Traffic: Monitoring, Estimation, and Engineering

Nick Feamster
CS 7260
February 14, 2007

Administrivia

- Syllabus redux
 - More time for traffic monitoring/engineering
 - Simulation vs. emulation pushed back (Feb. 21)
- Workshop deadlines (6-page papers)
 - Reducing unwanted traffic: April 17
 - Large scale attacks: April 21
 - Network management: April 26
 - Include in your proposal whether you will aim for one of these.

End-to-End Routing Behavior

- Prevalence: Likelihood of seeing a route
 - Most paths dominated by a single prevalent route
- Persistence: Likelihood that a route stays same
 - Persistence of routes was variable
 - 2/3 of paths had routes persisting for days or weeks
- Observed doubling in pathologies over the course of a year.

Method

- Centralized controller launches distributed traceroutes
- Pairwise traceroutes across sites
 - First dataset has interval of 1-2 days
 - Second dataset has some measurements in bursts
 - Second dataset has paired measurements
- (Mostly) poisson distribution of observations across paths
 - PASTA principle: fraction of observations implies fraction of overall time

Arguing "Representativeness"

- Always tricky business...
- This paper: fraction of ASes traversed by the pairwise paths (8% "cross section")
- D1: ~ 7k traceroutes; D2: ~38k traceroutes

Limitations

- No explanation of why or where.
- Centralized controller limits flexibility
- Traceroute issues

Routing Loops

- Loops: about 0.1% of all observations
 - Two modes: under three hours, more than 12 hours
 - Loops come in clusters
 - Loops can affect nearby routers
 - 5 observations of multiple AS loops
 (how can this happen? Examples...)

Erroneous Routing

- Packets clearly taking wrong path (e.g., through Israel)
- One example of erroneous routing

Changing Paths

- Connectivity altered mid-stream
 - Between 0.16% and 0.44%
 - Recovery times bimodal
 - Cause
- Fluttering
 - Rapidly oscillating routing
 - Load balance/splitting
 - Distinct from fluttering caused by routing oscillations?

Failures and Unreachability

- Availability rate of infrastructure about 99.5% -99.8% (about 2.5 "nines")
 - Assumes representative measurements
 - Assumes that other times paths were actually usable

Neglects times when infrastructure could not drive the

measurement

- Most path lengths: about 15-16 hops
- Some diurnal patterns

Routing Stability

Routing Symmetry

Related Routing Pathology: Path Exploration

 Routing pathologies: Paxson's paper from a few lectures ago: 3.3% of routes had "serious problems

- Slow convergence: BGP can take a long time to converge
 - Up to 30 minutes!
 - 10% of routes available < 95% of the time [Labovitz]

BGP Convergence Example

Slow Convergence in BGP

Given a failure, can take up to 15 minutes to see BGP. Sometimes, not at all.

Intuition for Delayed BGP Convergence

- There exists a message ordering for which BGP will explore all possible AS paths
 - Convergence is O(N!), where N number of defaultfree BGP speakers in a complete graph
 - In practice, exploration can take 15-30 minutes
 - Question: What typically prevents this exploration from happening in practice?
- Question: Why can't BGP simply eliminate all paths containing a subpath when the subpath is withdrawn?

Routing Convergence in Practice

Time	Prefix	Туре	AS Path	${\bf Local pref MED}$	Community
2005/11/01 00:06:23	195.78.38.0/23	A	174 5400 20703 28773		174:21100 16631:1000
2005/11/01 00:06:39	195.78.38.0/23	A	3356 5400 20703 28773		3356:2 3356:100 3356:123 3356:500 3356:2064 5400:46
2005/11/01 00:06:45	195.78.38.0/23	W			

 Route withdrawn, but stub cycles through backup path...

