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additional partners the classifier has additiomaining data and its
accuracy increases. The fact that the classifieuracy goes to one
indicates that the classifier correctly selectdesientype model when
given perceptual features. This does not mean that model
accurately reflects the parner............ccccoevvveeeeeecccccee e, 131

Figure 5.14: The photos above depict the robot gusitereotypes to select the
correct partner model and then performed an adtom notional
search and rescue environment. The first threeoghdépict the robot
performing the action. The next two depict the ¢éésgand the robot’s
view of the targets. When interacting with a peraath the perceptual
features of an EMT the robot retrieves the EMTegigrpe model from
memory. It uses this model to determine whicht®fictions the EMT
would prefer and then does that action. The samgues for the
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Figure 6.1: This figure depicts two example outcamegrices for the cleanup of a
toxic spill and the rescue of victims by a humad amrobot. During any
one interaction, both individuals choose to eithescue a victim or
clean up a hazard. The outcomes resulting from pattof choices are
depicted in the cells of the matrix. The human’scomes are listed
below the robot’'s outcomes. In the leftmost matiive outcomes for the
human and the robot are independent of the otlaetisn selection. In
the rightmost matrix, the outcomes of the human tedrobot largely
depend on the other’s action selection.............cccovvvvvviiiiiiccciicee e, 141

Figure 6.2: Three dimensions of interdependenceespae depicted above (Kelley
et al., 2003). Interdependence theory representsalssituations
computationally as an outcome matrix within thigemdependence
space. The dimensions depicted above are intendepee,
correspondence, and basis of control. Planes wilisnspace denote the
location of some well-known social situations, uihg the prisoner’s
dilemma game, the trust game, and the hero gammathix’s location
allows one to predict possible results of interactvithin the situation.142
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Figure 6.3: The procedure (Kelley & Thibaut, 1978} deconstructing a social
situation is presented above. This procedure @nafysis of variance of
the outcome matrix that deconstructs the raw ouécomatrix into three
new matrices (the BAC, MPC, and MJC) representiffgrént forms of
control over the situation’s outcomes. The outcorakies for each of
these three matrices are produced from the rawomécmatrix by
iteratively 1) adding the noted cells, 2) dividily the number of
actions, and 3) subtracting the individual’'s mearicome value. The
variances of each matrix type are generated byleiog the outcome
range for each choice of behavior and each indalidBecause this
example is of an independent situation, the MPC Md@ matrices do
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Figure 6.4: A mapping of interdependence spacetitmtato outcome matrix
traNSTOrMAtION.......ccociiiii e 151

Figure 6.5: This figure depicts the algorithmic ggss contributed by this work. The
process consists of six steps. The first step géegrn outcome matrix.
The second step analyzes the matrix's variancee ffird step
computes the situation’s interdependence spacendiogs. These two
steps constitute the process of situation analy$is.fourth step selects
a transformation and in the fifth step, the transfation is applied to the
outcome matrix resulting in the effective situatidBteps 4 and 5
constitute the transformation process. Finallyaetion is selected......153

Figure 6.6: The simulation environment used fordls@anup and rescue experiment
is depicted above. The experiment required thatleoperated robot
rescue victims while an autonomous robot performscl@anup.
Experimental conditions included independent versdspendent
situations and the use of our situation analygjsrgdhm versus a control
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Figure 6.7: The procedures used to create and ue®rme matrices are depicted
above. The left side details the procedure usegetwerate Table 6.3.

This procedure first iterates through all matricegach areaéh' |
and then iterates through the set of transformatiorproduce the matrix
the robot will use to select actions. The middlecedure first creates a
random number of victims and hazards. Next, an peddent and
dependent matrix is created from the number ofimgtand hazards.
Finally, in the control conditions, max_own is udedselect an action.
In the test procedure, situation analysis is usesetect an action. The
right most procedure, first generates a random ixand then
transforms the matrix with respect to a control nRabr uses situation
analysis. The robot selects an action from thestcamed matrix. The
interaction example at the bottom denotes the ndetised to determine
how much outcome each individual receives fromptesentation of an
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Figure 6.8: Results for the cleanup and rescuerarpat are presented above. The
line graph portrays the net outcome for each cadifThe bars depict
the number of hazards and victims retrieved. Hazalehned are shown
above the number of victims rescued. The left twoskand line points
depict the independent conditions for both the aest the control robot.
In these conditions both the control and test rgdasform equally well.
The right two bars and line points examine the ddpat situation. Note
that in this situation the test robot outperforimscontrol robot................. 160

Figure 6.9: Results of this second experiment aesgmted above. The second bar
from the left indicates the net outcome when theasion analysis
algorithm is used. The next four bars are the odstor the experiment.
Error bars indicate 95% confidence interval. Analgzthe situation
resulted in the greatest net outcome of when coedpts the control
strategies. The leftmost bar portrays the maximossible net outcome. 164

Figure 7.1: Kelley and Thibaut noted that relatldps can also be presented within
the interdependence space (Kelley & Thibaut, 1978)is figure
presents their original mapping of relationships thmi the
interdependence space. Kelley and Thibaut recodnir relationships
can be described in terms of interdependence amdspmndence, two
of the same dimensions that are used to descrial situation............ 171
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Figure 7.2: An example of a diagnostic situatiomeTrobot and the human are
presented with a given situation. The robot selantaction according to
a max_own transformation and predicts the outcomsslting for both
itself and the human partner if the human selectsording to a
max_other relational disposition. In the resultimgeraction depicted
below, the human actually selects according to & iman relational
disposition. The situation is diagnostic becaudterint outcomes for
the robot result from different relational dispasis...............cccccceenn. 176

Figure 7.3: An example of a non-diagnostic situatis presented above. The
situation is non-diagnostic because the outcome [aithe same
regardless of the human’s transformation type. tbperow presents the
interaction hypothesized by the robot and the neiddw presents the
resulting interaction. The key point here is thas given situation does
not distinguish between the human’s differing rielal dispositions.....180

Figure 7.4: An example of an inverted situatione ®ituation is inverted because
the robot’'s outcome in the resulting interactionn(nother) is greater
than the robot’s outcome in the hypothesized icteya (max_own).....181

Figure 7.5: The example above uses the given ®tuadrom Figure 7.2 and
demonstrates use of the algorithm from Box 7.1. @iven situation is
transformed by the robot and the human to prodoceffactive situation
and finally an action. The action pair results mcautcomes for both the
robot and its partner. In the hypothesized intéwaci{top row) the
outcome pair is predicted. In the resulting intéoag the outcome pair
is the result of an interaction between the robyat the human. These
pairs of outcomes as well as the robot’s transftionaype are used as
input to the algorithm which characterizes theatitan as diagnostic....184

Figure 7.6: The graph above depicts the percentdgdiagnostic situations as a
function of matrix size. We hypothesized that ntasi with fewer
actions would result in a smaller percentage ofmistic situations than
matrices with more actions. The trend is true réigas of the type of
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Figure 7.7: The graph above depicts the accuracythef partner’s relational
disposition as a function of partner transformatigoe variability. We
hypothesized that as the partner’'s transformatianatility increased
the algorithm’s accuracy would decrease. The resllbve support our
)77 0011 g[S 1P 194

Figure 8.1: An example of the trust fall. The tréet is a trust and team-building
exercise in which one individual, the trustor, Iednack prepared to fall
to the ground. Another individual, the trustee, chas the first
individual. The exercise builds trust because thstor puts himself at
risk expecting that the trustee will break her.fall.............................. 199
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Figure 8.2: The figure visually depicts the reasgribehind the development of the
CONAILIONS TOF TUST. ..ot 200

Figure 8.3: The graphs depict the interdependemmres mapping of random
situations. The left hand side depicts only theiaibns meeting the
conditions for trust (red). The right hand side idep both those
situations meeting the conditions for trust andséhmot meeting the
conditions (blue). We hypothesized that the sitreti meeting the
conditions for trust would form a subspace in tightrhand side graph.
As can be seen, the situations meeting the conditior trust are
interspersed with situations not meeting the cadomst Hence, our
hypothesis is false; the situations meeting thelitmms for trust do not
form a subspace of the interdependence space..............ccccceeeeeeen. 205

Figure 8.4: The figure depicts 2D graphs of sitwai meeting the conditions for
trust (left hand side) and situations not meetimg ¢onditions for trust
(right hand side). Comparison of the graphs toridet with the graphs
on the left indicates no difference. Hence, in nohthe 2D graphs does
the space of situations meeting the conditiongdrigst form a subspace
of the interdependence space separate from thdosatiens that do
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Figure 8.5: Graphical depiction of the increasewoif proposed trust measure with
respect to increasing loss and probability of wting action selection.
Our trust measure is a unitless measure which apgetional to the
amount of loss and the probability of selectinguh&usting action. The
measure is useful for comparing situations thatiregrust.................. 215

Figure 8.6: The top of the diagram shows the lalboyasetup for the most trusted
partner experiment. Left photo shows the base ipasithich is located
about 10 feet in front of two containers representtell blocks. The
center position shows the robot at an observatasitipn in front of riot
prisoners. The right photo depicts the robot ohbegnthe escapee
prisoners. The two lower diagrams depict the asetitwe robot performs
in the experiment. In the left diagram the robaétfimoves to a position
within view of the operator and then moves to stges” or “no” with
respect to its partner preference. In the righgi@dim, the robot moves to
observe either the riot prisoners or the escapgeen®rs....................... 221

Figure 8.7: Robot movement for stating “yes” to thmerator's question regarding
its partner preference. The robot moves its neclangh down to state

Figure 8.8: Robot movement for stating “no” to tperator’s question regarding its
partner preference. The robot moves back and farth half circle to
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Figure 8.9: Examples of the robot's observationoast from the two (left and
center) prisoner observation points. The imagehto right depicts an
experimental trial conducted under limited lighting...............cc...... 226

Figure 8.10: Results from the selecting the magtéd partner experiment. When
the robot uses the algorithm from Box 8.3 to setbet most trusted
partner the average outcome was 10.57. The contmdlition, in
contrast, in which the robot usednax_ own strategy to select its
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SUMMARY

Can a robot understand a human’s social behaiMoreover, how should a robot act
in response to a human’s behavior? If the goattificial intelligence are to understand,
imitate, and interact with human level intelligertben researchers must also explore the
social underpinnings of this intellect. Our endeaig buttressed by work in biology,
neuroscience, social psychology and sociology.ialiyt developed by Kelley and
Thibaut, social psychology’s interdependence thesarnyes as a conceptual skeleton for
the study of social situations, a computationalcpss of social deliberation, and
relationships (Kelley & Thibaut, 1978). We extenadaexpand their original work to
explore the challenge of interaction with an embddsituated robot.

This dissertation investigates the use of outcomatrices as a means for
computationally representing a robot’s interactionge develop algorithms that allow a
robot to create these outcome matrices from peneépiformation and then to use them
to reason about the characteristics of their itera partner. This work goes on to
introduce algorithms that afford a means for reaspabout a robot’s relationships and
the trustworthiness of a robot’s partners. Ovetdils dissertation embodies a general,
principled approach to human-robot interaction \Whiesults in a novel and scientifically

meaningful approach to topics such as trust aradiogiships.
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CHAPTER 1
INTRODUCTION

Many scientists have recently come to recognizestitgal aspects of intelligence (Byrne
& Whiten, 1997; Sternberg, Wagner, Williams, & Hatlr, 1995). In contrast to purely
cognitive intelligence—which is most often descdld®y problem-solving ability and/or
declarative knowledge acquisition and usage—soni&llect revolves around an
individual’s ability to effectively understand anelspond in social situations (Humphrey,
1976). Compelling neuroscientific and anthropolagievidence is beginning to emerge
supporting the existence of social intelligencer{Ba, Tranel, Denburg, & Bechara,
2003; Bergman, Beehner, Cheney, & Seyfarth, 20R8yardless of whether or not social
intelligence is actually the dominant force behinttlligence, it is obvious that it is an
important part of normal human development andllede (Greenough, Black, &
Wallace, 1987; Salzinger, Feldman, & Hammer, 1993pm the perspective of a
roboticist it then becomes natural to ask how thim of intelligence could play a role in
the development of an artificially intelligent bgior robot. As an initial step one must
first consider which concepts are most importargdoial intelligence.

One fundamental concept is the relationship (Gardh983). In order to explore the
possibility of developing a socially intelligent bot it will be necessary to
computationally model and understand precisely wi@atstitutes a relationship. A
relationship is defined by the types and extennfifience one person has on another—
their interdependence (see Appendix A for a comeplgbssary of terms) (Kelley &

Thibaut, 1978). Relationships, moreover, are dywgamith each interaction among



individuals having the potential to alter the natwf the relationship (Rusbult & Van

Lange, 2003). Similarly, the present state of tamtronship will strongly guide the

selection of behaviors while interacting. Kelleydabhibaut theorized that an individual
will adjust its interactive behavior based on iegqeption of a pattern of outcomes, i.e.
reward minus cost. They went on to develop inteedépnce theory, a conceptual
skeleton for the study of relationships.

Due to the complexity of maintaining, judging, angpdating multitudes of
relationships over long periods of time, it becomescessary to characterize the
impending reliability of a relationship with respec the social environment (Lewicki &
Bunker, 1996; Luhmann, 1990). Trust serves thipgse. Trust enables an individual to
gauge the risks associated with interacting witbtlagr agent (Kollock, 1994; Luhmann,
1979, 1990). Trust also allows an individual tareate or predict the likelihood of future
behaviors being employed (Gambetta, 1990). Finallyhe presence of trusted relations,
an agent or robot’s abilities may be augmentedhkyother specialties of the group, thus
creating a collective that is more survivable thag single individual (Prietula, 2001).

If trusted relations are important, then the doesiduations that generate these
relations are similarly vital. Later work by Kelleat al. outlined a number of canonical
social situations and their key interpersonal proge (Kelley et al., 2003). For humans
at least, interaction is often causally determibgdhe type of social situation in addition
to each individual’s personal responses to theasdn (Rusbult & Van Lange, 2003).
Their work also demonstrates that relationshipsebtgyv from an accumulation of

interaction in a variety of social situations (Ksl] 1979). This dissertation details a



general, computational framework for a robot orrade represent and reason about both

social situations and the relationships that dgvéiom interaction with a partner.

1.1 Motivation

Human intellect has evolved and continues to evolva medium of social interaction.
Moreover normal human brain development requiresrthrture and support of social
relations (Perry, 2001; Perry & Pollard, 1997). &lg, if some of the goals of artificial
intelligence are to understand, imitate, and irder@ith human-level intelligence then
researchers must also explore the social undergsmf this intellect. The goal of this
work is to investigate the effect of characterizitige trustworthiness of social
relationships on a robot’s ability to understarehrh from, and interact within its social
environment. There are many reasons why this emdésof value.

Social perception is important for robots opemtin complex, dynamic social
environments. For humans, social perception maludiecrecognition of intent, attitude,
and temperament and is a basic developmentalisighildren (Pettit & Clawson, 1996).
An individual’s perception of his or her social @wment is a crucial precursor to
intelligent social action and interaction (Field Walden, 1982; Travis, Sigman, &
Ruskin, 2001). This perception allows the individt@ judge the potential risks and
rewards each of its relationships presents. In Wsk social perception focuses on
characterizing a robot’s relationships as worthy toist. It is believed that by
characterizing relationships in this manner a rolwdt have advantages in terms of
learning and performing tasks in complex, dynamnvi@nments. Moreover, in a
suitable learning paradigm these advantages will goantifiable as overall task

performance. This work is motivated by the desioe develop robots with some



rudimentary understanding of social situationshie hope that they will then be better
suited to operate in social environments. Learnityin social environments is another
critical aspect of social intelligence. Social eowiments offer developing animals the
opportunity to learn from several different indiuals in many different ways (Russen,
1997). This diversity of learning has an impacttbe animal’s ability to perform tasks
critical to its survival. Current techniques inifiectal intelligence tend to restrict a robot’s
source of learning to a single instructor and/strinction signal (Mitchell, 1997; Sutton
& Barto, 1998). The proposed research intends tusider instruction from multiple
relations. It is believed that richer and more able guidance will be possible when
learning from several relations, each with uniqupegtise. Moreover, social situations
afford opportunities to learn not only about a sjiecask, but also about one’s
relationships, and which actions are best suitdalitiol those relationships.

Finally, social behavior is vital for social infigence. The challenge of creating
robots that behave properly in a social environne@an important issue for robotics. As
robots leave the lab and enter people’s homes andiés, it becomes critical that these
artificial systems interact with humans in an ajppiate manner. Because the actions of
an embodied robot may entail risk for the robatteractive partners, it is critical that the
embodied robot consider the social costs of a pialesaction. The issues and problems
associated with trust are of particular concernwheperson expects to rely on a robot
for their well-being. The research delineated is thssertation is significant in that these
issues will be examined in detail and for the finste in this context.

The proposed research focuses solely on relatipsigietween a robot and a human.

Multi-robot or relationships between simulated ageralthough interesting, are not



addressed outside of the related work. Furthes, digsertation proposes to investigate
trusted relationships from the perspective of tbbot, not the human. Hence, our
intention is to ask questions such as can a robohdde to trust a human, rather than can
a human be convinced to trust a robot. Although l#teer is certainly of interest, a
human-centric dissertation is not the primary mation of the author.

We hope that the results of this work will beodmtly applicable both within the
artificial intelligence community and in other comnities. Within artificial intelligence,
it may be possible to describe many patterns oéraation between agents using
interdependence theory. This broad applicabilityglmi extend to expert systems,
planning, natural language understanding, and peeception. Moreover, an exploration
of trust, relationships, and interaction from thexgpective of artificial intelligence may
have consequences for sociologists, social psygieisy and relationship researchers.
The results and tools generated by this dissentatimght serve these other disciplines in
the same manner that other work in artificial iingeince has served their research
(Axelrod, 1984; Bainbridge et al., 1994 for a revie While the experiments were
performed in a human-robot interaction domain, waielve that the results are

generalizable beyond human-robot interaction abadtics.

