
Evaluation Strategies

Nick Feamster
CS 7260

February 26, 2007

2

Evaluation Strategies

• Many ways to evaluate new protocols, systems,
implementations
– Mathematical analysis
– Simulation (ns, SSFNet, etc.)
– Emulation (emulab)
– Trace-driven evaluation
– Wide-area deployment (VINI)

• Interplay between these areas is not obvious!

• Various tradeoffs in “realism”, control, etc.

• A combination may be appropriate

3

Why Network Simulation?

• Can capture complexity that analytical models miss

• Protocol validation
– Quantitative results
– Exploration of dynamics

• Controlled experimental conditions

• Low cost/barrier to entry
– Time
– Collaboration
– Complexity

4

Simulation: ns

• ns:discrete-event network simulator for Internet
systems
– protocol design, large scale systems studies,

prototyping, education

• Why ns?
– Protocols: TCP, UDP, HTTP, etc.
– Traffic Models: Web Traffic, CBR,
– Topology Generation tools
– Visualization tools

5

Step 1: Topology

Create simulation object
set ns [new Simulator]

Ask ns for nodes
set n0 [$ns node]
set n1 [$ns node]

Create a duplex link b/w n0 & n1
$ns duplex-link $n0 $n1 1Mb 10ms DropTail

Schedule End
$ns at 5.0 "exit 0"

Run Simulation
$ns run

6

Step 2: Attaching Agents

• Purpose: Transport connections between nodes
• Various types: TCP, UDP, etc.

Create a UDP agent
set udp1 [new Agent/UDP]

Create a Null agent
set sink1 [new Agent/Null]

Attach agent udp1 to node n0
$ns attach-agent $n0 $udp1

Attach agent sink1 to node n1
$ns attach-agent $n1 $sink1

Connect the agents
$ns connect $udp1 $sink1

Create a TCP agent
set tcp1 [new Agent/TCP]

Create a Null agent
set sink1 [new Agent/TCPSink]

Attach agent tcp1 to node n0
$ns attach-agent $n0 $tcp1

Attach agent sink1 to node n1
$ns attach-agent $n1 $sink1

Connect the agents
$ns connect $tcp1 $sink1

UDP TCP

7

Step 3: Creating Traffic

• Purpose: Send traffic over links/transport

Create Source
set cbr1 [new Application/Traffic/CBR]

Configure Source
$cbr1 set packetSize_ 500 $cbr1 set
interval_ 0.005

Attach source to agent
$cbr1 attach-agent $udp1

Schedule cbr on
$ns at 0.5 "$cbr1 start"

Schedule cbr off
$ns at 4.5 "$cbr1 stop"

8

Simulation: Advantages and
Disadvantages

• Ease of use
• Often possible to achieve

large scale (federation,
etc.)

• Low cost in time, money,
etc.

• Many “accepted” models
available

• Models may be (and have
previously been shown to
be) incorrect

• Doesn’t run actual
protocols, software
implementations, etc.

• Parameter exploration
creep

Advantages Disadvantages

9

Crisis of Credibility

From: Cavin,
Sasson and
Schiper – On
the accuracy of
MANET
Simulators

OpnetNs-2

Glomosim

10

Case Study: Internet

• Heterogeneity
– Link media (fiber, copper, wireless, etc.)
– Link rates
– Transport protocol implementations

• Scale
– When is it OK to draw conclusions from small-scale

experiments?

• Drastic rates of change

“Difficulties in Simulating the Internet”, IEEE/ACM ToN, August 2001

11

Coping Strategy: Invariants

• Diurnal traffic patterns
• Self-similarity/Long-range dependence
• Heavy-tailed distributions Pareto Distributions

• Speed of light

12

Case Study: Wireless

• The earth is not flat
• Radio transmission range

is not circular

• Radios have unequal
ranges

• Communication is
asymmetric

• Reachability does not
imply perfect
communication

• Signal strength is not only
a function of distance

“Mistaken Axioms of Wireless Networking Research”, Dartmouth TR

13

Emulation: Emulab

http://www.emulab.net/

14

Why?

• “We evaluated our system on five nodes.”
– job talk from university with 300-node cluster

• “We evaluated our Web proxy design with 10 clients on
100Mbit ethernet.”

• “Simulation results indicate ...”
• “Memory and CPU demands on the individual nodes

were not measured, but we believe will be modest.”

• “The authors ignore interrupt handling overhead in their
evaluation, which likely dominates all other costs.”

• “Resource control remains an open problem.”

15

Emulab Design Features

• Allow experimenter complete control
• … but provide fast tools for common cases

– OS’s, disk loading, state mgmt tools, IP, traffic generation,
batch, ...

• Virtualization
– of all experimenter-visible resources
– node names, network interface names, network

addresses

– Allows swapin/swapout

16

Design Aspects (cont’d)

• Flexible, extensible, powerful allocation
algorithm

• Persistent state maintenance:
– none on nodes

– all in database

– leverage node boot time: only known state!

