
ComposingUser Interfaces with InterViews

Mark A. Linton, JohnM. Vlissides,andPaulR. Calder

Centerfor IntegratedSystems,Room213

StanfordUniversity

Stanford,California94305

Abstract

In this article we showhow to composeuserinterfaceswith InterViews, a userinterfacetoolkit we have

developedat Stanford. InterViews providesa library of predefinedobjectsand a set of protocolsfor

composingthem. A user interfaceis createdby composingsimple primitives in a hierarchicalfashion,

allowing complexuserinterfacesto be implementedeasily. InterViewssupportsthe compositionof inter-

activeobjects(suchasscroll barsandmenus),text objects(suchaswordsandwhitespace),andgraphics

objects(suchascirclesandpolygons).To illustratehow InterViewscompositionmechanismsfacilitatethe

implementationof userinterfaces,we presentthreesimpleapplications:a dialogbox built from interactive

objects,a drawingeditor usinga hierarchyof graphicalobjects,anda classbrowserusinga hierarchyof

text objects.We alsodescribehow InterViewssupportsconsistencyacrossapplicationsaswell asend-user

customization.

Keywords: userinterfacetoolkits, interactivegraphics,workstationapplicationssoftware.

1 Introduction

Graphicaluserinterfacesfor workstationapplicationsare inherentlydifficult to build without abstractions

that simplify the implementationprocess. To help programmerscreatesuch interfaces,we considered

the following questions:What sort of interfacesshouldbe supported?What constitutesa good set of

programmingabstractionsfor building such interfaces? How doesa programmergo aboutbuilding an

interfacegiven theseabstractions?Our efforts to developuserinterfacetools that addressthesequestions

havebeenguidedby practicalexperience.We makethe following observations:

� All user interfacesneednot look alike. It is desirableto maintaina consistent“look and feel”

acrossapplications,but usersoftenhavedifferentpreferences.For example,oneusermay prefer

pop-upmenus,while anotherinsistson pull-downmenus.Our toolsmustthereforeallow a broad

rangeof interfacestylesandmustbe customizableon a per-userbasis.

� User interfacesneednotbepurely graphical. Many applicationdesignersprefericonic interfaces

becausethey believenovicesunderstandpicturesmore readily thantext. However, recentwork

- 2 -

[3] suggeststhat excessiveuse of icons can confusethe user with unfamiliar symbolism. A

textualinterfacemay be moreappropriatein a given context.The choiceof graphicalor textual

representationshouldfavor the clearestalternative.

� User interfacecodeshouldbe object-oriented.Objectsarenaturalfor representingthe elements

of a userinterfaceandfor supportingtheir direct manipulation.Objectsprovidea goodabstrac-

tion mechanism,encapsulatingstateandoperations,and inheritancemakesextensioneasy. Our

experienceis that, comparedto a proceduralimplementation,user interfacesare significantly

easierto developandmaintainwhenthey arewritten in an object-orientedlanguage.

� Interactiveand abstractobjectsshouldbe separate. Separatinguser interfaceand application

codemakesit possibleto changethe interfacewithout modifying the underlyingfunctionality

andvice versa.This separationalsofacilitatescustomizationby allowingseveralinterfacesto the

sameapplication.It is importantto distinguishbetweeninteractiveobjects,which implementthe

interface,andabstractobjects,which implementoperationson the dataunderlyingthe interface.

An effective way to supporttheseprinciplesis to equipprogrammerswith a toolkit of primitive user

interfaceobjectsthat usea commonprotocolto definetheir behavior. The protocolallows userinterface

objectsto be treateduniformly, enablingin turn the introduction of objectsthat composeprimitives into

completeinterfaces.Dif ferentclassesof compositionobjectscan providedifferentsortsof composition.

For example,one classof compositionobject may arrangeits componentsin abuttingor tiled layouts,

while anotherallows themto overlapin prescribedways. A rich setof primitive andcompositionobjects

promotesflexibility, while compositionitself representsa powerfulway to specifysophisticatedanddiverse

interfaces.

Compositionmechanismsare central to the designof InterViews, a graphicaluser interfacetoolkit

we havedevelopedat Stanford.InterViewsis a library of C++ [5] classesthat definecommoninteractive

objectsandcommoncompositionstrategies.Figure1 depictshow objectsfrom the InterViews library are

incorporatedinto anapplication,andFigure2 showstherelationshipbetweenthevariouslayersof software

thatsupportthe application.Primitive andcompositionobjectsfrom theInterViewslibrary are linked into

applicationcode. The window systemis entirely abstractedfrom the application;the application’s user

interfaceis definedin termsof InterViews objects,which communicatewith the window and operating

systems.