1.2 Principal Research Question

What effect will characterizing the trustworthiness of social relationships and of
social situations have on a robot’s ability to set# actions?

As explained above, developing a framework that allbw a robot to characterize its

social relationships may afford the robot advantageits ability to select actions. This



dissertation determines to what extend a robotsaxtterization of its social environment

aids in selecting actions.

From the principal research question the followsndpsidiary questions emerge. The
discussion below each question describes why thei@o to the subsidiary question is

vital to solving the principal research question.

1) What effect will the development of a theoretical lamework that allows a
robot to represent social situations and recognizop situations that require
trust have on the robot’s ability to select action®

The characterization of social relationships by @bot will require a
computational method for representing and reasoabayt the social situations

that constitute the development of a relationship.

2) What effect will deliberation with respect to the scial situation have on the
robot’s ability to select actions?

Social deliberation involves the consideration ok's social environment. As
part of this subsidiary question, we develop a Bamwrk for social action
selection that transforms the social situation @eex by the robot into a situation
on which the robot will act. Moreover, we demontgréhat our framework for

social action selection can include the robot’saatispositions.

3) What effect will algorithms, developed as part of he theoretical framework
of social situations, that allow a robot to represa its relationship with its
human partner and to characterize these relationsipis in terms of the trust
have on the robot’s ability to select actions?

For this subsidiary question, we introduce methtalglevelop models of the
partner and to use these models. Social psychalbg&search claims that

relationships develop from a honing of one’s maxfeheir partner resulting from

an accumulation of social interaction with the part(Kelley et al., 2003; Rusbult



& Van Lange, 2003). This subsidiary question tektt claim and ties together

many of the concepts presented throughout therthsies.

1.3 Objectives

The principal objective of this research is to dmiee the role and impact of trust-

characterized relationships on a robot’s abilitpé&sform tasks. Towards this goal, many
novel and scientifically meaningful milestones wik accomplished. This dissertation
will also provide insight into the phenomenon afstrand social relationships as well as a
formal basis for developing a robotic implementati§pecifically, this research makes

the following contributions:

* A general, computational framework implemented ooleot for representing and
reasoning about social situations and interactaset on interdependence theory;

* A principled means for classifying social situasaimat demand trust on the part
of a robot and for measuring the trust requiredhgysituation in which the robot
interacts with a human;

* A methodology for investigating human-robot int¢ia theory;

» A computational framework for social action seleotimplemented on a robot
but generalizable beyond robotics. This frameworkll wemploy our
computational representation of social situationa imanner suitable for a robot
or simulated agent;

* An algorithm that allows a robot to analyze andrabterize social situations;

* Methods for modeling the robot’s human partner ahdracterizing a robot’s

relationship with the partner.



1.4 Dissertation Outline

The current chapter has introduced the focus sfdigsertation as well as describing its
motivations, contributions, and research questidhg. next chapter surveys the relevant
research and theory related to this research probBhapter 3 develops a methodology
for investigating and developing HRI theory. Chapdeintroduces our computational
framework that allows a robot to represent andaeabout its social interactions with a
human partner. Chapter 5 presents algorithms asdtsethat allow a robot to construct
representations of its interactions and to leaomfiexperience with a human partner. In
chapter 6 we present an algorithm that allows aotrdie characterize its social
environment. In chapter 7 we detail algorithms aesults of partner and relationship
modeling. Chapter 8 explores trust, presentingnieins, computation methods for

characterizing it and experimental results. Finaillyapter 9 offers conclusions.



CHAPTER 2
CHARACTERIZING HUMAN-ROBOT SOCIAL RELATIONS: A

REVIEW

Recently scholars from a variety of fields have eam recognize the importance of the
social environment in the development (Perry & &uwl] 1997), maintenance (Cross &
Borgatti, 2000), evolution (Byrne & Whiten, 199f)caeven the definition of intelligence
itself (Gardner, 1983). Nicholas Humphrey, one bé tearliest proponents of the
importance of the social environment, observed #mainals, most notably the higher
primates, seem to possess abilities which exceefaibthe necessities of their natural
environments (Humphrey, 1976). He convincingly adjuhat social skills are the
foundation of human intellect. Nevertheless, thecpss of relationship building that
humans rely on from infancy has yet to be fully rekzed and adapted to relations
between humans and robots. If it is true, as mantiirapologists, psychologists, and
sociologists claim, that the social environmentypla critical role in the existence of
human intellect, then it becomes absolutely esakefdr roboticists to investigate and
develop viable mechanisms by which a robot can ger@asimilar social environment.
One important first step towards this goal is taraine the development of relationships
by robots and the characterization of these relatigps in terms of trust. This chapter
reviews relevant work from many disciplines, highting gaps in the existing field of
knowledge that this dissertation proposes to egplmd detailing in depth the most

pertinent literature.



2.1 Human-Robot Interaction

Human-robot interaction (HRI) is an emerging fiefl study that blends aspects of
robotics, human factors, human computer interact@om cognitive science (Rogers &
Murphy, 2001). HRI is primarily concerned with tdetails of how and why humans and
robots interact (see Fong, Nourbakhsh, & Dautenh2@@3 for a review). HRI touches
on a wide variety of topics from the detection afnfan emotion (Picard, 2000) to
human-oriented behavioral design (Arkin, Fujita,kdgi, & Hasegawa, 2003). This
section begins by first reviewing the mechanichuhan-robot interaction. Next, process

models of interaction are explored. Finally, HRItha&lology is reviewed.

2.1.1 Interactive communication

For humans, interaction is natural (Sears, Pedataylor, 1991). Robots, on the other
hand, lack the basic competencies required to ssfidey interact with humans (Fong,
Nourbakhsh, & Dautenhahn, 2003). Speech recogngioth synthesis are a means of
communication that can be used to facilitate humedoot interaction.

Speech synthesis has had a long and successtoityhvgithin artificial intelligence
(see Lemmetty, 1999 for a review). Recent work imwviy robots has focused on
development of mechanical vocal cords for human eticyspeech generation by a robot
(Shintaku et al., 2005). For other robots, suclthasSony QRIO, speech recognition is
integrated with the robot's control architectureori$ Corporation, 2006). Several
software packages for speech recognition exist rdgimft Speech SDK 5.1 information
page, 2006; Open Mind Speech, 2006). Moreover, orgments in recognition have

allowed many commercial applications for recogmitiechnologies to flourish (Karat,
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Vergo, & Nahamoo, 2007). Speech synthesis appticatilike speech recognition, has
become an established technology (Robert, ClarKir&, 2004). In addition to the raw
perceptual challenges of recognizing and producorgmunicative acts for a human, an

HRI researcher must also consider the style ofacteon.

General Interaction Process Model

1

Response
Deliberation by A

A Perceives B's
Response

Response Behavio
by A

B Perceives A’s
Response

Response Behavio
by B

Response
Deliberation by B

Figure 2.1 A process model for turn-taking interaction is idegd above. This style of interaction
involves iterative distinct responses.

2.1.2 Styles of interaction

Dyadic social interaction (see Appendix A for glagsof terms) typically involves either
a concurrent style of interaction or a turn-takstgle of interaction (Kelley, 1984). A
concurrent style of interaction requires that thaividuals select their actions at the same
time. Turn-taking style, on the other hand, allogech individual the opportunity to
observe the social action of their partner befaleaing their own social action. The
major difference between these styles is thusithig of interaction between members

of the dyad, and not what is expressed. Eithee sif/interaction could therefore be used
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to investigate the development and characterizatidruman-robot relationships. We use
both the turn-taking and concurrent style of intéicm for experimentation.

As will be discussed in section 2.2.1, trust (ldoK, 1994) and relationships (Kelley
et al., 2003) in general develop from repeatedratteon among individuals. Hence, a
process model for turn-taking can be used to daesdhe cycle by which a human and a
robot interact repeatedly over some number of titema. Figure 2.1 depicts a cycle from
this general turn-taking process model. This modkites to the transition network style
of dialogue models (see Green, 1986 for a revidwisreen’s model vertices represent
the states of the dialogue between the user antbbwt. Edges determine the transition
from one dialogue state to another in this model.

The general process model from Figure 2.1 descidpeiterative procedure. Assume
that A is the humanB is the robot, and that the interaction beginsteably with (1)
deliberation by A concerning which interactive beba to employ. First, (2)A
determines which interactive behavior to employ arsg@s the behavior. Next (B
perceivesA’s interactive behavior. Then (43 deliberates to determine the proper
response based on knowledge A3§ interactive behavior. Next (5B produces an
interactive behavior and finally (63 perceivesB’s interactive behavior continuing the
cycle. In this model the robot selects interactedaviors at a higher, deliberative level

in the robot architecture.

2.1.3 HRI methodology

Fong et al notes that two design methodologies dateiHRI research: the functionally
designed approach and the biologically inspiredr@ggh (Fong, Nourbakhsh, &

Dautenhahn, 2003). Functionally designed methodedogfocus on social task
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performance without any correlation to living crgas. Biologically inspired
methodologies tend to mimic or simulate their bgpdal counterparts. This dissertation

will employ a biologically-inspired approach, dragiheavily from work in psychology

and sociology.

Figure 2.2 Altho tremely mobile, robots such as thedBissters (Hsieh et al., 2007) on the left
have been designed with little capacity for intéitac Kismet to the right, on the other hand, has been
designed specifically for interaction. Although mathegrees of freedom control its facial expressites
robot was not designed for general purpose moten long distances.

Methodological evaluation of an interactive robist often influenced by the
capabilities of the robot. Mobile robots have ttadhally tended to possess great
capabilities for exploring their environment, yettlé capacity for interaction with
humans (Kortenkamp et al., 1998; Thrun et al., J4Bgure 2.2 gives an example). On
the other hand, Kismet (Figure 2.2 left}—an actdabepressive robotic head—is capable
of an impressive array of interaction yet largebtisnary (Breazeal, 2002).

Field testing is another method of evaluation roféenployed (Pineau, Montemerlo,
Pollack, Roy, & Thrun, 2003). Interactive robotsthe field range widely with regard to
purpose and capabilities (e.g. Nourbakhsh, 1998umhSchulte, & Rosenberg, 2000).
Proof of concept systems are common (Fong, Noudigk& Dautenhahn, 2003). One

long-term goal of this work is to develop robotpalhle of building trusted relationships
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with people in need of assistance. Several HRlarebeprojects have explored the use of
robots as assistive navigators for humans. Onbeotearliest was Horswill's Polly robot
which gave tours of an office environment (Horsyl998). Nourbakhsh also developed
a robot tour guide for an office environment (Nakbsh, 1998). Thurn et al.
investigated the use a robot as a museum tour dideun, Schulte, & Rosenberg,
2000). Stoychev and Arkin explored using robotsdfiice delivery tasks (Stoytchev &
Arkin, 2001). Researchers have recently begunudysthe prospect of using robots to
assist the visually impaired (Lacey & Dawson-Howk998; Shoval, Ulrich, &
Borenstein, 2000). Autistic children have been amea of focus (Scassellati, 2000;
Werry & Dautenhahn, 1999). Others have investigatsidg robots to assist the elderly
(Pineau, Montemerlo, Pollack, Roy, & Thrun, 2008) ¢he disabled (Mataric”, Eriksson,
Feil-Seifer, & Winstein, 2007).

In many ways interaction describes the surfaceelattionship building. Further, the
details of interpersonal interaction often causalyate to the social situation that
spawned the interaction (Kelley et al., 2003). Ndataically, the social situation serves
as interactive scaffolding from which an interperalorelationship develops. The next
section will therefore review research from psydggl and sociology created to explore

the nature of interpersonal relations.

2.2 Interpersonal Relations

For humans, social relations form the environmefdahtic of our existence (Byrne &
Whiten, 1997; Gardner, 1983; Humphrey, 1976; Tra8igman, & Ruskin, 2001). This
research investigates social relationships frompéespective of a robot. A necessary

starting point for this investigation is a consatéyn of which, if any, theories of human
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relationships are relevant to this endeavor. Tégisn reviews theories pertaining to the

development, maintenance, and continuation of humtanpersonal relations.

2.2.1 Relationship theory

Social interactions defined as influence—verbal, physical, or emwdi—by one person
on another (Sears, Peplau, & Taylor, 1991). Relatigps develop from interaction
between two individuals or dyads. Several thealiescribing why and how relationships
develop have been proposed. An investigation datimiships between humans and
robots requires an underlying conceptual framewor&upport the design methodology.
Because this is a biologically inspired approach twm to related work from social
psychology for this theoretical framework. Note tthhe purpose of this theoretical
framework is two-fold: first, it is necessary tovieaa basis for understanding the actions a
human will choose; second, it is necessary to lmbasis for determining the correct
robot responses to a given social situation. Treorigtical framework selected must
provide both. This section first reviews competadternatives from social psychology,
selects one, and then details the theory from #yehwlogical perspective describing
why it is the correct choice for implementationarobot.

Social penetration theory views the development atlationship as a process of
increasing self-disclosure (Altman & Taylor, 1973s a relationship develops the
individuals in the relationship confide, share, afier more personal information to the
other person. Supporters of the theory claim tloatas penetration theory successfully
explains several aspects of relationships suclaets iedividuals dependence on the other
individual in close relationships (Sears, PeplauT&lor, 1991). Critics of penetration

theory claim that the theory is not supported byaddails to explain high levels of
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reciprocity and altruism in middling relationshigsd does not account for differences in
gender, culture, or race (Griffin, 1997). As a mloadé relationships for robots,
penetration theory assumes the presence of vastgiaal and behavioral competencies
that would be difficult to develop. For examplecagnizing disclosure would likely
require affect recognition, topical understandingontextual perception and
understanding, and possibly much more. Moreover hilgh level descriptions of social
penetration theory developed for psychologists wohk difficult to interpret and
implement on a computer.

Uncertainty reduction theory focuses on the effaetl usage of communication
among humans in relationships as a means for negugncertainty in our social
environment (Berger, 1987). An axiomatic approadnhgcertainty reduction theory
delineates the connection between uncertainty temuand social psychological traits
such as reciprocity and similarity. Supporters o€ertainty theory claim that the theory
explains aspects of communication within humanti@tghips not well addressed by
other theories. Criticisms of uncertainty reductithreory often focus on its axioms,
typically claiming one or several of them are inda{Griffin, 1997). As a theory of
interpersonal relations for robots, uncertaintyuen theory could potentially be used
as a means for modeling newly developed relatignsshThis theory, however, is not
adequate (nor was it meant to be) for modelingectetationships.

Interdependence theory, as will be shown, is aaeqior modeling both superficial
and intimate interpersonal relationships. It alsmdais relationships computationally in a
manner suitable for implementation on a robot. rilgpendence theory is a social

psychological theory developed by Kelley and Thitasia means for understanding and
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analyzing interpersonal situations and interac{elley & Thibaut, 1978). It began as a
method for investigating group interaction processed evolved over the authors’
lifetimes into a taxonomy of social situations cgtezing interpersonal interactions
(Kelley et al., 2003; Kelley & Thibaut, 1978). Mareer, interdependence theory is
considered by some to be the most influential $@sgchological theory for this purpose
(Sears, Peplau, & Taylor, 1991) and will thus fotfme theoretical framework for this
dissertation. The term interdependence descriteegffiects interacting individuals have
on one another. Interdependence theory is bas#teariaim that four variables dominate
interaction: 1) reward, 2) cost, 3) outcome, anccdnparison level. Reward refers to
anything that is gained in an interaction. Cost tlosm other hand, refers to the negative
facets of the interaction. Outcome describes theevaf the reward minus the cost. An
individual will adjust its behavior based on itsrgeption of a pattern of outcomes.
Comparison level describes an individual's tendetcycompare the actual outcomes
from a relationship with the individual's expectedtcomes. Two of interdependence
theories four core variables (reward and cost)teela terms long familiar to artificial
intelligence researchers (Sutton & Barto, 1998).

Critics of interdependence theory often state thait ignores the non-economic
aspects of interpersonal interaction such as attruand 2) that it assumes people are
rational, outcome maximizers. Kelley responds teséhcriticisms directly, stating that
the noneconomic aspects of interaction can alsaddeded in a description of a person’s
outcomes and that the theory does not presume reithigonality or outcome

maximization (Kelley, 1979). Rather, as will be Eiped shortly, individuals often
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transform social situations to include the irratibraspects of socialization such as

emotion or social bias.

Two-dimensional distribution of Three-dimensional cube of interdependent situatigns
relationships
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Figure 2.3 The distribution to the left depicts a two dimiemgl cross-section of the interdependence
space. Here some prototypical relationships arecribesl in terms of their interdependence and
correspondence. To the right, a three dimensiorstilsution adds the basis of control dimensionisTh
cube depicts prototypical interpersonal situatisash as the prisoner’s dilemma game (PDG) and trust
game as squares within the cube. These prototygitiztions often occur on planes within the cube
(adapted from Kelley, 1979 and Kelley et al., 2003)

Interdependence theory serves as the conceptelgtsk for analyzingnteractiveor
social situations A social situation describes the social contewtrainding an
interaction between individuals (Rusbult & Van bgen 2003). Recently social
psychologists have developed an atlas of canosa@hl situations (Kelley et al., 2003).
Figure 2.3 depicts a variety of social situationsai space termed the interdependence
space. All of the social situations described withiterdependence theory are discrete

events that map to a location within interdependesgpace. The prisoner’'s dilemma
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game and the trust game are examples of sociatisihs that can be mapped to a portion
of the interdependence space.

