"
 - No encryption
- Layer 3 VPNs

Privacy and interconnectivity (not confidentiality, integrity, etc.)

Layer 2 vs. Layer 3 VPNs

- Layer 2 VPNs can carry traffic for many different protocols, whereas Layer 3 is "IP only"
- More complicated to provision a Layer 2 VPN
- Layer 3 VPNs: potentially more flexibility, fewer configuration headaches

Layer 3 BGP/MPLS VPNs

- Isolation: Multiple logical networks over a single, shared physical infrastructure
- Tunneling: Keeping routes out of the core

High-Level Overview of Operation

IP packets arrive at PE

 Destination IP address is looked up in forwarding table

 Datagram sent to customer's network using tunneling (i.e., an MPLS label-switched path)

BGP/MPLS VPN key components

- Forwarding in the core: MPLS
- Distributing routes between PEs: BGP
- Isolation: Keeping different VPNs from routing traffic over one another
 - Constrained distribution of routing information
 - Multiple "virtual" forwarding tables
- Unique addresses: VPN-IP4 Address extension

Virtual Routing and Forwarding

Separate tables per customer at each router

Routing: Constraining Distribution

- Performed by Service Provider using route filtering based on BGP Extended Community attribute
 - BGP Community is attached by ingress PE route filtering based on BGP Community is performed by egress PE

BGP/MPLS VPN Routing in Cisco IOS

Customer B Customer / ip vrf Customer A rd 100:110 route-target export 100:1000 route-target import 100:1000 ip vrf Customer B rd 100:120 route-target export 100:2000 route-target import 100:2000

Forwarding

- PE and P routers have BGP next-hop reachability through the backbone IGP
- Labels are distributed through LDP (hop-by-hop) corresponding to BGP Next-Hops
- Two-Label Stack is used for packet forwarding
 - Top label indicates Next-Hop (interior label)
 - Second level label indicates outgoing interface or VRF (exterior label)

Forwarding in BGP/MPLS VPNs

- Step 1: Packet arrives at incoming interface
 - Site VRF determines BGP next-hop and Label #2

 Step 2: BGP next-hop lookup, add corresponding LSP (also at site VRF)