• Separate control network
• Familiar, powerful, extensible configuration

language: ns

17

More Unique Characteristics

• Capture of low-level node behavior such as interrupt load
and memory bandwidth

• User-replaceable node OS software

• User-configurable physical link topology
– User-configurable control of “physical” characteristics:

• shaping of link latency/bandwidth/drops/errors
(via invisibly interposed “shaping nodes”),

• router processing power,
• buffer space, …

• Configurable by external researchers, including node
power cycling

18

Example Topology and Configuration

set ns [new Simulator]
source tb_compat.tcl

set nodeA [$ns node]
set nodeB [$ns node]
set nodeC [$ns node]
set nodeD [$ns node]

set link0 [$ns duplex-link $nodeA $nodeB 30Mb 50ms DropTail]
set link1 [$ns duplex-link $nodeA $nodeC 30Mb 50ms DropTail]
set link2 [$ns duplex-link $nodeC $nodeD 30Mb 50ms DropTail]
set link3 [$ns duplex-link $nodeB $nodeD 30Mb 50ms DropTail]

$ns rtproto Static
$ns run

30Mb
50ms

19

Demonstration

20

What Is It Not Good For?
• Packet-level expts. across many nodes

– Clock synchronization good, but not perfect
– Non-determinism in the real world

• Experiments that require real routers
– All nodes are PCs

• But, we can use a few different queuing strategies
• And, you can reprogram them all you want

• Experiments that require gigabit links
– None yet, but we hope to add some

• Experiments that need 1000s of links/nodes
– ModelNet, coming soon, will help

21

Challenges for Emulation and
Wide-Area Deployment

• Mapping and embedding
– Resource management

– Scheduling experiments

• Scaling

• Validation

• Security

• Artifact detection and control

• User interface issues

22

Network Embedding Problem

• Given: virtual network and physical network
– Topology, constraints, etc.

• Problem: find the appropriate mapping onto
available physical resources (nodes and edges)

• Many possible formulations
– Specific nodes mapping to certain physical nodes
– Generic requirements: “three diverse paths from SF to

LA with 100 MBps throughput”

– Traffic awareness, dynamic remapping, etc.

23

VINI Overview

• Runs real routing software
• Exposes realistic network conditions
• Gives control over network events
• Carries traffic on behalf of real users
• Is shared among many experiments

Simulation

Emulation

Small-scale
experiment

Live
deployment

?
VINI

Bridge the gap between “lab experiments”
and live experiments at scale.

24

Goal: Control and Realism

• Control
– Reproduce results
– Methodically change or

relax constraints

• Realism
– Long-running services

attract real users

– Connectivity to real Internet

– Forward high traffic
volumes (Gb/s)

– Handle unexpected events

Topology
Actual
network

Arbitrary,
emulated

Traffic
Real
clients,
servers

Synthetic
or traces

Network Events
Observed in
operational
network

Inject faults,
anomalies

25

Network Virtualization: Characteristics

• Multiple logical routers on a single platform
• Resource isolation in CPU, memory, bandwidth,

forwarding tables, …

• Customizable routing and forwarding software
• General-purpose CPUs for the control plane
• Network processors and FPGAs for data plane

Sharing

Customizability

26

Fixed Physical Infrastructure

27

Shared By Many Parties

28

Supports Arbitrary Virtual Topologies

29

Why Is This Difficult?

• Creation of virtual nodes
– Sharing of resources
– Creating the appearance of multiple interfaces
– Arbitrary software

• Creation of virtual links
– Expose underlying failures of links
– Controlled link failures
– Arbitrary forwarding paradigms

• Embedding virtual topologies
– Support for simultaneous virtual experiments
– Must map onto available resources, account, etc.

30

PL-VINI: Prototype on PlanetLab

• First experiment: Internet In A Slice
– XORP open-source routing protocol suite
– Click modular router

• Expose issues that VINI must address
– Unmodified routing (and other) software on a virtual

topology
– Forwarding packets at line speed
– Illusion of dedicated hardware
– Injection of faults and other events

31

PL-VINI: Prototype on PlanetLab

• PlanetLab: testbed for planetary-scale services
• Simultaneous experiments in separate VMs

– Each has “root” in its own VM, can customize

• Can reserve CPU, network capacity per VM

Virtual Machine Monitor (VMM)
(Linux++)

Node
Mgr

Local
Admin

VM1 VM2 VMn…
PlanetLab node

32

Internet In A Slice

XORP
• Run OSPF
• Configure FIB

Click
• FIB
• Tunnels
• Inject faults

OpenVPN & NAT
• Connect clients and servers

33

XORP: Control Plane

• BGP, OSPF, RIP, PIM-
SM, IGMP/MLD

• Goal: run real routing
protocols on virtual
network topologies

XORP
(routing protocols)

34

User-Mode Linux: Environment

• PlanetLab limitation:
– Slice cannot create new

interfaces

• Run routing software in UML
environment

• Create virtual network
interfaces in UML

• Challenge: Map these
interfaces to the right tunnels

XORP
(routing protocols)

UML

eth1 eth3eth2eth0

35

Click: Data Plane

• Performance
– Avoid UML overhead
– Move to kernel, FPGA

• Interfaces  tunnels
– Click UDP tunnels

correspond to UML
network interfaces

• Filters
– “Fail a link” by blocking

packets at tunnel

XORP
(routing protocols)

UML

eth1 eth3eth2eth0

Click

Packet
Forward
Engine

Control

Data
UmlSwitch

element

Tunnel table

Filters

36

Demonstration

planetlab1.csail.mit.edu

planetlab3.csail.mit.edu

planetlab6.csail.mit.edu

planetlab4.csail.mit.edu

1 2

1 3

37

Questions to Ask