The interdependence space is a four dimensioraes@-igure 2.3 right only depicts
three of the four dimensions) that describes atiadcsituations. These dimensions are
interdependence, symmetry, correspondence, and basontrol. The interdependence
dimension describes the extdéhat each partner's outcomes are influenced byother
partner’s actions. The symmetry dimension desctibeglegre¢o which the partners are
equally dependent on one another. The correspordiimension describes the extémt
which each partner's outcomes are consistent with dthers. The basis of control
dimension describes the walyswhich each partner affects the other’s outcameble
2.1 lists each dimension and describes the maxamal minimal values for each
dimension. Dimensional values for situations wittiie space are derived from reward,
cost and outcome values for each possible actidhersocial situation. These values are
typically depicted in an outcome matrix such asdhe in Figure 2.4. Outcome matrices
are not typical linear algebraic matrices and ageivalent to the normal form game
representation (Chadwick-Jones, 1976). This exammal&ix describes a social situation

involving two individuals labeled one and two. st example, both individuals interact

by selecting one of two behaviors] and a; for individual one anda’ and a2 for
individual two. Cells, o' thru , ,0® denote the outcome values for each combination of
behaviors selected. Thus,o0' describes the outcome value for individual one if

individual one selects action; and individual two selects actioa; . Likewise, ,,0°

describes the outcome value for individual two l&sg from the same action selection.

19



Table 2.1 The dimensions of interdependence space are ligtéd descriptions of the maximal and
minimal values and examples at the extremes.

Interdependence Space Dimensions

Dimension Range Description at extremes
Degree of Complete Outcomes entirely depend on the actions of the
interdependence  interdependence—Zero partner; Outcomes are independent of the partner’s
interdependence actions
Symmetry Symmetric dependence— Both partners can equally effect the other; Onéngar
Unilateral dependence has greater control over the outcomes of the other
partner
Correspondence Corresponding interests—Partners act for each other's mutual interest;neast
Conflicting interests act in the opposite of the partner’s interest.
Basis of control Outcome exchange— Partners receive favorable outcome by exchangieg on

Outcome coordination  action for another; Partners receive favorable aute
by coordinating joint actions

An Outcome Matrix

Individual 1
1 1
= a,
1 1
N 2 110 120
T X 2
3 110 120
= 1 1
= 2 210 220
£ a, > >
(0] 0]
21 22
=

Figure 2.4 An example outcome matrix is depicted. The te;grol denotes the first individual's

outcomes and the terr'r;(§02 denote the second individual’s outcomes. Outcam&slt from the selection
of an action pair by each individual.

The left hand side of Figure 2.3 also shows tleation within interdependence space
of some typical relationships. One of interdepeméetiheory’s core premises is that a
relationship develops from a culmination of intéi@e and a dyad’s movement and
decisions with respect to the social situationedafKelley, 1984; Kelley et al., 2003;
Kelley & Thibaut, 1978). This is a very importanbipt which is worth restating.
Interdependence theory claims that human relatipeskaccrete from continued
interaction between two people. For humans and tsphthis dissertation examines

whether or not a robot can model and predict thebier of its human partner, allowing
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it to characterize its relationship and alter gh&vior accordingly. This dissertation does
not explore the human psychology of relationshipdmg with a robot. We leave that

portion of this work for the future. It should albe noted that by controlling the social
situation in which a human and a robot are immeraedcan guide the development of

the relationship and the corresponding charactvizaf later relationships.

The Transformation Process
\ 4
Interpersonal
Dispositions
_ | Relational |
Transformation | Motives
Process D N I S ——
Social Norms
\ 4
A 4
Effective | Cognition |
Situation »  Emotion
Habit
A 4
Behavior

Figure 2.5 The transformation process (adapted from Rusbul@&n Lange, 2003). This process model
transforms a given or perceived situation into léral selection by a person. The given situatien i
influenced by cognitive factors such as relationadtives and emotions. These factors transform the
perceived situation into an effective situationtttme individual uses for selecting social behavior

Given that a human and a robot are immersed cilssituation, interdependence
theory describes a process by which social pemme|itransformed into social behavior.
Reminiscent of the sense-plan-act paradigm (Bondssdenkamp, & Murphy, 1998),

Kelley and Thibaut developed a transformation pregésgure 2.5) in which sensory

21



perception is transformed into action after beinfjluenced by the agent’s internal
cognitive processes (Kelley & Thibaut, 1978). Irstbase, however, social situations are
used as the quanta of perceptual input. In theagelar of interdependence theory, the
perceived situation is termed the given situatibhe given situation is a perceived
instance of one type of social situation. The gisgnation is perceived by the individual
and then cognitively transformed, creating an eiffecsituation on which action is based.
Hence, the final product of this process is theaiVe situation. The effective situation
represents outcomes that include many various tspécthe individual’s own internal
predilections. Behaviors are directly selected fritw@ resulting effective situation. This
process is illustrated in Figure 2.5. Several fectofluence how the transformation
process actually converts outcomes from the givkration to the effective situation.
Examples include the individual's dispositions, mations, and relational or social
norms (Holmes & Rempel, 1989; Kelley, 1984; Kelleyrhibaut, 1978). Interpersonal
dispositions are actor-specific response inclimstido particular situations across
numerous partners (Rusbult & Van Lange, 2003). st on the other hand, are
partner- and situation-specific response inclimsidSocial norms are rule-like, “socially
transmitted inclinations” governing the response atoparticular situation in some
specified manner (Knight, 2001; Rusbult & Van Lang003). Rusbult and Van Lange
also describe a socially reactive mechanism by kbhdldren select behaviors based on
the given situation without consideration of defdiese level social norms and motives
of the transformation process (Rusbult & Van Lar&f#3). The computational methods
described in this dissertation could therefore udel connections to developmental

robotics.
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In addition to explaining how relationships evqglweterdependence theory can be
used to describe the forces that govern whom aivithahl selects to engage in a
relationship (Kelley & Thibaut, 1978). Simply puttérdependence theory posits that
people are attracted to those that present thedaigteractive outcomes. Researchers
also describe attraction as a function of famifjarcompetence, and proximity (Duck,
1973). Relationships may be motivated by many differeasons including kinship, sex,
or survival (Wright, 1999). Cooperative relationshidescribe connections between
individuals that offer the possibility of advantafge individuals which would not be
present without the relationship (Knight, 2001; &ny, 1971). It is believed that
interdependence theory, as described above, carsadthe challenge of human-robot

social behavior.

2.2.2 Relationship and social situation analysis

In addition to providing a means for modeling rnelaships computationally,
interdependence theory also provides the computtimethods necessary for analyzing
relationships and social situations. Relationship aituation analysis is critical for a
robot operating in dynamic and/or compkocial environments. A robot must recognize
the social impacts of each of its behavioral ojan addition to the impact on its own
outcomes.

Situation analysis begins with the given socisliagion described in the preceding
section. The given situation contains raw or unaedyoutcomes for the social situation
it represents. Situation analysis breaks down ikengsituation into three constituent
components: the Bilateral Actor Control matrix (BAGhe Mutual Partner Control

(MPC) matrix, and the Mutual Joint Control (MJC) tnta The BAC matrix depicts the
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extent to which each individual controls his or bem outcome. The MPC matrix, on the
other hand, describes the manner in which the @artontrols each individual's

outcomes. Finally, the MJC matrix shows how eaatinga’s outcomes are affected by a
combination of their action and their partner'si@ct The result of this analysis is a
description of the relationship or situation inerdependence space. Analysis also
guantifies the extent to which each of the robdhaviors influences the robot, the

partner, and the robot and partner jointly.

Analyzing a Social Situation with Example

PROCEDURE:
1) Add cells  2) Divide by two 3) Subtract mean Place result in the designated matrix cell

Example Parameters Raw Outcomes Bilateral Actor Contro  Mutual Partner Mutual Joint

Robot’s utility: (BAC) Control (MPC)  Control (MJC)
(Res,Res) =9
(Cle,Res) = -3 T ST ;
(Res, Cle)=0 o H H
(Cle, Cle) = -4 3 40[\_-4.9 25 |\ 25 20 [N\ -2 :
g 2 ™ H
Human's utility: € ’g 2.0 2.0 1| 3.0\ |-3.0 1.0\ |-1.0 _
(Res,Res) =7 £ 3 - I i _ -
(Cle.Res) = -1 § 4.0 4.0 : 2.5 2.5 2.0\ 2.0 [«
(Res, Cle) = 1 O | 1.0\ |-3.0 \ @ il 20 -2. {-» 3.0\ |-3.0 -1.0 1.0
(Cle, Cle) =-3 |
|
N |
Meéens Matrix Variance Table
Robotmean 0.5 BAC MPC MJC
Humanrtmean 1.0 , Robot =4.0—(-4.0] Robot =25—(2.5] Robot =2.0- (2.0
Variance:| gc =8.0 PC =5.0 JC =4.0
. Human =2.0 - (-2.0) Human =3.0-(-3.0) Human = 1.0 —(-1.0)
Variance | gc =40 PC_ =6.0 JC_ =20

Figure 2.6 Example outcome matrices are depicted above.cFiginal outcome matrix is on far left.
These outcomes are converted into the BAC, MPC M@ by following the procedure listed at the tdp o
the figure. The numbers for the raw outcomes aogiged in the example parameters listed to the left
this example the robot selects between rescue ashup actions. The procedure results in the matrix
variance table listed towards the bottom of therfg

The process of relationship and social situaticalyems is described with an example
and illustrated in Figure 2.6. If we consider tleareh and rescue domain, then both the

human and the robot could select either an actiorescue a victim or to cleanup a
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hazard. In this case, the actual numerical value&ezh outcome could be a function of
the number of victims and hazards in the envirortm@ften the actual values within the
cells of a matrix are less important than the rm@abf one cell to another cell. For
example, it is typically more valuable to know whiaction in an outcome matrix
provides maximal reward than it is to know the attualue of the reward. The first
matrix depicts the raw outcome scores for eachviddal. Thus in this example, the
robot rates its outcome for mutual rescue as Ytlathuman rates its outcome for mutual
rescue as 7 (the source of these ratings is disdussthe next chapter). Units represent
some measure of satisfaction. From this matrixcarederive the Bilateral Actor Control
(BAC) matrix, the Mutual Partner Control (MPC) mafrand the Mutual Joint Control
(MJC) matrix by adding the appropriate cells frdme taw outcome matrix, dividing by
two, and then subtracting the mean. The variancee&mh matrix is displayed at the
bottom of the figure. Variance is calculated frdm tesults in the matrices by measuring
the difference in outcome from one behavioral aptio the other. Once an analysis has
been conducted a robot will have the necessarynrebon to fully reason over the social
impacts of the situation or relationship to detemnithe appropriate social action.
Summed over many situations, these values would dlescribe the present state of the

relationship between the robot and the human.

2.2.3 Social learning

Social learning encompasses many different typdsashing, only some of which have
been traditionally investigated by Al researchdpair working definition for social
learning will beimprovement with respect to some performance measu some class

of tasks with experience derived fromsacial environment A social environment is
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defined as any environment with more than one saobots and/or humans (see
Appendix A for glossary of terms). Social learnings come to include teaching (e.g.
Angluin & Krikis, 2003; Jackson & Tomkins, 1992)alming by imitation (e.g. Billard,
Epars, Calinon, Schaal, & Cheng, 2004; Schaal, 19@@yning by observation and
practice (e.g. Bentivegna, Atkeson, & Cheng, 2004, 1992), learning about the social
environment (e.g. Banerjee, Mukherjee, & Sen, 20¢hillo & Funk, 1999; Schillo,
Funk, & Rovatsos, 2000) and learning about onefs o the social environment (e.g.
Crandall & Goodrich, 2004). Similarly, social reanement learning combines a
traditional reinforcement learning paradigm, whishdefined by the types of problems
solved (Sutton & Barto, 1998), with traditional sddearning (Isbell, Shelton, Kearns,
Singh, & Stone, 2001). Abeel and Ng explored thallehge of developing an agent that
could learning another agent’s reward functionobaervation (Abbeel & Ng, 2004).

Rather than focusing on the computational aspafctsarning, social psychologists
have mainly focused on the social aspects of legr(Bandura, 1962; Sears, Peplau, &
Taylor, 1991). Association learning is a generamtdor describing the learning of an
association connecting the occurrence of one artitathe occurrence of another and is
well suited for the purpose of this research. Aggmmns can be generated mapping the
robot’s specific behavioral choice to the perceivadte of the partner and their
relationship. Associations are used as a generethamesm for modeling and predicting a
partner’s interactive responses.

Credit assignment is another relevant concern whesuing learning in a machine.
Credit assignment is defined as “the problem ofigagsg credit or blame to the

individual decisions that led to some overall résyCohen & Feigenbaum, 1982).
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Diagnostic situations, attribution-directed actyyitand clarification are used in
interpersonal relationships to mitigate the chaemof the credit assignment (Holmes &
Rempel, 1989; Rusbult & Van Lange, 2003). A diagiwosituation is a means by which
an individual tests a credit assignment hypoth&sidetermine the proper assignment.
Attribution-directed activity, on the other handlows an individual to attribute credit,
temporarily, to some cause and then update thigrament later as additional evidence
becomes available. Clarification simply motivatée tindividual to locate the credit-
deserving aspect of the environment and typicatbues in fledgling relationships.
Stereotype learning is another important typeeafring found in humans (Sears,
Peplau, & Taylor, 1991). Stereotypes can be destria® a manifestation of an
interpersonal schema relating perceptual featwedistinctive clusters of traits (Sears,
Peplau, & Taylor, 1991). Stereotypes offer distio@tnputational advantages in terms of
processing time for new stimuli and reaction tinoe previously encountered stimuli
(Rusbult & Van Lange, 2003). Subgrouping is a esigyping process by which
information is organized into multiple clusters iaflividuals who are similar to one
another in some way and different from others (Ride & Hewstone, 2001).
Stereotyping is used in this research as a meansldeeloping internal models for
unknown partners. Stereotypes are used to bootshrapprocess of partner model
building allowing a robot make an educated guessutala new partner based on

interactions with prior partners.

27



2.2.4 Connections to game theory

Section 2.2.1 briefly mentioned the equivalencéhef normal form game representation
and the situation outcome matrix. This section wdiscuss the similarities and
differences of interdependence theory and gameytheo

Game theory “is a bag of analytical tools” to ade’s understanding of strategic
interaction (Osborne & Rubinstein, 1994). In garheoty, an equilibrium is a set of
strategies in which no individual can unilateraiigprove the outcome they receive.
Interdependence theory, on the other hand, focoisdbe development of relationships
and the social situations from which these relatgos grow. Game theory and
interdependence theory both use the outcome mitriepresent social situations and
interaction (Chadwick-Jones, 1976). In game theitigse situations are limited by
several other assumptions, namely: both individuale assumed to be outcome
maximizing; to have complete knowledge of the ganotuding the numbers and types
of individuals and each individual’'s payoffs; aratck individual's payoffs are assumed
to be fixed throughout the game. Interdependenaorih does not make those
assumptions. Because it assumes that individual®@icome maximizing, game theory
can be used to determine which actions are optamdlwill result in an equilibrium of
outcome. An equilibrium in game theory is an actorseries of actions which are do not
depend on the actions of the opponent. Interdeperdéheory, because it makes no
assumptions about how an individual will transfoime given situation (i.e., maximize
their own outcome, maximize their partner’s outcprete.) does not lend itself to
analysis by equilibrium of outcomes. For this reasituations are analyzed in terms of

variance of outcome with respect to the actionsctetl by the dyad, as described in
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section 2.2.2. This is a crucial difference betwé#®n dissertation work and previous
investigations by other researchers using gameayheaontrol the social behavior of an
agent (e.g. Crandall & Goodrich, 2004).

This section has described many of the social mdggital and hence biologically
inspired underpinnings that serve as the theotetiasis for this research. In the next

section the background and role of trust is revitwedetail.

2.3 Using Trust to Characterize Relationships

Trust has been studied by a variety of researchens $everal different fields (Rousseau,
Sitkin, Burt, & Camerer, 1998). This section reviet®e vast, variegated literature
concerning trust. Our inquiry begins with the diéfet definitions of trust. Next, the use
of social situations in the evaluation of trusteisamined. This section concludes by

describing alternative methods for evaluating trust

2.3.1 Definitions of trust

Early trust research focused on definitions and adtarizations of the phenomenon.
Morton Deutsch is widely recognized as one of tre fesearchers to study trust (Marsh,
1994). Deutsch, a psychologist, describes trust faget of human personality (Deutsch,
1962). He claims that trust is the result of a chkoamong behaviors in a specific
situation. Deutsch’s definition of trust focused thve individual’s perception of the

situation and the cost/benefit analysis that resulHence, his definition bears close ties
to interdependence theory. He also proposes tisteexie of different types of trust. Each
type of trust is classified according to the siitmtin which it occurs. Trust as social

conformity, for example, results from societal espgions of trust. Other types include
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trust as despair, innocence, impulsiveness, virtaasochism, faith, risk-taking, and
confidence (Deutsch, 1973; see Marsh, 1994 fovamnvgew).

Niklas Luhmann, another early trust researchavyigdes a sociological perspective
(Luhmann, 1979). Luhmann defines trust as a meamsetiucing the social complexity
and risk of daily life. He argues that the comptgxaf the natural world is far too great
for an individual to manage the many decisions ustrmake in order to survive. For
Luhmann, trust is one method for reducing societhplexity. Because a trusting
society has greater capacity for managing compleitan afford to be more flexible in
terms of actions and experience. In addition toagarg complexity, he claims that trust
is a method for handling risk. Lewis and Weigerteexi Luhmann’s conceptualization of
trust, adding emotional and cognitive dimensiorsalls & Weigert, 1985).

Bernard Barber, another sociologist, defines tassan expectation or mental attitude
an agent maintains regarding its social environniBatber, 1983; see Marsh, 1994 for
an overview). He claims that trust results fronriéag in a social system and is used by
an individual to manage its expectations regarditgy relationships and social
environment. Hence, trust is an aspect of all $oelationships and is used as a means of
prediction for the individual. Here again trustdisfined in terms of social relationships
open to exploration via interdependence theory.

Gambetta describes trust as a probability (Gamb&880). Specifically, he claims
that, “trust is a particular level of subjectivebability with which an agent assesses that
another agent or group of agents will perform dipalar action, both before he can
monitor such action and in a context in which feeafs his own action” (Gambetta, 1990)

pg216). Gambetta defines trust as a probabilissessment of another agent’s intent to
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perform an action on which the agent will rely. Bese of its simplicity, this definition
has not been without controversy (Castelfranchiakcéne, 2000).