Passive Measurement

Two Main Approaches

- Packet-level Monitoring
 - Keep packet-level statistics
 - Examine (and potentially, log) variety of packet-level statistics. Essentially, anything in the packet.
 - Timing
- Flow-level Monitoring
 - Monitor packet-by-packet (though sometimes sampled)
 - Keep aggregate statistics on a flow

Packet Capture: tcpdump/bpf

- Put interface in promiscuous mode
- Use bpf to extract packets of interest

Accuracy Issues

- Packets may be dropped by filter
 - Failure of tcpdump to keep up with filter
 - Failure of filter to keep up with dump speeds

Question: How to recover lost information from packet drops?

Packet Capture on High-Speed Links

Example: Georgia Tech "OC3Mon"

- Rack-mounted PC
- Optical splitter
- Data Acquisition and Generation (DAG) card

Source: endace.com

Characteristics of Packet Capture

Allows inpsection on every packet on 10G links

- Disadvantages
 - Costly
 - Requires splitting optical fibers
 - Must be able to filter/store data

Traffic Flow Statistics

- Flow monitoring (e.g., Cisco Netflow)
 - Statistics about groups of related packets (e.g., same IP/TCP headers and close in time)
 - Recording header information, counts, and time

- More detail than SNMP, less overhead than packet capture
 - Typically implemented directly on line card

What is a flow?

- Source IP address
- Destination IP address
- Source port
- Destination port
- Layer 3 protocol type
- TOS byte (DSCP)
- Input logical interface (ifIndex)

Cisco Netflow

- Basic output: "Flow record"
 - Most common version is v5
 - Latest version is v10 (RFC 3917)
- Current version (10) is being standardized in the IETF (template-based)
 - More flexible record format
 - Much easier to add new flow record types

Flow Record Contents

Basic information about the flow...

- Source and Destination, IP address and port
- Packet and byte counts
- Start and end times
- ToS, TCP flags

...plus, information related to routing

- Next-hop IP address
- Source and destination AS
- Source and destination prefix

Aggregating Packets into Flows

- Criteria 1: Set of packets that "belong together"
 - Source/destination IP addresses and port numbers
 - Same protocol, ToS bits, ...
 - Same input/output interfaces at a router (if known)
- Criteria 2: Packets that are "close" together in time
 - Maximum inter-packet spacing (e.g., 15 sec, 30 sec)
 - Example: flows 2 and 4 are different flows due to time

Netflow Processing

1. Create and update flows in NetFlow Cache

Srclf	SrclPadd	Dstlf	DstlPadd	Protocol	TOS	Flgs	Pkts	SrcPort	SrcMsk	SrcAS	DstPort	DstMsk	DstAS	NextHop	Bytes/Pkt	Active	Idle
Fa1/0	173.100.21.2	Fa0/0	10.0.227.12	11	80	10	11000	00A2	/24	5	00A2	/24	15	10.0.23.2	1528	1745	4
Fa1/0	173.100.3.2	Fa0/0	10.0.227.12	6	40	0	2491	15	/26	196	15	/24	15	10.0.23.2	740	41.5	1
Fa1/0	173.100.20.2	Fa0/0	10.0.227.12	11	80	10	10000	00A1	/24	180	00A1	/24	15	10.0.23.2	1428	1145.5	3
Fa1/0	173.100.6.2	Fa0/0	10.0.227.12	6	40	0	2210	19	/30	180	19	/24	15	10.0.23.2	1040	24.5	14

1. Expiration

- Inactive timer expired (15 sec is default)
- Active timer expired (30 min (1800 sec) is default)
- NetFlow cache is full (oldest flows are expired)
- RST or FIN TCP Flag

Srclf	SrcIPadd	Dstlf	DstlPadd	Protocol	TOS	Flgs	Pkts	SrcPort	SrcMsk	SrcAS	DstPort	DstMsk	DstAS	NextHop	Bytes/Pkt	Active	Idle
Fa1/0	173.100.21.2	Fa0/0	10.0.227.12	11	80	10	11000	00A2	/24	5	00A2	/24	15	10.0.23.2	1528	1800	4