InterViews supportscompositionof threecategoriesof object. Each categoryis implementedas a

hierarchyof objectclassesderivedfrom a commonbaseclass. Compositionsubclasseswithin eachclass

hierarchyallow hierarchicalcompositionof objectinstances.

1. Interactiveobjectssuchasbuttonsandmenusarederivedfrom the interactor baseclass. Inter-

actorsare composedby scenes; scenesubclassesdefinespecificcompositionsemanticssuchas

tiling or overlapping.

- 3 -

primitive
object(s)

composition
object(s)

InterViews
Library
Declarations

Application
Code

Object Code
InterViews
Library
Object Code

Executable

compile

link

Figure1: IncorporatingInterViewsobjectsinto an application

InterViews

Window System

Operating System

Application

Figure2: Layersof softwareunderlyingan application

- 4 -

2. Structuredgraphicsobjectssuchascirclesandpolygonsarederivedfrom thegraphic baseclass.

Graphic objectsare composedby pictures, which provide a commoncoordinatesystemand

graphicalcontextfor their components.

3. Structuredtext objects such as words and whitespaceare derived from the text baseclass.

Text objectsarecomposedby clauses; clausesubclassesdefinecommonstrategiesfor arranging

componentsto fill availablespace.

The baseclassesdefine the communicationprotocol for all objectsin the hierarchy. The composition

classesdefine the additionalprotocol neededby the elementsin a composition,such as operationsfor

insertingandremovingelementsandoperationsfor propagatinginformationthroughthe composition(see

the box entitledPrimitive and CompositionProtocolsaccompanyingthis article).

Hierarchicalcompositiongives the programmerconsiderableflexibility. Complexbehaviorcan be

specifiedby building compositionsthatcombinesimplebehavior. The compositionprotocolfacilitatesthe

taskof boththe designerof a userinterfacetoolkit andthe implementorof a particularuserinterface.The

toolkit designercan concentrateon implementingthe behaviorof a specificcomponentin isolation; the

interfacedesigneris free to combinecomponentsin any way that suitsthe application.

In this article we focus on using InterViews to build user interfaces. We presentseveralsimple

applicationsandshowhow InterViewsobjectscanbeusedto implementtheir interfaces.We alsoillustrate

the benefitsof separatinginteractivebehaviorandabstractdatain severaldifferentcontexts.Finally, we

discussInterViewssupportfor end-usercustomizationaswell as the statusof the currentimplementation.

2 Interactor Composition

An interactormanagessomeareaof potentialinputandoutputon a workstationdisplay. A scenecomposes

a collectionof oneor more interactors.Becausea sceneis itself an interactor, it must distribute its input

andoutputareaamongits components.In this section,we discussthevariousInterViewsscenesubclasses

that providetiling, overlapping,stacking,andencapsulationof components.We concentrateon how these

scenesareusedratherthangiving their precisedefinitions.

2.1 Boxes and Glue

Considerthe simple dialog box shown in Figure 3. It consistsof a string of text, a button containing

text, and a white rectangularbackgroundsurroundedby a black outline. Pushingthe buttonwill cause

the dialog box to disappear. The dialog box will maintaina reasonableappearancewhen it is resizedby

a window manager. If partsof the dialogbox previouslycoveredby otherwindowsareexposed,thenthe

newly exposedregionswill be redrawn.

- 5 -

Figure3: A simpledialogbox

InterViewsprovidesabstractionsthatcloselymodeltheelements,semantics,andbehaviorof thedialog

box. A userinterfaceprogrammercanexpressthe implementationof the interfacein thesametermsasits

specification.The InterViews library containsa variety of predefinedinterfacecomponents;we will use

the following componentsin the dialog box:

� message, an interactorthat containsa stringof text

� push button, an interactorthat respondsto the pressof a mousebutton

� box, a scenethat tiles its components

� glue, variable-sizedspacebetweeninteractorsin a box

� frame, a scenethat putsan outlinearounda singlecomponent

Boxesand glue are usedto composethe otherelementsof the dialog box. The compositionmodel

we useis a simplified versionof the TEX[1] boxesandglue model. This modelmakesit unnecessaryto

specify the exactplacementof elementsin the interface,and it eliminatesthe needto implementresize

behaviorexplicitly.