Rousseau et al. have examined the definitionérdihces of trust from a variety of
sources (Rousseau, Sitkin, Burt, & Camerer, 1998) @ncluded that trust researchers
generally agree on the conditions necessary fat,tnamely risk and interdependence.
The work of Deutsch, Luhmann, Barber, and Gambettashaved as a starting point for
many later investigations of trust.

Lee and See consider trust from the perspectivaeaahine automation, providing an
extremely insightful and thorough review of thestriiterature (Lee & See, 2004). They
review many definitions of trust and propose a md#fin that is a compilation of the
many previous definitions. Namely, trustle attitude that an agent will help achieve an
individual's goals in a situation characterized bycertainty and vulnerabilityWWe use
the definition for trust presented by Lee and Segenerate a more conceptually precise
definition of trust. We define trust in terms ofdvindividuals—a trustor and a trustee.
The trustor is defined as the individual doing thesting. The trustee represents the
individual in which trust is placed.

Trust isa belief, held by the trustor, that the trustee Wil
act in a manner that mitigates the trustor’'s risknia
situation in which the trustor has put its outcomes risk.
The preceding will be the working definition for stuwused for the proposed dissertation.

Methods for quantifying trust are discussed inftil®wing section.
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2.3.2 Using social situations to evaluate trust

As detailed in the next section, many differeneegshers have generated many different
computational models of trust. Our approach is lows that if a general, principled
framework for social situations is used in conjiumttwith a well-defined definition for
trust, then we are able to segregate those sitigtlat require trust from situations that
do not require trust naturally and without modifioa of our framework. In other words,
as will be shown in chapter 8, our framework fduaiion-based interaction implicitly
contains mechanisms for determining if and how mtrast is necessary for a given
social situation. We show that given the abilityégognize and gauge the trust required
by a social situation, a robot can then use tH@rimation to characterize a relationship
with a particular individual or a particular typé situation. Trust will be measured in
terms of risk calculated using a loss function kRi2007). In this manner, we
demonstrate that many of the models proposed bgr adsearchers are actually special
cases of our method.

Before examining alternative approaches for ewalgatrust, we will first detalil
methods that focused on the social situation itSglese methods are widespread both
within neuroscience (Quervain et al., 2004; Sanfaling, Aronson, Nystrom, & Cohen,
2003) and experimental economics (Berg, DickhauM&abe, 1995; McCabe, Houser,
Ryan, Smith, & Trouard, 2001) and typically involsecial situations “instantiated” in a
variety of real world experiments with the aim apkring the phenomena of trust. The
method employed by King-Casas et al. used a simati which two human players
iteratively interact for ten rounds exchanging mpas an investor and as a trustee. In

each round the investor selects some proportianafey to invest () with the trustee.
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The money appreciates3l(= R). Finally the trustee repays a proportion of tb&l
amount R) back to the investor. King-Casas et al. foundviongs reciprocity to be the
best predictor of changes in trust for both theestar and trusteeg = 056, o = 031
respectively where p is the correlation coefficient) (King-Casas et, a2005).
Reciprocity is defined here as the fractional cleaafjmoney over a round by a player in
response to a fractional change of money by thgepk partner. Formally, investor

reciprocity on round can be quantified adl; -AR,_,, where Al is the fractional

change in investment from the previous round, , tolthe present roungl,andAR,_, is
the fractional change in repaymenR(, —R,_,). Similarly, trustee reciprocity is
quantified asAR,_, = Al ;. The change in trusAT was thus found to be best correlated
to investor reciprocity, AT, =Al, -AR,,, for trustees and trustee reciprocity,
AT, =AR,, -Al,, for investors. Hence, by measuring these quastitif reciprocity,

trust is operationalized as monetary exchangevimythat allows for online analysis of
the relationship from its inception. Put anotherywtaust can be measured in these
situations as the amount of money exchanged by @agbr.

The work by King-Casas et al. is important for thissertation for several reasons
(King-Casas et al., 2005). First, the research otktimeets the conditions for trust
described in section 2.3.1. Namely, the trustoatigisk, the trustor expects that the
trustee will act in a manner that mitigates hisher risk, and both parties benefit from
mutual trust. Second, the research method allowsgjdantitative evaluation of trust in
the presence of risk (loss of money) without thredh of harm to the subject. Using this

method, trust is easily quantified as repaymentthmy trustee or investment by the
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investor. King-Casas et al. intentionally minimizeohtextual and interactive effects by
limiting interaction to remote play over a computetwork (King-Casas et al., 2005).
We, on the other hand, study these interactivecestfby measuring responses when a
human and a robot interact in situations similathi® investor-trustee game. Finally, the
method originates from an interpersonal socialasiten and should naturally mesh with
the transformation model of social interaction matl within interdependence theory
(Figure 2.5).

The King-Casas et al. research method is just exasnple of an entire research
methodology that is largely unexplored for the msgs of human-robot interaction.
Many other economic decision games exist; someiniagutrust while others do not.
Examples include the Ultimatum game where one plajfers a division of a valuable
commodity and the other player either accepts @cte the offer for both players
(e.g.Rilling, Sanfey, Aronson, Nystrom, & Cohen,02] the well-known prisoner’s
dilemma game in which both players must choosdthereto cooperate for a chance at
maximal reward or not to cooperate and guarantemraminimal reward (Axelrod,
1984). Generally, these games mesh well with iej@eddence theory because they share
common underpinnings involving reward, cost, antcoome matrix representation. As
discussed in the next chapter, this methodology el used to explore human-robot

relationship development and trust.

2.3.3 Alternative methods for evaluating trust

Most of the earliest trust research was the resulpsychological and/or sociological
experiments. In the past, these fields tended 1y heavily on questionnaires,

observation, and interviews as a means of meastmisg(Lund, 1991; Tesch & Martin,
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1983) and occasionally still do (Yamagishi, 20(R&cently, psychologists have shown
an increasing willingness to use social situatieush as the prisoner's dilemhas a
means for controlling and measuring trust (e.g. d®91; Rabbie, 1991). Sociologists
have also been very active in trust research. TWerk has tended to quantify trust by
observing behavior within controlled laboratory exments (e.g. Kollock, 1994; Kurban
& Houser, 2005) or simulation experiments (Bainpecdet al., 1994 for a review). The
work by Kollock, for example, investigated the etfef uncertainty on trust development
among trading partners in a social exchange exgatinKollock, 1994). Trust was
measured in these experiments by observing thengygutactices of 80 subjects and most
importantly their risk-seeking and risk-adverse @ebrs. Specifically he explored trust
with respect to an individual's commitment to arestindividual as measured by the
equation,

(Tij — Ty )2 + (Tij -Ty )2 + (Tij ~Tim )2 + (Tik -Ti )2 + (Tik ~Tim )2 + (T'I ~Tim )2

3t? |

(Ci )t =

where T, represents the number of trades subjecompleted with subject and t

represents the number of trading periods. The lvhari(ﬂ:i )t signifies the commitment of

individuali at timet. Overall, the equation sums the squared different@umber trades
and normalizes this quantity with respect to tifQeiestionnaires asking each subject to
rate their trust in all potential partners werenalsed to measure trust. He found that the

degree to which the subject perceived the tradartnpr as trustworthy was quantifiably

! The Prisoner’s dilemma is a well studied socialation from game theory. In the situation playaeside
either to cooperate or defect. The game generafeead deal of interest because rational self-isteck
decisions do not result in the maximal amount ofarel.
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related to both the risk encountered in the comwiind the frequency of interaction with
the partner. Kollock’s work serves as an exampla gtiantitative mechanism developed
to measure trust, but because the equations arftbdseappear strongly tied to Kollock’s
experimentation method they were not directly ugsdtlis dissertation.

Over the past decade, simulation experiments baem used as a means for trust
research by both sociologists and computer sctentsmulation offers the unique ability
to control much of the external environment as vasllthe internal environment of the
agents involved. Marsh used simulation experiméatdest his early computational
formulation for trust (Marsh, 1994). Marsh’s workfohes trust in terms of utility for a

rational agent. Further, Marsh recognizes the inaoae of the situation and includes this

A

factor in his formulation of trust. He estimatesstras,T, (y,a)=U (a)x1,(a)xT,(y)

whereT, (y,a) isx's trust iny for situationa, U, (a) is the utility ofa for x, | (a) is the

importance ofa for x, and 'I:x(y) is the general trust of in y. Marsh notes many

weaknesses, flaws, and inconsistencies in this dtaton. For example, he states the
value range he has chosen for trLﬁstL+1), presents problems when trust is zero. Even

S0, as an early computational formulation of tréddysh’s work is both unique and deep
in its synthesis of the various psychological andaogical opinions regarding trust into
a single equation. Although Marsh’s research seage@spiration, our work does not
directly use Marsh’s formulation.

Recently a trend in trust research has been tesfoa the use of probability theory to
measure and model trust. Gambetta, as mentiongection 2.3.1, takes this approach to
the extreme by equating trust to a person’s praiséibi assessment of their partner’'s

likelihood of acting in their favor (Gambetta, 19900sang and Lo Presti, on the other
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hand, use probabilities to represent an agent&ssassent of risk (Josang & Presti, 2004).

A

They describe an agent’s decision surface withe@so risk asFC(p,GS) = p® where
C is the agent’s total social capftaF D[O;L] is the fraction of the agent’s capital it is

willing to invest in a single transaction with ahet agentp is the probability that the

transaction will end favorablyG, is gain resulting from the transaction amﬂ][], oo] is

a factor used to moderate the g&g. Josang and Lo Presti define reliability trustrses

P~ Bp
pD p < pD
value of p and decision trust a3 = 0 for p=p, where p, is a cut-off
P=P  p>p,
1-pp

probability Josang and Pope later use this model of trustapagate trust and reputation
information for the purpose of developing a seawe®vork cluster (Josang, 2002; Josang
& Pope, 2005; Josang & Presti, 2004). The workH®sé authors is certainly a valuable
contribution to network security research. Stillisi not significantly tied in any way to
interpersonal trust and assumes that the sole perpbinteraction is to propagate one’s

reputation. Beth et al. also use probability fae lurpose of developing trust in network
security claiming that the equatior}(p):l—ap , Wherep is the number of positive

experiences and is chosen to be a value high enough to producédsm estimations

should be used to measure trust (Beth, Borcherd&ingein, 1994).

2 Social capital is concept from economics usedetrdbe the value of the connections within a socia
network.
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Castelfranchi and Falcone have been strong crafcslefining trust in terms of
probability because they feel this descriptionrost is too simplistic (Castelfranchi &
Falcone, 2000). Rather, they describe a cognitiedahof trust that rests on an agent’s
mental state. This mental state is in turn cordgblby an agent’'s beliefs with respect to
the other agent and an agent’'s own goals (Cagstelira& Falcone, 2001; Falcone &
Castelfranchi, 2001). Although Castelfranchi andcé@e’s consideration of trust is
extensive, their work has not been evaluated oncamyputational platform and they
present no experiments. Moreover, it is not cleaw htheir calculus would be
implemented on a robot or a simulated agent.

Researchers have also explored the role of trushachine automation. Trust in
automation researchers are primarily concerned gvi#ating automation that will allow
users to develop the proper level of trust in tiistesn. Lee and See, in an excellent
review of the work in this area, note that one ameéntal difference between trust in
automation research and intrapersonal trust reseasc that automation lacks
intentionality (Lee & See, 2004). Another fundanantifference is that human-
automation relationships tend to be asymmetric whith human deciding how much to
trust the automation but not vice versa. These domehtal differences also distinguish
our work from the trust in automation research.

Many different methods for measuring and modetmgt have been explored. Trust
measures have been derived from information wittihgl (deceit) (Prietula & Carley,
2001), agent reliability (Schillo & Funk, 1999; Slthy Funk, & Rovatsos, 2000), agent
opinion based on deceitful actions (Josang & P2p65), compliance with virtual social

norms (Hung, Dennis, & Robert, 2004), and compkanath an a priori set of trusted
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behaviors from a case study (Luna-Reyes, Cress&eRjchardson, 2004). Models of
trust range from beta probability distributions owgent reliability (Josang & Pope,
2005), to knowledge-based formulas for trust (L&Reyes, Cresswell, & Richardson,

2004), to perception-specific process models fostt(Hung, Dennis, & Robert, 2004).

Table 2.2 A list of the various measures and models of tased in previous research. The meaning of
the symbols are presented within the text of thctien.

Models of Trust

Author(s) Model/Measure
(Kollock, 1994) (0 TP+ T f 41 T + (0~ + (T ~To) +(7 -,
€)= :
3
(Marsh, 1994 T.(v.a)=U,(a)x1,(a)xT,(y)
(Josang & Presti, —
2004) P~ P 3
A Po P<=Po
Reliability trust F. (p,G) = p® decision trusfl = 0 for p=pp
p pD p > pD
1-py
(Beth, —1_pP
Borcherding, & Vz (p) 1-a
Klein, 1994)
(King-Casas et al. AT, =Al, —AR_, andAT, =AR _, —Al
2005) J J J J

Often these measures and models of trust are d@diltw the researcher’s particular
domain of investigation. Luna-Reyes et al., for rapée, derive their model from a
longitudinal case study of an interorganizatiomdbimation technology project in New
York State (Luna-Reyes, Cresswell, & RichardsorQ40This model is then tested to
ensure that it behaves in a manner that intuitiveRects the phenomena of trust. A
review of computational trust and reputation modejsSabater and Sierra state, “

current (trust and reputation) models are focusadspecific scenarios with very
delimited tasks to be performed by the agents” ‘@glethora of computational trust

and reputation models have appeared in the lasts,yesach one with its own

characteristics and using different technical sohg (Sabater & Sierra, 2005).”
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The alternative methods for evaluating trust dised in this section highlight a
diversity of approaches and domains the topic udtttouches on. Table 2.2 lists several
methods of evaluating trust proposed by differenhars. It is our belief that by relating
these many models to a unifying framework for dositmations we will lend insight and
progress to this nascent field. Chapter 8 delirseate method for recognizing and acting

in situations requiring trust.

2.4 Summary

To summarize, interdependence theory provides arélieal basis for representing
relationships and social situations in the propadisdertation (Kelley, 1979; Kelley et
al., 2003; Kelley & Thibaut, 1978; Rusbult & Varamhge, 2003). It offers a basis for
understanding the social actions of a human; ib ghsovides a framework for
determining the proper robotic responses to a giwatial situation; finally,
interdependence theory forms a “conceptual skeletmsed to describe social situations
some of which involve trust (Kelley et al., 2003).

Because interdependence theory provides a genexahsnfor representing social
situations which is not tied to a particular enaimeent or paradigm, it is possible to
segregate those situations that demand trust frmsetthat do not without altering the
interdependence framework. We defined trusa dselief, held by the trustor, that the
trustee will act in a manner that mitigates the stor’s risk in a situation in which the
trustor has put its outcomes at risk his definition is derived from a definition oftsl
by Lee and See.

An experimental methodology involving economic demm games, similar to those

used by King-Casas et al (King-Casas et al., 200&3, been detailed as a means for
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investigating human-robot interaction. These gangeserally allow for iterative
interactions, use the potential loss of a valueshroodity as risk, and are capable of
quantifying an individual’s actions in terms of $tuMoreover, these games have a long
and established history as a means for exploritegantion.

Several methods of social learning have also bé&ausked. These include learning
of associations, the use of diagnostic situatiamrscfedit-assignment and stereotyping.
Stereotyping is a process by which interpersonémsa relating perceptual features to
distinctive clusters of traits are used to boopstraderstanding of a novel partner.

This chapter has reviewed literature covering s®vgeneral areas of research
relevant to this dissertation. The goal has bedmigblight the connection of these areas
to the principal and subsidiary research questions clear and coherent manner. The

next chapter introduces our methodology for ingeding these topics.
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CHAPTER 3
A METHODOLOGY FOR INVESTIGATING THE THEORY

UNDERLYING HUMAN-ROBOT INTERACTION

This chapter presents a methodology for investigathe theory that underlies human-
robot interaction. The aim is to introduce the eai several new methods of human-
robot interaction research developed for this diaten. As will be shown, these
methods are particularly applicable to the creatiba general, principled framework for
human-robot interaction. As detailed in section, Zarrent human-robot interaction
experimental methods often focus on feasibilitydss, usability studies, and in-field
experiments (Fong, Nourbakhsh, & Dautenhahn, 2088)eral researchers note that
these methods are generally inadequate for thessarch because the terms used are not
defined, reproducibility is rarely possible, anedhies are either absent or not falsifiable

(Bethel & Murphy, 2008; Feil-Seifer, 2008; HeckelS&nart, 2008).

3.1 A Method for HRI Theory Research

Theories are developed in order to explain or bettelerstand a natural phenomenon.
According to Philip Kitcher, scientific theory sHdul) “open(s) up new areas of
research”, 2) “consist of just one problem-solvatiategy, or a small family of problem-
solving strategies, that can be applied to a walege of problems”, 3) be “testable
independently of the particular problem” and 4) trhesfalsifiable (Kitcher, 1982).