1. Aggregation?

e.g. Protocol-Port Aggregation Scheme becomes

Protocol	Pkts	SrcPort	DstPort	Bytes/Pkt
11	11000	00A2	00A2	1528

1. Export Version

Non-Aggregated Flows – export Version 5 or 9

Aggregated Flows – export Version 8 or 9

1. Transport Protocol

Reducing Measurement Overhead

- Filtering: on interface
 - destination prefix for a customer
 - port number for an application (e.g., 80 for Web)
- Sampling: before insertion into flow cache
 - Random, deterministic, or hash-based sampling
 - 1-out-of-n or stratified based on packet/flow size
 - Two types: packet-level and flow-level
- Aggregation: after cache eviction
 - packets/flows with same next-hop AS
 - packets/flows destined to a particular service

Packet Sampling

- Packet sampling before flow creation (Sampled Netflow)
 - 1-out-of-m sampling of individual packets (e.g., m=100)
 - Create of flow records over the sampled packets
- Reducing overhead
 - Avoid per-packet overhead on (m-1)/m packets
 - Avoid creating records for a large number of small flows
- Increasing overhead (in some cases)
 - May split some long transfers into multiple flow records
 - ... due to larger time gaps between successive packets

Problems with Packet Sampling

- Determining size of original flows is tricky
 - For a flow originally of size n, the size of the sampled flow follows a binomial distribution
 - Extrapoliation can result in big errors
 - Much research in reducing such errors (upcoming lectures)
- Flow records can be lost
- Small flows may be eradicated entirely

Sampling: Flow-Level Sampling

- Sampling of flow records evicted from flow cache
 - When evicting flows from table or when analyzing flows
- Stratified sampling to put weight on "heavy" flows
 - Select all long flows and sample the short flows
- Reduces the number of flow records
 - Still measures the vast majority of the traffic

```
Flow 1, 40 bytes
Flow 2, 15580 bytes
Flow 3, 8196 bytes
Flow 4, 5350789 bytes
Flow 5, 532 bytes
Flow 6, 7432 bytes
```

Accuracy Depends on Phenomenon

- Even naïve random sampling probably decent for capturing the existence of large flows
- Accurately measuring other features may require different approaches
 - Sizes of large flows
 - Distribution of flow sizes
 - Existence of small flows (coupon collection)
 - Size of small flows
 - Traffic "matrix"

Routing Data

- IGP
- BGP

- Collection methods
 - eBGP (typically "multihop")
 - iBGP
- Table dumps: Periodic, complete routing table state (direct dump from router)
- Routing updates: Continuous, incremental, best route only

Evaluation Strategies and Platforms

Other Measurement Tools

- Scriptroute (http://www.scriptroute.org/)
 - Write new probing tools/techniques, etc.
 - More on PS 2

Evaluation Strategies

Simulation

- Ns2, SSFNet
- Advantages: Control

Emulation

- Emulab
- Advantages: Real software, more realistic conditions

Wide-area Deployment

- VINI
- Simultaneous operation, sharing
- Advantages: Ability to carry real traffic

Next Lecture: Comparisons of these different evaluation strategies

PlanetLab: Distributed Services

Key challenge: Isolation

- Slice: Set of VMs are treated as a single entity (distributed virtualization)
- Isolation at system call level (vservers)
 - Shared filesystem, memory, etc.
- Network virtualization: safe raw sockets
 - Must be bound to a specific port

Virtualization

- Advantages
 - Simultaneous access to shared physical resources
- Disadvantages
 - Requires scheduling
 - Not running on "raw" hardware. May not see similar performance as the "real" network/system

PlanetLab for Network Measurement

- Nodes are largely at academic sites
 - Other alternatives: RON testbed (disadvantage: difficult to run long running measurements)
- Repeatability of network experiments is tricky
 - Proportional sharing
 - Minimum guarantees provided by limiting the number of outstanding shares
 - Work-conserving CPU scheduler means experiment could get *more* resources if there is less contention

PlanetLab for Network Architecture

- New components must be virtualized
 - Interfaces
 - Links
- Support for forwarding traffic over virtual links
- Stock and custom routing software