Two types of box are used: an hbox tiles its componentshorizontally, while a vbox tiles them

vertically. Glue is used betweeninteractorsin a box to provide spacebetweencomponents. Hglue

(horizontalglue) is usedin hboxes,while vglue (vertical glue) is usedin vboxes.

Eachinteractordefinesa preferredor natural sizeandthe amountby which it is willin g to stretchor

shrink to fill availablespace.Glue of variousnaturalsizes,shrinkabilities,andstretchabilitiescanbe used

to describea wide variety of interfacelayoutsandresizebehaviors.

Figure 4 depictsschematicallyhow the elementsof the dialog box are composedusing boxesand

glue. The correspondingobject structureis shown in Figure 5, and the C++ code that implementsthe

dialogbox appearsin Figure6. The messageandbuttoninteractorsareeachplacedin an hboxwith hglue

on eithersideof them. The hglueto the left of the messagehasa naturalsizeof a quarterof an inch and

cannotstretch,while the glue on theright hasa naturalsizeof zeroandcanstretchinfinitely (asspecified

by the constanthfil). If the dialogbox is resized(Figure7), the margin to the left of the messagewill not

exceeda quarterof an inch, while the spaceto the right can grow arbitrarily. Similarly, the buttonhas

- 6 -

message object

hglue vglue hbox vbox

button object

Figure4: Schematicof dialogbox compositionusingboxesandglue

message pushbutton

vbox

vglue hbox vglue hbox vglue

hglue hglue hglue hglue

Figure5: Objectstructureof dialog box composition

infinitely stretchablehglueto its left andfixed sizehglueto its right, so that the margin to the right of the

buttonwill not exceeda quarterof an inch.

The hboxesarecomposedvertically within a vbox, separatedby piecesof vglue. The piecesof vglue

abovethe messageand below the button have a natural size of a quarterof an inch, while the vglue

betweenthe messageandthe buttonhasa naturalsizeof half an inch. The inner vglue canstretchtwice

as much as the outer two piecesof vglue. On resize,therefore,the messageand button interactorswill

remaintwice asfar apartfrom eachotherasthey are from the edgeof the dialog box.

2.2 Tray

Supposewe want a dialogbox centeredatopanotherinteractor, perhapsto notify the userof an errorcon-

dition. Furthermore,we want thedialogbox to remaincenteredif the interactoris resizedor repositioned.

Boxesandglue are inappropriatefor this type of non-tiledcomposition.

The tray scenesubclassprovidesa naturalway to describelayoutsin which components“float” in

front of a background.A tray typically containsa backgroundinteractorand severalother components

- 7 -

const int space = round(.25*inches);

ButtonState* status;

Frame* frame = new Frame(

new VBox(

new VGlue(space, vfil), /* (natural size, stretchability) */

new HBox(

new HGlue(space, 0),

new Message("hello world"),

new HGlue(0, hfil)

),

new VGlue(2*space, 2*vfil),

new HBox(

new HGlue(0, hfil),

new PushButton("goodbye world", status, false),

new HGlue(space, 0)

),

new VGlue(space, vfil)

)

);

Figure6: C++ codefor composingthe dialogbox interface

Figure7: The dialog box after resizing

- 8 -

Figure8: An interfaceusinga tray
background
interactor

tray

tray component
(dialog box)

tray alignments (using glue)

Figure9: Schematicof tray interface

whosepositionsare determinedby a set of alignments. For example,the backgroundinteractormight

displaythe text in a document;othercomponentscould includevariousmessages,buttons,andmenus.

Eachalignmentof a traycomponentis to someothertargetinteractor, whichcanbeanothercomponent

of the tray or the tray itself. The alignmentspecifiesa point on the target,a point on the component,and

the characteristicsof the glue that connectsthe alignmentpoints. An alignmentpoint can be a cornerof

the interactor, the midpoint of a side, or the center. The tray will arrangethe componentsto satisfyall

alignmentsas far as possible. If necessary, the componentsand the connectingglue will be stretchedor

shrunkto satisfythe alignments.

Figure8 showsa simpleapplicationin which a tray composesa textual interfaceanda dialog box.