This dissertation studies uses a robot to stuay rtatural phenomena of social

interaction. It is common to think of social intetian as existing outside the realm of
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robotics. We do not believe that this is the cd&ather, we prescribe to the belief that
social interaction is a critical component of iliggnce in general (Humphrey, 1976).
Roboticists have long sought to make robots motelligent (e.g. Brooks, 1991;
MacFarland & Bosser, 1993). Hence, at the higheasl] we explore social interaction as
a means to make robots more intelligent. In a pralcsense, the use of a robot allows us
to explore social interaction in a manner neveroteefattempted. Rather than using
indirect mechanisms to infer a human’s psycholdgiepresentation of its interactive
partner and social situation, the use of a robtmwal us to directly examine this
representation. In the end, the results we obtamnils produce both better social control
algorithms for the robot and, possibly, a strongmmnection of psychological theory to
its perceptual and behavioral underpinnings. Stills dissertation does not directly
investigate human psychology. Rather, we focus omv fthanges in the social
environment produce representational and behavmrahges in a robot. Our metrics
therefore measure changes with respect to the ,robbtthe human. As detailed in the
next section, this means that human behavior a&alled variable.
Our overarching theory is that

social interaction results in outcomes for eachiviaiial,

that these outcomes must be represented in orderasnn

about future interactions including the developmehta

relationship, and that the representation of thes&comes

affords a robot the ability to reason about othercisl

phenomena, such as trust
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This statement paraphrases the research questised jn chapter one. Referring back to
Kitchner’s criteria for a scientific theory, ourethry does open new areas of investigation
specifically by developing novel algorithms thabshd allow a robot to interact in a
wider variety of environments; our theory presemtsmall family of problem solving
techniques, centering of the use of the outcomeixn#tat are applicable to a large body
of problems; our theory is general, not tied topac#ic problem or environment; and
finally, by showing that outcome matrices cannot jwe@duced from perceptual
information or that these matrices do not resultmproved social behavior by the robot,
our theory is falsifiable.

Our method for studying this theory is to followpeecise series of steps. First, we
define all terms for the particular phenomena beinglied (social interaction, trust, or
relationships for example). These definitions may noay not result in particular
assumptions on which our results will rest. If den these assumptions are explicitly
stated. Next, given the definitions, we systeméiatevelop representations, algorithms,
and/or corollaries to our original theory. Finalbhese representations, algorithms and
corollaries are tested using a particular expertalgraradigm. It is important to note that
the experimental results will not “prove” our ongl theory. Rather they simply lend
support to our original argument. Proof of a theocay only be gained by independent
confirmation from other researchers (Popper, 1963).

Social interaction is governed by three variablgghe first interacting individual; 2)
the second interacting individual; and 3) the emvinent (Rusbult & Van Lange, 2003).
In human-robot interaction either the first or tbecond individual is a robot and the

remaining individual is a human. As mentioned, pligpose this dissertation is to study
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and develop techniques that will allow a robotrtieiact. If we are to be successful, then
it is useful to control the remaining two variablesated to interaction. Namely, we
should attempt to control for the behavior of themian and for the environment. In the

sections that follow, we present several methodsaliow us to this.

3.2 Controlling Human Behavior—Actor scripts

It is helpful, when evaluating a robot’s abilitytemact, if the behavior of the robot’s
human partner is controlled for. As experimentaantrol of the human’s behavior
allows us to focus our investigation on a singlped@ent variable—the resulting actions
of the robot—rather then having to infer the reasftmm the robot’'s behavior. This strict
control is helpful during the early stages of expentation and theory development
because it allows us to quickly rule incorrect teo or faulty algorithms. Later in the
experimental cycle, we can loosen our control terdtie human’s behavior to allow for
more realistic pseudo-random behavior on the gahieohuman. In a sense, stress testing
our algorithms and theories before introductiotoimeal world environments.

Laboratory experiments involving controlled humaghavior are standard in many
psychology experiments (e.g. Milgram, 1974). Thesperiments typically require that
the experimenter’s confederate follow a predefiserpt often acting the part of a fellow
subject. This script explains how the actor shdagdtave in all of the situations he or she
will face. In much the same way, our evaluationtlod robot’s interactive behavior
requires that the human partner act in a scriptadn®r. We use the terattor scriptto
describe a predefined set of interactive instrictithat the human will follow when
interacting with the robot. Actor scripts are usedeveral of the experiments conducted

as part of this dissertation.
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Actor scripts are methodological in nature anda®ntribution of this dissertation.
An actor script is created by first delineating $it@ations that the human-robot dyad will
encounter. Once the situations have been determinetiuman’s actions can be dictated
in several different ways. For example, one cowddetbp scripts related to the actions
and preferences of a firefighter in a search asdue environment. These scripts could
be generated by observing real firefighters in deaand rescue environments or,
possibly, by constructing the script from data anfibrmation related to search and
rescue. Another possibility is to assign the humdmmoad social character (see Appendix
C for examples) and to then select actions in alzsare with the assigned character. For
example, if the human is assigned the social ckerrat egoist then the human will select
the outcome matrix action that most favors his er twn outcomes. To complete the
actor script, actions are determined for each actéwn, possibly being contingent on the
robot’s prior behavior, and a list or flowchartdseated that the human follows when

interacting with the robot.

3.3 Controlling the Environment—Social Situations

The use of games and predefined social situatiesna anethod for exploring human
interactive behavior was discussed in section 2.2Z4 briefly review, social
psychologists and neuroscientists have begun wgnges such as the Investor-trustee
game and Ultimatum game to investigate how and hyans interact (Sanfey, 2007).
These simplistic games place interacting individualcontrolled social situations which
allow researchers to tease apart the impact oéréifit factors on interactive behavior.
The Ultimatum game, for example, forces one indigido offer a division of a valuable

commodity and the other individual either acceptsepects the offer for both players
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(e.g.Rilling, Sanfey, Aronson, Nystrom, & Cohen02) Ethnographic results show that
humans will routinely reject proposals in whichythreceive less than 20% (Henrich et
al., 2003). It is speculated that humans considdrvalue the fairness of a proposal and
that this preference for fairness often supersdtlesmoney that would have been
received by accepting an unfair proposal.

The Ultimatum game is not merely an academic éserdather, the characteristics
of this social situation occur daily in many rowaisocial interactions. For example, the
Ultimatum game is often manifest in simple negaiia, such as determining how much
work an individual will do for a predetermined p@&ecause the characteristics of this
game, and many others, are normal components oyaare human social interaction, it
is important that robots recognize and master simng such as these.

Hence, one potential method for studying the theonderlying human-robot
interaction is to place robots in controlled soesi@lations such as the Ultimatum game.
These situations afford control over the extermairenmental factors which could
influence the robot’s decision making and modelstattion processes.

Randomly generated social situations can also dsel o test the generality of a
theory. Social situations are randomly generatedafoutcome values that comprise the
situation are randomly created and nominal actiamsassigned. Randomly generated
situations may originate from any location in tmterdependence space (Figure 2.3).
Thus, by testing the robot’s response to many rariglgenerated social situations, one
can garner evidence supporting a theory with rdspeall possible social situations,
rather than one social situation in particular. Wse the term numerical simulation to

describe experiments which employ a large numberaoidomly generated social
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situations. For example, given a theory of trust,asuld use the investor-trustee game to
test whether or not the robot has recognized that will effect its partner’'s decision in
the laboratory. Once our theory of trust has bednlated in a social situation commonly
agreed to involve trust we then use randomly geéeérsocial situations to test our model
over the entire interdependence space.

This dissertation employs both of these researethods, occasionally validating
theories with particular social situations and datsing randomly generated social
situations to expand these original results. Tiotiees that follow describe the methods

of evaluation particular to this dissertation.

3.4 Evaluative Methods

As mentioned in section 1.1, all experiments ineointeraction between a single robot
and a single human. Some experiments require #wt mdividual select an interactive

action simultaneously while others demand a sefi@gtions being selected. The actions
available depend on the experimental conditionjrenment, and so on. After selecting

an action, both the robot and the human performattin. Once the action had been
performed, the human tells the robot the valudefdutcome that he or she had received
as a result of both actions being selected. Thetrabd the human continue taking turns

until the experiment is complete.

3.4.1 Numerical simulation experiments

We conduct two broad types of simulation experimeas part of this dissertation:
numerical simulations and simulations within a d@mion environment. Numerical

simulations of interaction focus on the quantitativesults of the algorithms and
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processes under examination and attempt to simasgtects of the robot, the human, or
the environment. As such, this technique offersaathges and disadvantages as a means
for discovery. One advantage of a numerical simulaéxperiment is that a proposed
algorithm can be tested on thousands of outcomeigeatrepresenting thousands of
social situations. One disadvantage of a numesioallation is that, because it is not tied
to a particular robot, robot's actions, human, hnimaactions, or environment, the
results, while extremely general, have not beemwshio be true for any existing social
situation, robot, or human.

Our numerical simulations of interaction typicaliimulated both the decisions and
action selection of the human and the robot. Astionthese types of simulations are
nominal and do not represent actual actions peddrim the environment. These
nominal actions are grounded by the rewards ant$ ¢le robot receives when selecting
them, regardless of the mechanics of the actiomfonoeance. Moreover, numerical
simulations do not utilize an interactive envirommeutside of the outcome matrix itself.
Hence, the domain, task, and physics of the wardabstracted away in these types of
simulations.

To understand the role and value that such simuaktcan play in the science and
exploration of human-robot interaction, considere thollowing question, “what
percentage of situations warrant deception?” Thigstjon is important, because if the
percentage of situations warranting deception ry genall, then, perhaps, the study of
deception itself is unjustified. Still, a systencaéixamination of all possible grounded
social situations within a given scenario and emvinent seems infeasible. We can,

however, create outcome matrices representing rargltuations that the robot could
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encounter, then allow the simulated robot and aulsited human partner to select
actions, and record the outcomes that result. Typs of experiment allows one to
rapidly explore the space of social situations éttdy understand aspects of interaction

such as deception or trust.

3.4.2 Simulation experiments within a simulation enviramh

Many of the simulation experiments conducted fas thissertation utilize USARSIm, a
collection of robot models, tools, and environmdotsdeveloping and testing search and
rescue algorithms in high-fidelity simulations (@i, Wang, Lewis, Birk, & Jacoff,
2005). USARSIm’s robot models have been shown abstecally simulate actual robots
in the same environment (Wang, Lewis, Hughes, K&e<arpin, 2005). Moreover,
USARSIm provides support for sensor and camera fadHet allow a user to simulate
perceptual information in a realistic manner. USARS freely available online.

USARSIm is built on Epic’s Unreal Tournament (UJgme engine. A license for the
game engine costs approximately five dollars. Unfeairnament is a popular 3D first
person shooter game. Unreal Tournament’s game engmduces a high-quality
graphical simulation environment that includes #ieematics and dynamics of the
environment. Numerous tools for the creation of nemwironments, objects, and
characters are included with the game. These taoide used to rapidly prototype novel
environments at minimal cost. Moreover, several giete environments and decorative

objects are freely available online.
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above. The top left shows a
household environment. The top right depicts a mmnsenvironment. The bottom left illustrates the
assistive environment. The bottom right illustrates prison environment.

Table 3.1 List of colored objects in each environment.

Colored Objects

Object Color Environment
Biohazard green Search and rescue
Fire red Search and rescue/Museum
Victim yellow Search and rescue
Patient light blue Assistive
Medicine light blue Household
Homeowner green Household
Intruder dark blue Household/Museum
Prisoner purple Prison
Visitor light blue Prison

Figure 3.1 depicts examples of environments watetk for this dissertation using
Unreal Tournament tools. The household environmerdeled a small studio apartment
and contains couches, a bed, a television, etguf€&i 3.1 top left). The museum
environment models a small art and sculpture galied contains paintings, statues, and
exhibits (Figure 3.1 top right). The assistive earment models a small hospital or
physical therapy area and contains equipment fgsipal, art, music and occupational
therapy (Figure 3.1 bottom left). The prison enniment models a small prison and
contains weapons, visiting areas, and a guardatgliigure 3.1 bottom right). Finally,

the search and rescue environment models a disasteand contains debris fields, small
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fires, victims, and a triage area (Figure 3.2 anmguie 3.4). Some objects in these
environments were colored to aid the robot’s redamn of these items. Table 3.1 lists

objects that were artificially colored.

Human Control Interface

Scene Mioree

Left ‘ Right ‘

Fazter [ [ Stop | | Slower

Look,
Up
Left ‘ H@ht‘
Down
Actions

&1 A2 A3

A4 A5 AB

Update: ¢ FPS: |B.78352 \width: 480 Height I'Iﬂﬂi |:|

Speech a7 A5 49
Speak buttan
Fress and speak ‘ A0 AN A2
Global Information Communicating Fobots:
Time: 430,60
i=l Position

i Body Rotation[Deg): Pitch=0.00%aw=0.36 Roll=0.00
o Location[UU]; ¥=-9.20 Y= -1.20 2= -0.23
Sovelociby[UU A2) = 0.00%= 0,00 Z=-0.00

Head Rotation[Deg): Pitch=0.000 % aw=0.000

Figure 3.2 The interface used by the human to move and irttéenathe simulated environment. The
environment shown is the search and rescue envenhim

We developed a software interface that allows mdruto interact with the robot in
the simulation environment (Figure 3.2). This ifaee was developed from an existing

USARSIm tool (Zaratti, Fratarcangeli, & locchi, )0 Using the interface the human
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can move and look around the environment. The huraaralso speak to the robot using
a predefined grammar of commands and can heaoliot's responses.

The simulation environment employs three computanging in concert (Figure 3.3).
The simulation server runs the USARSIm simulatiolgiee and serves video and
position data to clients. The robot and the humamnect to the simulation server as
clients. The robot client controls the robot's babawithin the simulation. The human
control interface allows the human to move, lookd gerform actions within the
simulation environment. The human control interfaaleo acts as a speech server

translating speech into strings for the robot ¢lmd strings into synthesized speech for

the human.
movement : : movement
Human Control commands _ | Simulation |  commands Robot Client
Interface P i Server [T —
- position data, position data,
Stringto | Speechto|  yideo data video data 7'
speech string
conversion | conversion
'y T string representing spoken commands

string to be synthesized to speech
Figure 3.3 Depiction of the network and control setup usedpénform simulation experiments. The

human interacts through the Human Control Interfathe simulation server runs the simulation
environment and feeds information to both the Hu@antrol Interface and the Robot Client.
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U U preal Tournament 2004

Figure 3.4 The figure depicts a split screen view of the deaned rescue environment. The human sees
only the top half of the figure. The bottom halbsis the robot situated in the environment.

3.4.3 Laboratory experiments

In contrast to the experiments conducted in sinaiatseveral experiments were
conducted in the mobile robot lab and used a @adtr The experimental area in the lab
was modeled after a search and rescue or maze estyleonment (Figure 3.5). The

environment included mock victims and hazard signs.

Figure 3.5 An ovei of the maze environment used as a mpodf a simple search and rescue
environment. One corner of the maze had two d@fgasenting children (center photo) and the other
corner had a simulated fire and biohazard (riglatgh
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3.4.4 Evaluation platforms

Two types of robots were used in the experiments.uded a Pioneer DX with a front
mounted camera for the experiments involving partneodeling and stereotypes
(Chapter 5). Figure 3.4 depicts the robot operatm@ simulated search and rescue
environment and Figure 3.6 shows the real robdfgsta in the laboratory. This robot is
a wheeled robot with mobility over smooth flat swés. The robot's environment
supports independent locomotion over short dissgnapproximately 15 meters, which

was far enough for all experiments.

Figure 3.6 A photo of the Pioneer DX used to perform the tabary experiments.

The robot’s camera is a 320 by 240 pixel video @@mmounted on the front of its
flat deck. The effective frame rate of this videmmera is approximately 10 frames per
second. The computational platform used for conpetceptual processing, and the test
algorithms was a standard Toshiba Satellite laptopinternal wireless LAN card was

used to transmit and receive information from tigoi.
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WowWee’s Rovio robot was used in our experimerfgdaing the robot’s ability to
select the most trusted partner (Chapter 8). Tobotris also a wheeled robot with
mobility over smooth flat surfaces. The robot's eaanis a 640 by 480 pixel webcam
mounted on the top of the robot's extendable n€xmmunication with the robot is
accomplished via the robot’s wireless network cdide Rovio comes with a docking

station and infrared beacon easing the robot’sgadivin task back to the docking station.

Figure 3.7 A photo of th Rovio mobile robot. The robot’s néslpoint towards the bottom of the image
and is in the unextended position. The webcamtiseaénd of the neck.

3.4.5 Interactive communication

The human and the robot used speech to communida¢erobot used speech synthesis
to communicate questions and information to the dnumpartner. Speech recognition
translated the spoken information provided by tlhenaén. Microsoft's Speech SDK
provided the speech synthesis and recognition déapes (Microsoft Speech SDK 5.1

information page, 2006; Open Mind Speech, 2006).
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3.4.6 Human partners

Interaction involved a single robot and a singlenan. The robot’s human partner was
assigned a predetermined list of perceptual festtinat were used by the robot for
identification or as evidence of the partner’s typee human’s perceptual features were

spoken to the robot. Table 3.2 lists all partnatiees.

Table 3.2 A list of partner features is presented above. ¢\ the features were devised because of
their notional significance.

Partner Features

Feature Name Values
Gender <man, woman>
Height <tall, medium, short>
Age <young, middling, old>

Weight <heavy, average, thin>

Hair color <blonde, black, brown, red>

Eye color <blue, green, brown>
Tool 1 <axe, gun, stethoscope, baseball-cap>
Tool 2 <oxygen-mask, badge, medical-kit, backpack>

The human’s actions were scripted. In other wottls, human selected from a
predefined series of actions that were contingenthe robot’s prior actions and the
experimental condition. Section 3.2 has alreadgutised the use of controlled human
behavior in the experiments. Because the expersranitrolled for the human’s features
and actions, all experiments could be conductea syngle human partner. Still, three
different operators were used (a 20 year old Amaerizoman, a 20 year old Indian-
American woman, and a 33 year old American malejyule out any possibility of
experimenter bias. When interacting in the sameiremwment with each different

operator the outcome matrices created by the nobo# identical.
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3.4.7 Perceptual underpinnings

We used a combination of computer vision and spesabgnition for much of this work,
including the recognition of interactive partnemgvigation, and object detection and

recognition.
Partner Recognition

The recognition of interactive partners is criti¢af this work. The robot queries the
human for the human’s perceptual features and thmatches these features to a
preexisting model of the partner. Features weré&espoThese features were used both to
retrieve models of known partners and to considesttities for unknown partners. Table

3.3 summarizes the perceptual infrastructure used.

Table 3.3 A summary of the perceptual requirements, thensof package used, and their usage.

Perceptual Infrastructure Summary

Necessity Software Package Usage
Partner Recognition Microsoft Speech SDK Used tonmaoinicate partner features and
outcome values received by human partner.
Object Recognition OpenCV Used to recognize speadifbjects in the
environment, determine environment type.
Navigation/Localization OpenCV Used to aid the roimonavigating over short

distances in an indoor environment.

Object Recognition and Navigation

Some experiments required that the robot searchrfdriocate objects. The objects were
not occluded and adequately lit. Searching for abjeequires rudimentary navigation.
All of the experimental environments were passdilyiehe robot. To aid navigation, in
simulation the robot received accurate feedbadksdbcation. Color blobs were used to
denote objects. Objects were color coded for reitiogn purposes (Table 3.1).

Laboratory experiments used visual landmarks teigeolocation feedback (Figure 3.8).

58



Figure 3.8 In laboratory experiments the robot uses landmat&ation to aid navigation.

3.4.8 Robot behaviors

Many of the robot’s actions were related eithethte performance of relatively simple
search and navigation tasks or to interactive comaoation. Table 3.4 summarizes the

requisite behaviors and their purpose.
Capture Behaviors

Capture behaviors were used to determine the tiypawronment, partner, or the result
of an interaction. TheCapt ur eEnvi r onnent Feat ur es behavior uses the robot’s
camera to gather information about the robot's af@nal environment. The
Capt ur ePar t ner Feat ur es behavior asks the human to state their featurashwdre
then saved by the robot. Ti@apt ur el nt er acti on behavior asks the human to state

the outcome they received after performing an adtiche environment.
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Table 3.4 The table provides a summary of the behaviors.used

Behavior Purpose
Capt ur eEnvi r onnment Feat ur es The robot uses its camera to determine the type of
environment.
Capt ur ePart ner Feat ur es The robot asks the human to state their features
Capturel nteraction The robot asks the human to state the value obmgcahey
received.
Speak- X The robot states X
Sear chFor - X The robot navigates from waypoint to waypoint séagtits
camera in search of object X.
Gui deTo- X The robot requests that the human follows and tiasgates
to position X.
bserve- X The robot moves to position X, positions its carard
remains.
Li ght-X The robot moves to position X and turns on itstligh

Functional Behaviors

Functional behaviors allowed the robot to do or #aggs within the simulated or real
environment. Functional behaviors require additikkmowledge in the form of a phrase,
environment location, or object type. In all expegnts the robot was given the
knowledge of stock phrases, the location of objects available objects in an
environment. For example, ti8ear chFor behavior takes as a parameter an object such
asfire. The robot has been programmed with informatiat fine is red. The robot will
then search for a red object in the environmentelVit finds the object it relays the

position of the located object to the human.

3.5 Example Interaction

For clarity, we will briefly overview the proceslsat occurs during a typical interaction
with a human partner. When the robot is powered lip,first uses the
Capt ur eEnvi r onnent Feat ur es to determine the type of environment. In simulatio

it uses its camera to take an image of the enviemtrand compares the image to images

of different environment types. It selects the emwinent type which most closely
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matches the camera image. Once it knows the emagahtype, it determines which of
its actions are appropriate for the environmernis (#ill be discussed in greater detail in
chapter 5). Next it uses tl@apt ur ePar t ner Feat ur es behavior to gather information
about its interactive partner. Once it has theneais features, it constructs an outcome
matrix (detailed in chapter 5), uses the matrigdtect an action, and performs the action.
After the action has been performed the robot nstuo a predetermined location to
interact again.

This chapter has presented a methodology for tigasig the theory that underlies
human-robot interaction. We contribute several mésh novel to human-robot
interaction research. These methods allow one tutralo for the behavior of the
interacting human and to control the social sitratWe have also described a simulation
environment capable of high-fidelity simulations maturalistic environments using a
variety of robot models. Coming back to our priratigesearch question, we believe these
methods will allow for a systematic investigatiohtbe our overarching theory—that
interaction results in outcome, that these outcomest be represented in order to
develop a relationship, and that the representatidhese outcomes affords a robot the
ability to reason about trust. The chapter thatoted presents our framework for

representing and reasoning about human-robot otters.

61



CHAPTER 4
A FRAMEWORK FOR REPRESENTING AND REASONING

ABOUT HUMAN ROBOT SOCIAL INTERACTION

This chapter presents a framework by which a raaot represent and reason about its
interactions. Our framework draws heavily from mdependence theory, a social
psychological theory of human relationship develept(Kelley & Thibaut, 1978). The
previous chapter presented a methodology for hurobot interaction research. In this
chapter we begin to put this methodology to usediyning the terms and concepts that
will form the core of our framework. The chapteglves with social interaction, arguably

the most fundamental concept in human-robot intenac

4.1 Defining the term Social Interaction for Robots

The term social interaction is often used by humabwot interaction researchers (Rogers
& Murphy, 2001). But what do we mean by social iat#ion? The first subsidiary
guestion posed in chapter one proposes an exgoratithis question. We begin with an
established definition from psychology.

Social interaction has been defined as influencersal, physical, or emotional—by
one individual on another (Sears, Peplau, & Tayl®81). This definition is a broad one,
potentially encompassing phenomena such as gasslipe interaction, and reputation.
A more narrow definition of social interaction ieffered by Goffman, who, on the other
hand, defines it as face-to-face behavior occurmnthin a defined social situation
(Goffman, 1959). Because the definition by Seaepl&u, and Taylor covers a broader
spectrum of phenomena, we have chosen it as oamngimefinition for the term social

interaction. Namely,
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social interaction is influence—verbal, physical or
emotional—by one individual on another. (Sears, Pap,
& Taylor, 1991).

For the remainder of this dissertation a spectia interaction is termed an interaction.

We use the definition to reason about the typ@fofmation that should be presented
in a representation of interaction. The definitemmters on the influence individuals have
on one another. This influence can be represerges real number. Thus real numbers
representing each individual’s influence on theeotindividual should be present in our
representation. The definition also implies thatimy social interaction individuals
actively deliberate over and select actions, whithturn influence their interactive
partner. Hence, our representation must also ieclofbrmation about the actions each
individual is considering. Moreover, for each pair actions we must represent the
influence that a selection of the action would hawve each individual. Finally, our
representation must include information about whimieracting.

Outcome matrices contain all of this informatiodn outcome matrix not only
identifies the individuals interacting but also tains information about the actions
available to both individuals and the influencet tlesults from the selection of each pair
of actions. The layout of an outcome matrix is degad in Figure 2.4. As has been
mentioned, the outcome matrix has a long historg espresentation for interaction in a
variety of different fields (Chadwick-Jones, 1976).

Finally, we note that in this context the term@tis used to describe any mechanism
by which one individual influences their environméancluding other individuals within
that environment. Much in the same way that adsatefined in reinforcement learning,
an action here can be a low-level control or a fégtel behavior (Sutton & Barto, 1998).
Hence an action could be a spoken phrase, a pertbbmhavior, or even a collection of

behaviors.
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4.1.1 Social situations and interaction

Outcome matrices are also used to represent ssitigtions. The term situation has
several definitions. The most apropos for this wigrka particular set of circumstances
existing in a particular place or at a particulang (Situation, 2007).” A working
definition for social situation, then, is a situetiinvolving more than one individual
where an individual is defined as either a humam social robot. Put another way, a
social situation characterizes the environmentaitofs, outside of the individuals
themselves and their actions, which influence adgve behavior. In other words, a
social situation describes the social context sumding an interaction between
individuals (Rusbult & Van Lange, 2003).

A social situation is abstract, detailing the gahenvironment of the interaction. An
interaction, on the other hand, is concrete wipeet to the two or more individuals and
the social actions available to each individualr Egample, the prisoner’s dilemma
describes a particular type of social situation.s@ish, it can, and has been, instantiated
in numerous different particular social environnseranging from bank robberies to the
front lines of World War | (Axelrod, 1984). Hencthe term interaction describes a
discrete event in which two or more individualseselparticular interactive behaviors as

part of a social situation or social environment.
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Interaction Social Situation
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Figure 4.1 This figure depicts the difference between an attton and a social situation. Both outcome
matrices above depict the Prisoner’s dilemma. Effienhost matrix depicts the prisoner’'s dilemma as a
interaction between two specific people selectingMeen specific actions. The right most matrix depi
the prisoner’s dilemma as an abstract social sitmatvithout specific actions or individuals.

A social situation may or may not proffer interant Interdependence theorists state
that interaction is a function of the individualstaracting and of the social situation
(Rusbult & Van Lange, 2003). Technically, sociatuations marked by no
interdependence on the part of either individudbrdf no interaction because the
individuals do not influence one another. Althouglsocial situation may not afford
interaction, all interactions occur within some iabeituation. Figure 4.1 graphically
depicts the difference between a social situatiod an interaction. Interdependence
theory represents social situations involving ipéesonal interaction as outcome

matrices.

4.1.2 A formal notation for describing human-robot intran

In this section, we use the definitions from theyious section to create formal notation
for describing human-robot interaction. This natatbuilds from our use of the outcome

matrix as a means for representing interactionsatal situations.
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As a representation, interdependence theory’soowtcmatrices are equivalent to
game theory’s normal form game (Figure 2.4 and f&gd.1). The normal form

representation of a game consists of 1) a finité&se players; 2) for each playefl1N a
nonempty setA' of actions; 3) the payoff obtained by each pldgereach combination

of actions that could have been selected (Gibb®832). Let a‘j OA' be an arbitrary
actionj from playeri’s set of actions. Le(a} ,akN) denote a combination of actions,
one for each player, and let denote player’s payoff function:ui(a},...,aﬂ) -0 is
the payoff received by playeif the player's choose the actio(ex} v, ay) )

The terminology employed when discussing the autonatrices that describe a
social situation occasionally differs from sometlwod terms of game theory. Game theory
considers the actions of players whereas interdbgee theory considers the actions of
actors or individuals. As stated in chapter oneuse the term individual to denote either
a human or a social robot. The reward obtained vpheyers select actions is a payoff in
game theory and an outcome in interdependenceythBayoff functions determine the
value of these payoffs in game theory whereastyfilinctions determine the value of
outcomes. For the most part, the differences imgeare simply different names for the
same thing. One difference in representation, heweas game theory’s use of strategies.
A strategy in game theory describes a complete pfaaction that a player will take.
Because game theory assumes that all players tiweala each player is bound to its
strategy and the normal form game can be defineterims of strategies rather than
actions. Interdependence theory does not assumeatty and hence does not describe
the outcome matrix with respect to strategies. Uighout this dissertation the

interdependence theory terminology will be used.
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Returning to our notation, subscripts denote oahel superscripts denote ownership.
Individual 1 will always be used to describe theiwdual listed above the outcome
matrix, when the outcome matrix is depicted graghyc(Figure 4.1). Without loss of
generality, the robot will always be depicted adividual 1. Individual 2 is always the
robot’s human partner and the individual listedn® left of a graphically depicted matrix
(Figure 4.1). Thus, actioa; denotes individual 1's second action, and actdrdenotes
individual 2’s first action. The terro denotes an outcome value within the matrix. The
superscripts and subscripts for all outcome vahresdepicted in Figure 2.4. The left
hand subscripts can be used to reflect the actsetected by each individual, with
individual 1's action first. Right hand subscripdenote order, for example; > o;
indicates that individual 1's outcome has increagagin, right hand superscripts denote
the individual. Game theory also uses the supg@itscand-i to abstractly represent an
individual and their interactive partner. Hencediudual 1's first action can also be
represented aa, . The first action of individual 1's partner is @lexpressed as," . The
term O is used to denote an outcome matrix. A particalacome within a matrix can

also be expressed as a function of an outcome xmatid an action pair, thus

Ol(aé,al2 =,0" and Oz(ai,af)azoz. Here the variable denotes an outcome value. The

term ,,0° denotes that it is the second individual’'s outcdimen the first row and

second column of the matrix. The temporal orderaction selection is expressed as

i = —i if individual i acts before individuali andi = -i if both individuals act at the

same time. For example, individual 1 acting befod#vidual 2 is expressed 4= . 2
Figure 4.2 demonstrates the use of this notatioan actual HRI experiment from

German Research Center for Artificial Intelligerfgender, Mozos, & Jensfelt, 2007). In
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this experiment, an exploring robot asks a humasns@st for information about the
environment. It asks the human whether or not a dopresent. The human states “no”,
but the robot fails to recognize the response. film@an repeats “no” ten times finally
stating “there is no f###ing door here.” The robetognizes this final response and

proceeds.

4.2 Partner Modeling

Several researchers have explored how humans gewatotal models of robots (e.g.
Powers & Kiesler, 2006). A mental model is a tersedito describe a person’s concept

of how something in the world works (Norman, 1988) use the term partner model
(denotedm_') to describe a robot’s mental model of its intéx@chuman partner. We

use the term self model (denoteni) to describe the robot’'s mental model of itself.
Again, the superscript is used to express individuigd partner (Osborne & Rubinstein,

1994).
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Demonstration of outcome matrix notation used to decribe an HRI
Experiment

a; =Ask if there is a door. a’ = State no.
a; =Thank and move forward.  a’ =State yes.
a: =No response.

We assume;; >0/ based on the laughing
in the video.

# | Dialog Notation for Notation for Human

Robot

1 | R: Is there a door there? Ol(all) 0%(p)

2 [ H:No. () 0(a}, a7 )= 0

5 [Fike 50 a0t <o)
O Gt TR alzo <o
5 [ ol Ta)zo <o
6 | H: Robot no. o} (") 0%(al,a?)= 0? <0?
7 | H: Robot no. o} (") 0%(al,a?)= 0% <02
5 [Fwe ol o) =0 <o
5 [ Gt TR alzo <o
10 | H: Robot No. There is no f###ing| 0*(p) 02( 1,af): 0Z <0}

door here.
11 | R: Ok, thank you for helping me. Ol(aé) oz(a;,af) =0}, >0/

Figure 4.2 The figure above demonstrates the use of our owgcoratrix notation in a human-robot
interaction experiment conducted by German Rese@ectter for Artificial Intelligence (Zender, Moza$,
Jensfelt, 2007). The robot (pictured in the toftrighoto) asks the human whether or not a dooreisgmt.
The human says no 10 times before the robot respdatation is provided for the robot and the human
The human’s outcomes decrease every time he mesatréhe command. Finally, when the robot responds,
the human’s outcomes are increase dramatically.

An exploration of how a robot should model its fmmpartner should begin by
considering what information will be collected mg model. Our partner model contains
three types of information: 1) a set of partnetdess; 2) an action model; and 3) a utility

function. Partner features are used for partnevgeition. This set of features allows the
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robot to recognize the partner in subsequent iotiewas. The partner’s action model
contains a list of actions available to that indual. Finally, the partner’s utility function

includes information about the outcomes obtainedhieypartner when the robot and the
partner select a pair of actions. Likewise, thd seldel also contains an action model
and a utility function. The action model containBsa of actions available to the robot.
Similarly the robot’s utility function includes iofmation about the robot’s outcomes.
The information encompassed within our partner neod@es not represent the final
word on what types of information that should beluded in such models. In fact,
information about the partner's beliefs, knowledgaepod, personality, etc. could

conceivably be included in these models. We usedtite(.) to denote the sets and

functions within a model. Hencemi Al denotes an action model contained within a
partner model for individual(see Figure 4.2 for an example).

Partner models contain information relating to dilyeof Mind (Scassellati, 2002).
Theory of mind describes the ability of an indivaditio attribute particular mental states
to other individuals. The creation and maintenaofca partner model requires the ability
to determine the reward and cost values for anatidividual as well as the actions
available to the individual in a particular socs#luation. Thus, the creation of a partner
model and the use of the partner model to pop@ateutcome matrix highlight the role
Theory of Mind plays during social interaction.

The preceding discussion raises an important suregtiow do we measure partner

model accuracy? For example, given a human pawtitér action setm ™ '.A™' and

utility function m 'u~", how close is the robot's partner moael to the actual model

“m™ where the * symbol is used to represent a targetain We address this problem by
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viewing action models and utility functions as séilse action model is a set of actions,
a  OA", and a utility functiony', is a set of tripletsal ,a;',[]), that contains the action
of each individual and a utility value. We can trdmset comparisons to determine the

accuracy of the robot’s partner modal' . Figure 4.3 presents a concrete example.

Measuring Partner Model Accuracy

Models Action Model Calculation Utility Function Calculation
Drn_' _ Gui deTo-Victimstart-1V, 6)
Cimamme >
m' —— >\ Observe-Fire
Operations
Sil - =

1. Cardinality ‘m ‘ =2 ‘m ‘ =2

il * =i
2. Cardinality m ‘ =2 m ‘ =2
3. <et difference M ="m™ =serve-Fire m'="m" =(Cui deTo- Vi cti m Cbserve-Fire, 2)
4. et intersed *m“ N m“ intubate *m'i n m'i = (QuideTo-Victimintubate, 6)
5. Card. diff erence ‘m_l - m_l‘ =1 ‘m_l B m_l‘ =1
6. Card. intersec ‘*m_i n m_i‘ =1 ‘*m" N m_i‘ =1
Calculation m =m ' i =nt |t it

S + 1_ S S + l_ i
7. Add values to d= m ‘% d= m ‘Dm‘
the equation (1) 2 2
E + 1_E } + 1_£
g2 U2) 1| )7 Te) e
2 2 2 2

Overall 1 . 1
8. Calculate the S _d*+d 2 2 1
overall model d” = > = > = E
accuracy

Figure 4.3 The figure above provides an example measuremeptaxher model accuracy. The robot
currently has an action model for partner congistiitwo actions, one of which is not correct. Bagne is
true of the robot’s utility function for the parmeCalculations are provided in the lower half bgt
diagram. The resulting distance from the true mald+0.5. A distance of zero means that the models are
the same. A distance of one means that the modehipletely dissimilar to the target model.
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Two types of error are possible. Type | errorgéapositive) occurs if an action or
utility is added to the robot’s partner modeh() which is not in the actual model

("m™). Consider as a running example interaction wittemergency medical technician
(EMT) in a search and rescue situation. A typedreoccurs when the robot believes that
the EMT can do some action, such as observingea(kigure 4.3), which, perhaps

because of the situation, it cannot. Type Il effafse negative) occurs if an action or

utility in the actual modelfm™) is not included in robot’s partner modeh( ). A type II

error occurs when the robot does not know thatgkid can perform an action, such as
starting an IV (Figure 4.3). Both types of errorsnbe included in a measure of action
model or utility function accuracy. Moreover, alityifunction value was not considered
present in the actual model if the value differeahf the actual value by an arbitrary

amount (we chose a value of one).
To determine Type | error we calculate the numblerctions or utilities inm™

‘m“ -‘m”

which are not iffm™ as a percent ofn™ . Thus, , is the number of actions in

!
the robot’s model that are not in the actual malilébed by the number of actions in the
robot’s model.