The interactorcontainingtext anda scroll bar arecomposedwith an hbox andplacedinto the tray as its

background.Whenthe dialogbox is requiredit is insertedinto the tray with its upperleft andlower right

cornersalignedto the correspondingcornersof the tray. Figure9 showsthe arrangementof components,

and Figure 10 gives the code that implementsthe interface. The alignmentsinterposestretchablebut

non-shrinkableglue with a naturalsize of an eighthof an inch to maintaina minimum spacingbetween

- 9 -

const int space = round(.125*inches);

TGlue* g1 = new TGlue(space, space, 0, hfil, 0, vfil);

TGlue* g2 = new TGlue(space, space, 0, hfil, 0, vfil);

/* (width, height, hshrink, hstretch, vshrink, vstretch) */

Tray* tray = new Tray(

new HBox(

view,

new VBorder(1),

new VScroller(view)

)

);

tray->Insert(dialog);

tray->Align(TopLeft, dialog, g1);

tray->Align(BottomRight, dialog, g2);

Figure10: C++ codefor composingthe tray interface

Figure11: Tray interfaceafter resizing

- 10 -

deck

top component
interactor

other
components

Figure12: Compositionusinga deck

the edgesof the tray and the dialog box. Thesealignmentsguaranteethat the dialog box will remain

centeredatop the backgroundinteractorafter resizing(Figure 11). Note how the tray shrankthe dialog

box to satisfythe alignmentconstraintsoncethe glue reachedits minimum size.

2.3 Deck

Anothercommoninterfaceis one in which the userflips (ratherthanscrolls) through“pages” of text or

graphicsas througha book. Suchan interfacecan be built in InterViews by composinginteractorswith

a deck. The interactorsin a deckare conceptuallystackedon top of eachotherso that only the topmost

interactoris visible (Figure12). The deck’s naturalsize is determinedby the naturalsize of its largest

component.A setof operationsallow “shuffling” the deck to bring the desiredcomponentto the top.

Deckscanbeusedin othercontextsaswell. A setof color or patternoptionsin a dialogbox couldbe

composedwith a deck,allowing theuserto flip throughthemuntil thedesiredchoiceis reached.Alternate

menuentriescouldbestoredin a deckandinsertedinto a menuto allow changesin themenu’sappearance

without havingto rebuild it eachtime.

2.4 Single Component Scenes

Boxes, trays, and decksare examplesof sceneswith arbitrarynumbersof components.InterViewsalso

providesseveralscenesthatcanhaveonly onecomponent.Suchscenesarederivedfrom thescenesubclass

monoscene andservetwo purposes.

Somemonoscenesserveas containersthat surroundanotherinteractor. The frame usedto place a

borderaroundthedialogbox in Section2.1 is oneexample.Otherexamplesincludeshadow frame, which

addsa drop shadowto its component,and title frame, which addsa banner. A viewport is a monoscene

that scrolls an interactorlarger than the availablespace. Viewportsare useful for providing a scrolling

interfaceto non-scrollinginteractors.

- 11 -

Figure13: A simpledrawingeditor application

Other monoscenesprovideabstraction; they are usedto hide the internal structureof an interactor

that is implementedas a composition. For example, the class menu is derived from monoscene. A

menu is implementedas a box containingthe interactorsthat representthe menu items. However, the

box compositionshouldnot be visible to a programmerwho wantsto usethe menuin a user interface.

The monoscenehidesthe implementationof menus,makingthemeasierto understandandallowing their

structureto changewithout affecting otherinterfacecode.

3 Graphic Composition

Direct manipulationeditors allow the user to manipulategraphical representationsof familiar objects

directly. A drawingeditor lets an artist draw a circle and drag it to a new location. A music editor lets

a composerwrite music by arrangingnoteson staves. A schematiceditor lets an engineer“wire up”

graphicalrepresentationsof circuits.

The programmerof suchsystemsmust provideunderlyingrepresentationsfor the graphicalobjects

anddefinetheoperationstheyperform. InterViewsprovidesa collectionof structuredgraphicsobjectsthat

simplifiesthe programmer’s task.

3.1 A Simple Drawing Editor

Figure 13 depicts a simple drawing editor application in which the user can draw, move, and rotate

rectanglesandscroll andzoomthe drawingarea. To draw a rectangle,the userpressestherect button

anddragsout a rectanglein the drawingarea.An existingrectanglecanbe movedor rotatedby pressing

the appropriatebuttonanddraggingthe rectangle.

In eachof theseoperations,the drawingeditor providesanimatedfeedbackas the usercreatesand

manipulatesrectangles.Animation reinforcesthe user’s belief that he is manipulatingreal objects. As a

- 12 -

interactor
composition

graphic
composition

frame

graphic
 block

picture

rect 1 rect 2 rect n

vborder vbox

button button button vglue hborder panner

hbox

Figure14: Drawing editorobjectstructure

rectangleis moved,for instance,its outline follows the mouse;duringrotation,the outlinerevolvesabout

the rectangle’s center. Suchdynamicfeedbackis characteristicof a direct manipulationeditor.

3.2 Implementing the Drawing Editor

The elementsof the userinterfacecanbe composedusingInterViews interactorandgraphicsubclassesas

shownin Figure14. The buttonsare instancesof radio button, a predefinedsubclassof thebutton class.

The interfaceto scrollingandzoomingis providedby a panner, the two-dimensionalscrollerin the lower

right of the interface. The drawingareain which the rectanglesappearis a graphic block, an interactor

thatdisplaysstructuredgraphicsobjects.Theseelementsarecomposedusingboxesandglue. The editor’s

pop-upcommandmenu,appearingin the center-right of Figure13, is an instanceof the menuclass.

Each rectanglein the drawing is an instanceof the rectangle class, a subclassof graphic. The

rectanglesare composedin a picture, and the picture is placedin the graphicblock. The graphicblock

translatesandscalesthepictureto implementscrollingandzooming.Rectanglesaremovedandrotatedby

calling transformationoperationson the rectangleobjects.The pictureperformshit detectionby returning

the componentthat correspondsto a coordinatepair.

3.3 Semantics of Graphic Composition

Thedrawingeditordemonstratessimplecompositionof graphics.In thisexample,thehierarchyof graphical

objects is only one level deep; all the rectanglesare children of a single parent picture. Of course,

more complex hierarchiesare commonin a practical drawing editor. However, even the simple one-

level hierarchydemonstratesthe semanticsof graphiccomposition.For example,whenthe graphicblock

appliesa transformationto the pictureto scroll or zoomit, the transformationaffectsall the rectanglesin

the picture. Furthermore,alteringany of the picture’s graphicsstateattributeswould affect its childrenas

- 13 -

well. For example,changingthe picture’s brushwidth attributewould alsochangethe brushwidths of its

children.

The compositionmechanismdefineshow the picture’s graphicsstateinformationaffects its compo-

nents. A picture draws itself by drawing eachcomponentrecursivelywith a graphicsstateformed by

concatenatingthe component’s statewith its own. The default semanticsfor concatenationare that the

attributesdefinedby a graphic’s parentoverridethe graphic’s own attributes.If a parentdoesnot definea

particularattribute,thenthe child graphic’s attributeis used.Coordinatetransformationsareconcatenated

so that the child’s transformationprecedesthe parent’s.

Thesesemanticsrepresenta kind of reverseinheritanceof graphicsattributes,since parentscan

overridetheir children. This mechanismis useful in editorswhereoperationsperformedon interior nodes

of the graphichierarchyaffect the leaf graphicsuniformly. Classesderived from the graphicclasscan

redefinethe semanticsof concatenationif the defaultsemanticsare inappropriate.

3.4 Immediate Mode Graphics

Structuredgraphicsobjectsare not normally used to draw scroll bars, menus,or other user interface

componentsthataresimpleto drawprocedurally. Interactorsusepainter objectsfor this purpose.Painters

provideimmediatemodedrawingoperations(includingoperationsfor drawinglines,filled andopenshapes,

and text), andoperationsfor settingthe currentfill pattern,font, andothergraphicsstate. The resultsof

a painter drawing operationappearon the display immediatelyafter the operationis performed. The

differencebetweenpainter-generatedgraphicsandstructuredgraphicsis thatpaintersdo not maintainstate

or structurethatreflectswhathasbeendrawn,so thereis no way to accessandmanipulatethegraphics.In

contrast,structuredgraphicsobjectsmaintaingeometricandgraphicalstateandcanbe manipulatedbefore

andafter they aredrawn.

Structuredgraphicsis mostappropriatein contextswhereanindefinitenumberandvarietyof graphical

objectsare manipulateddirectly. It is a powerful tool for constructinggraphicseditorsthat provide an

object-orientedediting metaphorbecausestructuredgraphicsobjectsembodythe samemetaphor. These

objects typically representthe data managedby the editor. Paintersshould be used to draw simple,

unchangingelementsof the interfacethat do not justify the storageoverheadof graphicsobjects.

4 Text Composition

Direct manipulationtextual interfacesrequire special support to handle the problemsthat arise in the

presentationof text, suchas line and pagebreakingand arrangingtext to reflect the logical structureof

a document.InterViewsstructuredtext objectssimplify the implementationof direct manipulationtextual

interfaces.

- 14 -

4.1 A Simple Class Browser Application

Figure15 showsthe interfaceto a classbrowser, a simpleapplicationfor perusingC++ classdeclarations.