Type Il error can be calculated as the numberctibas or utilities in bothm™ and

‘ “mT nm™ ‘

“m™ as a percent ofm™. Thus is the number of actions in both models

[P

divided by the number of actions in the actual nhods the number of actions in both
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models increases, the accuracy increases. Hemu® wie seek an measure of distance

‘ "m" nm™ ‘

(inaccuracy), the terrhi— is used.

!

Finally, the two types of errors are averagedaequation,

d= (1)

to created, an overall measure of model accuracy and distarmmce the true model for

either an action modeld(*) or a utility function @"). To determine overall model

accuracy we average the error from both comporadritee partner model,

S d*+dt
d™ = . 2
5 (2)

The value ofd represents the distance of the robot’s partnerainiooim the actual model.
Whend equals zero the robot’s partner model is equ#thearue partner model. Wheh
is equal to one then the robot’s partner modebmapletely dissimilar (the intersection is
empty) to the true partner model. To calculaterttwelel accuracy we follow the steps in
Figure 4.3. The first six steps from Figure 4.3fpen a series of set operations on the
action model and utility function. The seventh siegerts the values obtained by the set
operations into equation (1). In the final stepjatpn (2) is used to combine errors from
both models.

Equation (2) weighs action model and utility fuootaccuracy equally. We could
have chosen to weigh the accuracy of either therachodel or the utility function as

more important in deciding overall partner modealuaacy. As shown in the next chapter,
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action model accuracy and utility function accuraffect action selection differently. In
the end, we chose to weigh action model accuragglBgto utility accuracy.

This section has introduced partner models anétaad for measuring the difference
between models. Partner models are critical whesatcrg outcome matrices. The

following section details a process by which outeamatrices are used to select actions.

4.3 The Transformation Process

Interdependence theory is based on the claim #@plp adjust their interactive behavior
in response to their perception of a social situesi pattern of rewards and costs. Kelley
noted that individuals often transform their int#if@ns to include irrational aspects of
socialization such as emotion and their internadpections or dispositions (Kelley,
1979). Moreover, these internal transformationsegovsocialization and ensure that
people are not simply rational outcome maximiz&wsction 2.2.1 described a general
architecture for social deliberation designed btentdependence theorists (Kelley &
Thibaut, 1978; Rusbult & Van Lange, 2003). In théction we flesh out the details of
this design, creating an architecture for soci#ibdeation suitable for implementation on
a robot.

As discussed briefly in section 2.2.1, interdepmg theory presents a process by
which the given situation is first perceived by thelividual and then cognitively
transformed, creating an effective situation onclihaction is based (Figure 2.5). Recall
that the given situation is a perceived instanceomé type of social situation. The
effective situation, on the other hand, represenittomes that include many various
aspects of the individual's own internal predilens, such as his or her disposition.

Behaviors are directly selected from the resuleffgctive situation. Between the given
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situation and the effective situation a transfororaprocess exists that alters the given
situation to create the effective situation.

In this section, we detail a method for transforgnan outcome matrix into a matrix
that includes the robot’s own internal dispositiDmsposition is defined here as a stable,
social character manifested in an individual (sectr.1 describes disposition in more

detail).

Framework for Social Action Selection

N Socially Deliberative Pathway
Situation, partner features =000 oo — T oS oo — S —— .

l

Transformation Process

I
| |
' |
! |
' |
' |
Matrix creation | Select transformation I
procedure Given : :
(e &) Situation I :
Given ) ) : ) I
Situation | Socially Reactive | Transformation tyg :
i Pathway | v v |
. I Transform the outcome
nmax_own (< - f matrix :
Effective | |
Situation : :
. 3 !
Interactve ST T T T T T T -
Behavior

Figure 4.4 The figure above depicts our framework for soaigion selection. Situation features are used
to generate the given situation (described in sadii.3). The given situation is transformed to unie the
robot’s disposition producing the effective sitoati Finally, an action is selected from the effesti
situation.

Figure 4.4 depicts a framework for social actiefestion. This framework is similar
to the general process delineated by interdepeedtreory (Figure 2.5). The process
begins with the given situation. Our method foratireg the given situation will be
described in chapter 5. The given situation is es@nted with an outcome matrix that
reflects a situation at a ‘gut’ or perceptual lewethout internal transforms. Once the
individual has generated an outcome matrix reptesgthe given situation this matrix

can be used in one of two pathways. The sociabygtree pathway is a developmental
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pathway some researchers claim reflects the lackoafal deliberation by children
(Rusbult & Van Lange, 2003). In this pathway, thdividual acts egotistically simply
selecting the action that maximizes the individsi@ivn outcome without consideration
of the other individual. The second pathway we téne socially deliberative pathway.
This pathway transforms the given situation into edfective situation on which the
individual will act. This dissertation will focusnahe second pathway. Before describing
the remainder of the diagram, we will first deserithow outcome matrices are

transformed.

4.3.1 Transforming an outcome matrix

An outcome matrix, as a representation, affordsynsample strategies for selecting an
action from the matrix. The simplest of all stragsgs to select the action that results in
the greatest potential outcome for oneself. We ttris strategymax_ownbecause it
serves to maximize the deciding individual's outeomvithout consideration of the
partner.

Table 4.1 lists several other simple strategi@shbof the strategies listed in this table
uses a simple computational process to alter tlggnat matrix into a new matrix. For

example, the max_joint transformation can be computationally described as

Al _ 1
xyo _xyo +xyo

> wherex, y are constant and represents the transformed outcome

value. This transformation replaces outcomes viighsum of the robot’s and its partner’s
outcome. Moreover, each transformation has a pdaticocial character that reflects the
individual that chooses the transformation. Fotanese, an individual that often chooses

to maximize its partner's outcomenéx_othey is typically considered to be acting
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altruistically. In other words, the continued sélae of a single transformation reflects an
individual’s disposition.

Table 4.1 The table provides a list of some example transétions. The table provides the name of the
transformation, a description, the computationabrgement of the transformation, and the character
displayed by an individual that often selects gpetof transformation. A more complete list is pded in
Appendix C.

Example Transformations

Transformation Transformation Computational mechanism Social character
name description
max_own No change No change Egoism—the individual
selects the action that
most favors their own
outcomes
max_other Swap partner’s ol= o2 Altruism —the
outcomes with one’s 1 Xy individual selects the
own action that most favors
their partner
max_joint Replace outcomes o'= o'+ 0?2 Cooperation—the
with the sum of the 1 1 Yy individual selects the
individual and the action that most favors
partner’s outcome both their own and their
partner’'s outcome
min_diff Maximizg the value 6t = max{ o — 02‘) Fairness—the individual
of the action that has Xy xy Xy selects the action that
the minimal - o'- 02‘ results in the least
difference to that of Yy 1

disparity
the partner.

Returning to our framework, the outcome matrixrespnting the given situation is
transformed using one of the transformations listedppendix C to create the effective
situation. This occurs as a two-step process. Teedtep is to select a transformation.
Once a transformation is selected the outcome xariransformed according to the
rules of the transformation. Formally,

O, = f(0,.6), 3)

where isO. the effective outcome matriX, is the given outcome matrixg is the

transformation, and the functiohtransforms the matrix. Once the matrix has been
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transformed, the action that maximizes the indigluoutcome is selected, completing
the social deliberative pathway.

Consider, for example, a robot and a human foragon two types of objects in a
household environment. The human searches for bhlg objects, while the robot
searches for either blue or red objects but prefsiobjects. The given situation for the
robot is created by counting the number of colaregcts in each room. If the robot uses
the max_ownstrategy then it will select the room with the d8u objects. We can,
however, transform the matrix to make the actiohshe robot more helpful for the
human. If we use max_jointtransformation, then the robot will select thenmowith the
most red and blue objects to forage in. If, ondtieer hand, we useraax_otherthen the
robot will select the room with the reddest objeotforage in.

As will be shown, this transformation process isimple yet powerful way for a
robot to not only reason about its own social axgtibut to also reason about the actions
of its human partner.

This chapter has presented the conceptual undengs for our framework for
human robot social interaction. We have presentexthod of representing interactions
computationally, for modeling the robot’s interaetipartner, and for selecting social
actions. The chapter offers the groundwork for adsing this dissertation’s research
guestions. The chapters that follow will build dnstframework, presenting methods for

using these concepts and results showing thatatheepts work.
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CHAPTER 5
FROM PERCEPTION TO OUTCOME MATRIX

As a theoretical tool a representation may be bferaimply because it lends insight into
the computational problem itself (Hutchins, 199%gt, to be useful to the field of
robotics, it must also be possible to create irtstarof the representation from the noisy,
uncertain perceptual input available to a robotcd®se the challenge of creating
outcome matrices from social interaction in genera&hast, this chapter does not mark the
final word on the subject. Rather, the chaptergmespreliminary algorithms and insight
into this problem and only attempts to show thé fiossible to create our representation
of social interaction from perceptual informatidrhe bulk of this dissertation will then
focus on using the outcome matrix to characternzgt tand social relationships.

This chapter presents a series of algorithms feat;mg outcome matrices from
perceptual information. The first algorithm assuraesurate knowledge of the partner
and the environment, but serves as a profitableepta begin developing a general
purpose algorithm for generating outcome matrigés.use this algorithm to explore the
sensitivity of the outcome matrix to different tgpef error. The next two algorithms
make fewer assumptions and demonstrate that ibssilple to create outcome matrices.
The chapter concludes with a discussion of the gmeblems and future challenges

related to the creation of outcome matrices.

5.1 Developing an Algorithm for Outcome Matrix Creation

Experts note that a representation of knowledge ast a surrogate for a naturally
occurring phenomena (Davis, Shrobe, & Szolovits,93)9 As a surrogate, a

representation maintains specific types of infoiomaabout the phenomena and omits
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other types of information. When developing an dtho for the creation of a
representation, it is therefore natural to ask wijpes of information are present in the
representation.

Recall that an outcome matrix is our representafiar social interaction. The
previous chapters detailed our reasons for chooshg outcome matrix as a
representation for social interaction. The inforimratrepresented in an outcome matrix
centers on three questions: 1) who is interact@lgWhat actions are available to each
individual? And 3) how will the selection of a paif actions influence each individual?
Moreover, these questions must be answered in belsause, for example, the identity

of the robot’s partner could influence which acti@re available to a partner.

General Matrix Creation Algorithm

Input: Self modelm' and partner modem ™ .
Output: Outcome matriO.

Create empty outcome matfix

SetO.partner= g(m"‘ .features ) /lUse perceptual features to retrieve partner na
SetO.self=“r obot " //Assign robot as name of self
SetO.columns=m' . A’ //Use model of self to set actions for self

For each action pai(aij ,alzi) in A, A™

O (a'] ,alj) cmu (a'J ,alzi) /[Use utility function to assign outcome values

o™ (a'J ,a,:i ) em'u” (a'] ,alzi ) /IUse partner utility function to assign partner's

. End /loutcome values
0. Return O

1
2
3
4
5.  SetO.rows=m".A™ //Use model of partner to set actions for self
6
7
8
9
1

Box 5.1 The algorithm above creates an outcome matrioa fioe input partner and self models. The
algorithm operates by successively filling in thengents of the matrix. The functionis a mapping from
partner features to ID.

We have thus sketched the outline of an algorfibmereating outcome matrices. Box
5.1 depicts the general form of the algorithm. &lgorithm takes as input the self model
and the partner model and produces an outcomexragroutput. The self model is a

mental model the robot maintains of itself. It Gons the robot’s action model and a
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utility function. The action model consists of atliof actions available to the robot.

Similarly the robot’s utility function includes iofmation about the robot’s outcomes.
The first step of the algorithm creates an emptg@ue matrix. Next the algorithm sets
the partner’s ID and both the robot’s and the matsnactions. This step uses the function
g to map perceptual features to a unique label orlIDcreation provides a means of
attaching the perception of an individual to whatlearned from interacting with that

individual. In theory, any method that provides raque ID from perceptual features

should work in this algorithm. We have not, howewxplored this claim experimentally.

Finally, for each pair of actions in the action rats] we use each individual’s utility

function (u' andu™) to assign an outcome for the pair of actions.

Consider, as a running example, a firefighter isearch and rescue situation. The
firefighter’'s action model contains action for merhing CPR, fighting fires, rescuing
people, etc. The firefighter’s utility function imétes the he ranks actions which save
people (such as performing CPR) as more valualgle #ttions which reduce property
damage (such as fighting a fire). Perceptual featsuch as having an axe, an oxygen
tank, and a helmet, indicate that the person isefighter. Other features such as height
and hair color identify the firefighter as a pautar individual. Figure 5.1 demonstrates
the use of the Outcome Matrix Creation algorithmdi@ating an outcome matrix for the

firefighter and an assisting robot in a searchrasdue environment.
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Example: Outcome Matrix Creation
Robot
Robot guide-to- alert-
victim fire
o) @ o)
RS = <
(@] (@] (@]
o iC o
g o g
o i o
Step 1 Step 2 Step 3 Step 4
Robot Robot
guide-to- alert- guide-to- alert-
victim fire victim fire
g g 9 7
S, perform- ‘S, perform-
(i CPR [ CPR 10 8
2 2 12 15
L fight- L fight-
fire fire S) 7
—
Step 5 Steps 6-8

Figure 5.1  An example of the Outcome Matrix Creation algorithma search and rescue environment
with a firefighter. Step 1 begins with an empty ratvhich is filled with information related to the
interaction. The result is the final matrix labe®ps 6-8.

It should be apparent that the Outcome Matrix @Wraaalgorithm simply fills in the
matrix with missing information. Moreover, the acaty of the outcome matrices created
by the algorithm depends entirely on the accurddfi@information contained in the self
and partner models. The question of creating ouécomatrices then becomes a question
of how do we create accurate partner models. Statether way, if accurate partner
models could be created then we could use the @w@ddatrix Creation algorithm to
create accurate outcome matrices. For this reaseations 5.3 and 5.4 present
algorithms for creating and refining partner mod@&sefore exploring these algorithms,

however, we will use the Outcome Matrix Creatiogogithm to examine the sensitivity
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of the outcome matrix as a representation of sactalaction to different types of error.

This will, in turn, influence the design of ourdatalgorithms.

5.2 Outcome Matrix Error Sensitivity

Chapters 2 and 4 discussed the outcome matrix &distorical perspective and from the
perspective of related work. In these chapters mgeiel that the outcome matrix is a
feasible representation of interaction becausastlieen used as such in other disciplines
for decades. In this section we present empiriesililits supporting our assertion that the
outcome matrix is an excellent representationritgraction on a robot. These results will
focus on the representation’s sensitivity to défartypes of error. We define sensitivity
here with respect to action selection becauseatngbot’s ability to select and perform
actions that will likely have the largest reperéoss on its human partner. Embodiment
and reliance on potentially noisy sensors makegxamination of a representation’s
sensitivity to error an important consideratiorthe representation is to be used on a
robot for two reasons. First, if the outcome matepresentation is sensitive to several
types of errors then perhaps the representatiamissuitable for implementation on
robots. Second, different types of errors coul@afthe usefulness of outcome matrix in
different ways and thus impact our outcome matereagation algorithm.

The purpose of this section is to examine how itttieduction of errors into the
outcome matrix impacts a simulated robot’s abitdyselect actions. Ideally, for every
error introduced into our representation, less tha@ action selection error will occur.
We use the term error to denote any differencehé ibformation contained within a
representation from the target model. Hence, eroans include incorrect values or
missing information. We consider the outcome matrikve sensitive to a specific type of
error if the action selection error increases Iihear greater with respect to the error

introduced.
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We conducted simulation experiments to explore $basitivity of the outcome
matrix to different types of error. We explored falifferent types of errors: errors in
outcome value magnitude, errors in single outcomlees, action insertion errors, and
action deletion errors. Errors in outcome value mitage occur when all of the outcome
values for a partner are multiplied by some vakig. For example, if all of the
partner's outcome values are changed to be hatheftrue value. Errors in single
outcome values occur when one or many particultzoooe values differ from their true
value. This error occurs, for example, when theotabcorrectly values a particular
action human-robot action pair. Action insertioroes occur if the partner’'s action model
includes actions which could not be used in theremirsocial situation. Using the
firefighter example from the previous section,hétrobot believes that the firefighter is
capable of performing actions such as administeaimdV when, in fact, the firefighter
cannot. Action deletion errors, on the other hasabur when actions that could have
been used in the current social situation are el@l&om the partner’s current action
model. For example, not recognizing that a firetiggtcan fight fires would result from an

action deletion error.