The browserdisplaysa classdeclarationwith the classnameunderlinedand memberfunctionsin bold.

Clickingon theclassnameopensa windowshowingdocumentationfor theclass,andclicking ona member

functionopensa window showingthe function’s definition. The arrangementof the text is maintainedby

text compositionobjects. As Figure16 shows,resizingthe window reformatsthe text to makegooduse

of availablespace.

4.2 Implementing the Class Browser

Text andclausesubclassesareusedto composethetext displayedin thebrowser. Objectsof classword (a

stringof characters)andwhitespace (blankspaceof a givensize)areassembledusingvariouscomposition

objectsso that the linesof codewill fill availablespacein an appropriatemanner. The entirecomposition

is placedin a text block (an interactorthat displaysstructuredtext objects),andthe text block is inserted

into a frame.

4.3 Semantics of Text Composition

Subclassesof clausespecify the way their componentswill be arranged.Dif ferent clausesusedifferent

strategiesfor usingavailablespace:

� A phrase formats its componentswithout regardto space. The componentsare simply placed

end-to-endon a singleline.

� A text list can arrangeits componentseither horizontallyor vertically. If there is not enough

spacefor the whole list to fit in a horizontalformat, thenthe list will placeeachcomponenton

a separateline. Text lists areusedin the browserfor composingthememberfunctionparameter

lists.

� A display definesan indentedlayout. If the display will not fit on the current line, then it

is placedon the following line with a specifiedindentation. The browsercomposesclassand

memberfunctiondeclarationsusingdisplays.

� A sentence will placeasmanycomponentsaspossibleon the currentline andwill begina new

line if necessary. The browserusessentencesfor comments.

To illustratehow text compositioncanbe used,considerthe compositionof theInteractor con-

structorin the browser(Figure17). The declarationis composedasa phrasewith threecomponents:the

first componentis a word representingthe string Interactor(, the secondis a display that contains

a text list of the formal parameters,and the third is a word representingthe string);. Figure18 shows

- 15 -

Figure15: A simpleclassbrowserapplication

Figure16: The classbrowserafter resizing

- 16 -

phrase

displayInteractor();

text list

whitespace Painter* out = stdpaintSensor* in = stdsensor,

Figure17: Objectstructureof the text compositionfor theInteractor constructor

Interactor(Sensor* in = stdsensor, Painter* out = stdpaint);

Interactor(

Sensor* in = stdsensor, Painter* out = stdpaint

);

Interactor(

Sensor* in = stdsensor,

Painter* out = stdpaint

);

Figure18: Possiblelayoutsof theInteractor constructor

that the constructordeclarationwill appearin oneof severallayoutsdependingon the availablespace.In

the top exampleall the text canfit on a single line. In the middle examplethe availablespacehasbeen

reducedsothatthereis not enoughroomfor thedisplaycontainingtheparameterlist; thedisplayis placed

on a separate,indentedline. In the bottomexamplethe availablespacehasbeenreducedfurther, causing

the text list to displayvertically insteadof horizontally.

Text compositionis mostusefulwhenthe interfacerequiresdirectmanipulationof text, whenthe text

shouldreflect the structuralcharacteristicsof the document,or whenthe text layout shouldautomatically

makegooduseof availablespace.Paintersaremoreappropriatefor embellishinginterfaceswith simple,

non-interactivetext.

- 17 -

5 Subjects and Views

In InterViewswe distinguish betweeninteractiveobjects,which implementa userinterface,andabstract

objects,which encapsulatethe underlyingdata. We refer to interactiveandabstractobjectsas views and

subjects, respectively. This separationis importantin manyaspectsof userinterfacedesign.It is a vehicle

for customization,allowing programmersto presentdifferent,independentlycustomizableinterfacesto the

samedata. It is a usefulstructuringmechanismthatseparatesuserinterfacecodefrom applicationcode. It

permitsdifferentrepresentationsof the samedatato be displayedsimultaneouslysuchthat changesto the

datamadethroughonerepresentationare immediatelyreflectedin the others.Severalotheruserinterface

packagessupportthis separation,including the Andrew Toolkit, Smalltalk MVC, GROW, and MacApp

(for referencesseethebox entitledMakingUser InterfaceDevelopmentEasieraccompanyingthis article).

Views in InterViews are typically implementedwith compositionsof interactors,graphics,and text

objects. Subjectsare often (but neednot be) derivedfrom the subject class. A subjectmaintainsa list

of its views. Views defineanUpdate operationthat is responsiblefor reconcilingthe view’s appearance

with thecurrentstateof thesubject.CallingNotify on a subjectin turn callsUpdate on its views, thus

enablingthe views to updatetheir appearancein responseto a changein the subject.

In practiceit is inconvenientto force every userinterfaceconceptinto the subject/viewmodel. For

example,it is unnecessaryto associatea subjectwith everymenubecauseinterfacesseldomrequiremultiple

views of the samemenu. However, many InterViews library componentsdo usethe subjectsand views

paradigm.Two examplesrelateto the implementationof scrollingandbuttons.

5.1 Scrolling and Perspectives

An interactorthatsupportsscrollingandzoomingmaintainsa perspective. Theperspectiveis a subjectthat

definesa rangeof coordinatesrepresentingthe total extentof the interactor’s outputspaceanda subrange

for theportionof the total rangethat is currentlyvisible. For example,in thedrawingeditorof Section3.1

the totalextentof thegraphicblock’sperspectiveis obtainedfrom thepicture’sboundingbox; its subrange

is the spacethe graphicblock occupieson the screen.In a text editor the vertical rangemight be the total

numberof lines in a file; thesubrangewould be thenumberof linesdisplayedby theeditoron the screen.

Scrolling and zoomingare performedby modifying the interactor’s perspective.An interactorcan

modify its own perspective(when the text editor addsa line to the file, for example),or the perspective

canbe modifiedby the usermanipulatingoneof its views.

The pannerin the drawing editor is a view of the perspectiveassociatedwith the editor’s graphic

block. Thepanneris reallya compositionof severalotherperspectiveviews: a slider, a setof four movers,

and two zoomers. Eachof theseelementsviews the sameperspective;the slider scrolls the drawing in

both � and � dimensions,eachmover providesincrementalscrolling in one of four directions,and the

- 18 -

1. User presses mover.
2. Mover requests graphic block to change its perspective.
3. Graphic block modifies its perspective.
4. Perspective notifies its views:
 a) Zoomers, movers do nothing;
 b) Slider updates its appearance to reflect visibility.
5. Graphic block translates and redraws graphic.

Scrolling a graphic block using a perspective

graphic block

total width Wt

visible width Wv

to
ta

l h
ei

gh
t H

t

vi
si

bl
e

he
ig

ht
 H

v

Wv, Wt, Hv, Ht

perspective

graphic block movers zoomers slider

perspective views

Figure19: How a perspectivecoordinatesscrollingof a graphicblock

zoomersrespectivelyenlarge and reducethe drawing. There is no limit to the numberof views on the

sameperspective;a changemadethroughoneview of a perspectivewill be reflectedin all its views.

The advantageof this organizationis thatoneview of a perspectiveneednot know aboutotherviews

of thesameperspective.Whenevertheperspectiveis changed,eitherby theinteractoror by a view, all the

views are notified. Eachview of the perspectiveis responsiblefor updatingits appearanceappropriately

in responseto the change.For example,whena moveror zoomeris pressed,the perspectiveis updated

andthe slider is notified automatically. The slider can thenredrawitself to reflect the new perspective.

Figure19 showshow a graphicblock’s perspectivecoordinatesthe scrollingoperationwhenthe user

pressesone of the panner’s movers. The graphicblock modifiesits perspectiveon behalf of the mover

becausethe graphicblock may want to limit the amountof scrolling. In this instancethe perspectiveand

the interactorareconsideredtogetherasthe subjectto which views suchaspannersareattached.

5.2 Buttons and Button States

The dialog box in Section2.1 usesa buttonfor dismissal.In InterViews,a buttonis a view of a button

state subject.Whentheuserpressesa button,the buttonsetsits buttonstateto a particularvalue. Several

buttonscanview a singlebuttonstate;like any subject,a buttonstatenotifiesall its views (buttons)when

it changes.

- 19 -

To illustrate, considerhow InterViews radio buttonsare implemented. A radio button acts like a

tuning buttonon a car radio; only one button in a groupof radio buttonscan be “on” at a time. Radio

buttonsare providedwhen the usershouldselectan option from severalmutually-exclusivechoices. A

singlebuttonstateis usedas the subjectfor a groupof radio buttons. Pressingone of the radio buttons

setsthe buttonstateto a particularvalue. The buttonwill staypresseduntil the buttonstateis changedto

a differentvalue,usuallyby pressinganotherradio buttonin the group.

6 Customization

InterViews adoptsthe X Toolkit [2] model to supportcustomizationof interactors. Userscan define a

hierarchyof attributenamesand values. An interactorcan retrievethe value of an attributeby name;it

interpretsthe value to customizesomeaspectof its appearanceor behavior. Attribute lookup involvesa

searchthroughpartsof the attributehierarchythat match the interactor’s position in the object instance

hierarchy. Eachinteractorcanhavean instancename;interactorsnotexplicitly namedinherita classname.

The namegiven the interactorat the root of the instancehierarchyis usuallythe nameof the application.

For example,supposethe applicationcontainingthe exampledialog box of Section2.1 was called

“hello”, andthepushbuttonin thedialogbox hadthe instancename“bye.” The full nameof the attribute

that specifiesthe font for the button label would then be hello.Frame.VBox.HBox.bye.font.

Attribute namescaninclude“wildcard” specificationsso thatoneattributecanapply to severalinteractors.

The font of the push button in the exampledialog box is more likely to be specifiedby an attribute

namedhello*PushButton.font, which would apply to any pushbuttonin the application,or even

*font, which wouldapplyto anyfont in anyapplication.Themechanismfor accessingattributesensures

that the attributewith the most specificnameis the one usedto satisfya query. The InterViews library

automaticallyhandlesstandardattributessuchas “font” and“color”.

The designerof an applicationchoosesnamesfor interactorsthat userscancustomize.Usersspecify

thesenamesto refer to interactorsthey want to customize.Consistencyacrossa rangeof applicationsis

achievedby a consistentchoiceof instanceandattributenames.For example,all confirmationbuttonsin

all “quit” dialog boxeswill be red if the user lists the attribute*quit*OK.background:red, if all

quit dialog boxesaregiven the instancename“quit”, and if all confirmationbuttonsarenamed“OK.”

7 Current Status

InterViews currently runs on MicroVAX, Sun, HP, and Apollo workstationson top of the X Window

System[4] versions10 and11. The library is roughly 30,000lines of C++ sourcecode,of which about

2,000lines areX-dependent.InterViews applicationsdo not call X routinesdirectly andare thusisolated

from the underlyingwindow system.

- 20 -

We haveimplementedseveralapplicationson top of the library, includinga scalabledigital clock, a

load monitor, a drawingeditor, a reminderservice,a window manager, and a displayof incomingmail.

Theapplicationshavebeenuseddaily by about20 researchersfor nearlytwo years,andthelibrary is being

usedin manydevelopmentefforts at Stanford,at otheruniversities,andin industry. We arecurrentlyusing

InterViews in the developmentof a more generaldrawingsystem,a programeditor, a visual command

shell, anda visual debugger.

8 Conclusion

Our experiencewith InterViewshasconvincedusof theimportanceof object-orienteddesign,subject/view

separation,andcompositionin facilitatingtheimplementationof userinterfaces.Composition is particularly

important. Providingone or two ways to combineinterfaceelementsis not enough. To really help the

programmer, a userinterfacetoolkit mustoffer a rich setof compositionmechanismsalongwith a variety

of predefinedobjectsto use.Theprogrammershouldbeableto pick andchoosefrom amongthepredefined

componentsfor thebulk of theinterface,andthetoolkit shouldmakeit easyto synthesizethosecomponents

that areuniqueto the application.The compositionmechanismsin InterViewsmakethis possible.

Acknowledgments

Severalpeoplehavecontributed to the designand implementationof InterViews. Craig Dunwoodyand

PaulHegartyparticipatedin the designof the basicprotocols. Paulalsodevelopedthe window manager

application,andJohnInterranteimplementedthedrawingeditor. Wearegratefulto thegrowingInterViews

user community for their encouragementand support. This work was fundedby the Quantumproject

througha gift from Digital EquipmentCorporation.

References

[1] Don Knuth. TheTEXbook. Addison-Wesley, Reading,MA, 1984.

[2] Joel McCormack, Paul Asente, and Ralph R. Swick. X Toolkit Intrinsics—CLanguageInterface.

Digital EquipmentCorporation, March 1988. Part of the documentationprovidedwith X Window

SystemVersion11, Release2.

[3] KathleenPotosnak.Do icons makeuser interfaceseasierto use? IEEE Software, 5(3):97–99,May

1988.

[4] RobertW. ScheiflerandJim Gettys.The X windowsystem.ACM Transactionson Graphics, 5(2):79–

109, April 1986.

- 21 -

[5] BjarneStroustrup.TheC++ ProgrammingLanguage. Addison-Wesley, Reading,MA, 1986.