Table 5.1 Environment types, partner types, and robot tyjpeshe outcome matrix error sensitivity

experiment.
Environment Type Partner Type Robot Type
assistive police officer police officer assistant
household firefighter firefighter assistant
museum accident victim medical assistant
prison hospital patient
search and rescue citizen
medical staff

The same general experimental procedure was asaweéstigate all four different
types of error in four different experiments. Th&ARSIm simulation environment,
robot models, and tools described in section 3wkefe used. To ensure generality with

respect to the type of environment, the experimest® conducted in all five simulation
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environments (Table 5.1). Similarly, to ensure gality with respect to the partner and
self models, we created three different types bbte and six different types of human
partners (Table 5.1). Each partner and self moaeélahdifferent set of actions capable of
being performed in a particular environment. Foaragle, in the search and rescue
environment the police assistant robot produceduatitory alarm if it found a victim,
whereas in the household environment the policsstass robot searched the household
for burglars. Overall 903x6x Ypdifferent combinations of robot type (3), partiigpe

(6), and environment (5) were created. Each unicpmbination affected the action
model and utility function for the robot and itsrimeer. These 90 models served as target

models for each of the four experiments.

Table 5.2 Example actions for different types of individuals.

P_?)r/tgeer Example actions Robot type Example actions

gf(?il(l:c; perform-CPR,hac:rrﬁ:t-person, searg hE)olice assistant  alert-guards, alert-security, otesexhibit
firefighter perform-CPrI)?e,rl%rr\]t-ﬂre, rescue- f!ig%?;enrt guide-to-fire, guide-to-victim
accident . medical guide-to-victim, guide-to-triage, light-

L crawl, limp, moan : S .

victim assistant victim, light-triage

hospital

patient get-food, do-art-therapy, watch-T\

citizen watch-scene, talk, run-away

medical stabilize-person, treat-iliness, assess-

staff person

The USARSIm model of the Pioneer DX robot was usedll experiments (Figure
3.4). The robot had both a camera and a laser ramger. The medical assistant robot
type had a light for communicating the locatiorvmitims, the police assistant robot type
had an auditory alarm, and the fire assistant rojgue¢ had neither a light nor an alarm.
Feedback from the simulation environment providazhlization information. The robot
used speech synthesis to communicate questiongforthation to the human partner.
Speech recognition translated the spoken informatmovided by the human.

Microsoft's Speech SDK provided the speech synthesid recognition capabilities.
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Table 5.2 lists example actions available to egplk bf robot. Note that the suitability of
an action depends on the type of environment. Tapping from action to environment
was created by reasoning about the types of acti@miscould performed by this robot in
a particular environment.

The robot's human partner used the interfaceatiegiin Figure 3.2 to interact with
the robot. This interface was developed from ansted g USARSIm tool (Zaratti,
Fratarcangeli, & locchi, 2006). The interface aléotie human to move around and view
the environment. The human interacted with the rdiyospeaking a predefined list of
commands. Table 5.2 lists example actions availibtae human. The action set for the
human was derived by reasoning about the typestains that would be available to a
police officer, firefighter, victim, citizen, medit staff, and hospital patient in each of the
environments.

Utility functions for both the human and the robwere created by producing an
arbitrary ordering of the individual’'s actions im @nvironment in a list format. Next,
each action in the list received a utility equaitsoposition in the list (beginning at zero).
Finally, a value equal to the half of the size lué tist was subtracted from each of the
utilities on the list. The purpose of subtractihgstvalue was to ensure that roughly half
of the actions had negative utility. For examptehe robot’s action list was (guide-to-
victim, guide-to-triage, light-victim, light-triagethe resulting utilities for each action
would be (-2,-1,0,1). Action pairs received a titiequal to the sum of utility for each

individual action.
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Like the robot, the human’s utility function waeeated by producing an arbitrary

ordering of the actions in an environment and sgtthe action in the middle of the

ordering to zero utility.

The following general procedure was used for eddhe four different experiments:

Table 5.3 Experimental procedure for the outcome matrix esersitivity experiments.

1)

2)

3)

4)
5)

6)

7

8)

9)

Experimental Procedure

Create 90 target models reflecting the differemmbinations of robot type

partner type, and environment.
For each target model create noisy models bgciimg the model with

random Gaussian error. The amount of error intreduo the model is thie

independent variable. The type of error dependetthe®xperiment.

The robot gathers information about its typeg #nvironment, and th
partner. Specifically, the human operator inforime tobot of its robot typ
(police assistant, firefighter assistant, medicabigtant), the robot use
OpenCV to detect the presence or absence of olifedistermine the type ¢
environment, and the robot uses speech synthesiseangnition to query th
partner for their type.

Having obtained the robot type, partner type andronment type, the rob
retrieves from memory a (possibly error laden) parand a self model.

The General Matrix Creation algorithm (Box 5.%) used to create 3
outcome matrix.

The robot uses max_ownaction selection strategy (see section 4.3.1
more details on action selection strategies) selgthe action that maximize
its own outcome without regard to the partner.

The action is performed in the environment. Tdigot's action selection an
resulting outcome values are recorded. The robetriegs the human fg
his/her action selection and records the response.

Steps 3-7 are repeated for each of the 90 canbirs of robot type, partng
type, and environment.

After each combination of robot type, partngretyand environment has be
tested, the error introduced into the models isei@ased by 5 percent and ste
3-8 are repeated.

10) Continue until the model is 90 percent error.

N

e
P
bS
Df

D

n
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S

=
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In each of the experiments, the percentage of ertirduced to the robot’s target models

is the independent variable. The percentage ofriacbactions selected by the robot is
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the dependent variable. An incorrect action is&roa which differs from the action that
would have been selected had the error free tangelel been used instead of the error-
laden model. The hypothesis tested for each expatidepended on the type of error
investigated. In all experiments, analysis was garéd by comparing the action
selection error rate averaged over all environménta linearly increasing rate. Figure

5.2 summarizes the model creation process fooat éxperiments.

Partner model creation procedure in the Outcome Maix Error
Sensitivity Experiments

Step 1

For every partner type and environment, createnparhodel. Each partner model contains
environment and individual specific actions (sebl&&.2 for examples) and arbitrary utility
functions.

Step 2 l l l l

Error in Outcome
Value Magnitude

Error in Individual
Outcome Values
Experiment

Action Deletion
Errors

Action Insertion
Errors

Create four sets of
models by
multiplying all
outcome values for
the partner model by,
10, 2, 0.5, and 0.1.

Create 18 sets of
models at 5 percent
noise increments by

using Gaussian
noise to randomly
alter individual
outcome values.

Create 18 sets of
models at 5 percent
noise increments by

using Gaussian
noise to randomly
select valid actions
for deletion from the
partner model.

Create 18 sets of
models at 5 percent
noise increments by|

using Gaussian

noise to randomly
select invalid
actions for insertion
into the partner
model.

Step 3 y
Use the sets of models created in step 2 as tiepémdient variable for each experiment

Figure 5.2 Diagram depicting the process used to create thtegramodels for the four error sensitivity
experiments presented in the following four sulisest

5.2.1 Errors in outcome value magnitude

A common concern about the outcome matrix as aesepitation for interaction is that

the outcome values are likely to be inaccurate. fbllewing experiment explores this

88



concern by investigating the action selection tasylfrom errors in outcome value
magnitude. Table 5.4 provides a summary of the exgat.

Errors in outcome value magnitude occur when tt®t either uniformly inflates or
deflates the rewards or costs associated withcathrapairs within a matrix. These types
of errors are common in human psychology (SeadaBe& Taylor, 1991).

As mentioned above, an error of magnitude occurswvall of the outcome values for
a model are altered by some valkiel [J. Consider the example matrix from Figure 5.3.
Using amax_ownaction selection strategy the robot would seleettert-fire action
because the action paiert-fire, fight-fire)resultsin the largest outcome for the
robot. Even if a utility function error results am increase of all outcomes by a factor of
10, the robot will still select the same action.relwver, the same is true of many types of
systematic error (dividing by a positive value, tiphying by a positive number, etc.) that
alters the magnitude of all values but does nafr dtieir overall rank order in terms of
outcome. We hypothesized that these types of ewordd not affect the ability of the

robot to select the correct action.

Table 5.4 Experiment summary for the errors in outcome vahagnitude experiment.

Experiment Summary

Errors in Outcome Value Magnitude

Investigate outcome matrix sensitivity to increaased decreases in
magnitude of all outcome values.

Experiment Type USARSIm simulation

Percentage of action selection errors is zero dégss of the magnitude of
outcome value errors

1) Figure 5.2, Errors in Outcome Value Magnitude, usecreate error,
Procedure models.

2) Procedure from Table 5.3 was used to perform exymani.
Magnitude of outcome value change. Multiplicatiantbrs were 10, 2, 0.5,
and 0.1.

Dependent variable | Percentage of incorrect actions selected

Purpose

Hypothesis

Independent variable

Method of Analysis | Target model comparison

Hypothesis is supported. Errors are zero regardiesmgnitude of error
introduced.

Conclusion
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Example Interaction

Robot
guide-to- alert-

o victim fire
c

= 7
S perform-

- CPR |4 6

@©

c 12 15
S fight-

T fire 5

Figure 5.3  An example outcome matrix from the error sensifieikperiments. The robot’s use of a
max_ownstrategy would result in selection of tileert - f i r e action.

To test this hypothesis, we used the procedure ffagure 5.2 to create models with
errors of four different magnitudes: 10, 2, 0.57 &nl. Next the procedure from Table 5.3
was used to perform experiment. The independenahdarin this experiment was the
magnitude of error, either 10, 2, 0.5, and 0.1. d@pendent variable was the percentage
of incorrect actions selected. We found the erite rto be zero regardless of the
magnitude of change. This result is not surprisind simply reflects the fact that utility
values form a preference relation with respecth® dction possibilities being decided.
We can conclude that outcome matrices are not tsengd errors which impact the

magnitude of all outcome values equally.

5.2.2 Errors in individual outcome values

Errors in magnitude affect all outcome values. Wéladut errors that do not affect all
outcome values? In contrast to an error in magdeiterrors with respect to individual
outcome values may result in a new preferenceioalaver actions. These errors occur
when the robot’s utility function generates inaatarvalues with respect to particular
action pairs. Because of the noise associated impetception, action pair valuation

uncertainty, and a lack of knowledge related toghaener, this type of error is expected
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to commonly occur and therefore demands examinalfiable 5.5 provides a summary

of the experiment.

Table 5.5 Experiment summary for the errors in individuatamme values experiment.

Experiment Summary
Errors in Individual Outcome Values
Purpose Investigate outcome matrix sensitivity to errorsndividual outcome values

Experiment Type USARSIm simulation
The number of action selection errors is less tranper error in outcome
value.

1) Figure 5.2, Errors in individual Outcome Value, dise create error
Procedure models.
2) Procedure from Table 5.3 was used to perform exygani.

Independent variable | Percentage of outcome values replaced with erdoeva

Hypothesis

Dependent variable | Percentage of incorrect actions selected.

Method of Analysis | Target model comparison

Hypothesis is supported. The rate of action selaatrrors per outcome
values replaced is less than one.

Conclusion

Coming back to our firefighter example in Figur&,3he robot’s outcome value for
the action pairdlert-fire, fight-fire) is 15. For our purposes an error occurs
whenever the robot believes the value for thisoacpiair to be less than or equal to 14 or
greater or equal to 16. Also notice that the actair @l ert-fire, fight-fire)
results in the greatest potential outcome for thieot. A robot using themax_own
strategy would thus select theert-fire action. For this example matrix, an action
selection error only occurs if the robot selects ghi de-t o-vi cti m action. A robot
using themax_ownstrategy would only select tly@i de- t o- vi cti maction under one of
two conditions: 1) the outcome value of the acpair @l ert-fire, fight-fire)=15
was less than the value of the action pgif {e-to-victim fight-fire)=12 or 2) the
outcome value of either the action pagui(de-to-victim perform CPR)=9 or
(quide-to-victim fight-fire)=12 was greater then the outcome valueaoe(t -

fire, fight-fire)=15. Notice that of the possible perturbationghaf outcome value
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for the action pairdlert-fire, fight-fire) few would result in action selection
errors. We therefore hypothesized that less thanagtion selection error results from an
error in outcome value.

To test this hypothesis, we used the procedunm flagure 5.2 for the Errors in
Individual Outcome Values Experiment to create nEarimodels with different amounts
of error added. Error was added by first using assen distribution to randomly select
an outcome value within the partner model’s utilifiynction. Next, a Gaussian

distribution was used to select a random valueiwithe range of-2020]. If the new

value differed from the original value, then thégoral value was replaced, creating an
error. The process was continued until the desaradunt of error had been introduced
into the utility function. We created 18 sets oftpar models with 5 percent increments
of error added to the models ranging from O pereerdr to 90 percent error. Next the
procedure from Table 5.3 was used to perform erpart. The independent variable in
this experiment was the percent of error added. @aBpendent variable was the
percentage of incorrect actions selected.

Figure 5.4 shows the results for this experim@éihie bold black line in Figure 5.4
depicts the average result over all five environtsemhinner lines depict the results for
individual environments. The bold white line prozsda baseline by depicting an error
rate of one error in action selection per erroouricome value. The experiment supports
our hypothesis if the bold black line is below thedd white line. The results presented in
Figure 5.4 indeed depict the bold black below thkl lwhite line. The graph shows that

the percent of error in outcome value increasas fdato 90 percent, the rate of increase
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in action selection error is less than linear (tlodd white line). Thus, the experiment

supports our hypothesis.

Outcome Matrix Sensitivity to Random Outcome
Replacement

1.00

T

Incorrect Actions Selected

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Outcomes Replaced (percent)

e All Environments —8— Assistive Household Museum
—*%— Prison —e— Search Reference

Figure 5.4 The graph depicts the percent of incorrect actamlected as a function of errors in outcome
values. A y-axis value of 1.00 represents tota@n of incorrect actions. The bold black lingidts the
average incorrect actions selected for all enviremis. The individual colored lines represent charige
accuracy for each different environment. The bohitevline is a baseline for comparison, depicting a
linear decrease in accuracy. The fact that the btdk line is below the bold white line indicatémat
errors in outcome value result in less than lirsedion selection error.

In conclusion, this experiment demonstrates thiétame value inaccuracy has a less
than linear effect on the robot’s ability to selections. This is an important result. It
indicates that our representation of interaction ba partially inaccurate (in terms of
outcome values) and yet the robot will still seldxt correct action. To be more precise,
even if we replace half of the outcome values withimatrix with incorrect values, the
robot will still select the correct action 65% bkttime. It also indicates that, in order to
produce say 81% correct action selection, we shetrigte to have between 60-70%

correct outcome values. Notice also that the btddkoline in Figure 5.4 is not linear.
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Rather, at 70% outcome value error the curve ise®asuperlinearly, indicating a
threshold after which the accuracy of the repredemt does not degrade gracefully.
Overall, these results support our assertion thatadutcome matrix is indeed a good

representation for human-robot interaction.

5.2.3 Action deletion errors

We now consider errors related to the action motteladdition to errors involving
outcome values, the action models from which theamue matrix is constructed can be
flawed. In this case, valid actions may have bednhdut or omitted from the matrix.

Table 5.6 provides a summary of the experiment.

Table 5.6Experiment summary for the action deletion experin

Experiment Summary

Action Deletion Errors
Investigate outcome matrix sensitivity to actiondebinaccuracy in the form
of action omissions.
Experiment Type USARSIm simulation

The number of action selection errors is approx@iyadne per action
deletion error.
1) Figure 5.2, Action Deletion Errors, used to creater models.
2) Procedure from Table 5.3 was used to perform exygani.

Independent variable | Percentage of actions deleted.

Purpose

Hypothesis

Procedure

Dependent variable | Percentage of incorrect actions selected.

Method of Analysis | Target model comparison
Hypothesis is true. The rate of action selectionrsrper actions deleted is
approximately one.

Conclusion

An action deletion error occurs when an actiointable for the robot’s environment,
has been left out of the matrix. This type of erwan occur whenever the robot lacks a
good model of its own actions. Even more likelye thatrix may contain omissions with
respect to the actions of the robot’s partner. &ffect of action deletion errors with
respect to the partner depends on the action gwiestrategy. The deletion of any one

action only affects the matrix’s accuracy whenakgon that would have otherwise been
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selected is deleted. Returning again to the exanmpleigure 5.3, the robot chooses
between two actionsalert-fire and guide-to-victim If the robot is using a
max_ownstrategy then omission of tigei de-t o- vi ct i maction is irrelevant as it would
not have been chosen anyway. Only a deletion ofatket-fire action affects the
robot’s action selection accuracy. Thus, for exanl10 percent of the robot’s actions
are deleted from the action model, then there 19 gercent probability that the most
favorable action has been deleted. The same isftB@ 40, or 50 percent of the robot’s
actions are deleted from the action model. In eddhese cases, the probability that the
most favorable action has been deleted is equidlei@ercentage of actions deleted. We
therefore hypothesis that the action selectionreat@ will be equal to the action deletion
rate.

To test this hypothesis, we used the procedurm fFagure 5.2 for the Action
Deletion Errors Experiment to create partner modetk differing action deletion error
rates. Error was added by first using a Gaussistnilgution to randomly select an action
within the robot’s action model. The selected acttieas then deleted. The process was
continued until the desired amount of error hadnbieéroduced into the action model.
We created 18 sets of self models with 5 percemtements of error added to the models
ranging from O percent error to 90 percent err@xtNhe procedure from Table 5.3 was
used to perform experiment. The independent variabthis experiment was the percent
of error added. The dependent variable was theeptage of incorrect actions selected.

Figure 5.5 presents the results for this expertméne bold black line in Figure 5.5
again indicates the average result over all fiveirenments. Thinner lines portray the

results for individual environments. The bold wHitee provides a baseline by depicting

95



an error rate of one error in action selectiongreor in action deletion. The experiment
supports our hypothesis if the bold black line ppraximately equal to the bold white
line. The results presented in Figure 5.5 indeedfico that bold black line is

approximately equal to the bold white line. Theprahows that the percent of action
deletion errors increasing from 0 to 90 percerg, fidite of increase in action selection

error is approximately linear (the bold white lin@hus, the experiment supports our

hypothesis.
Outcome Matrix Sensitivity to Action Deletions
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Figure 5.5 The graph depicts the percent of incorrect actgmiscted as a function of increasing random
action deletion. The bold black line depicts therage incorrect actions selected for all enviroriiefhe
individual colored lines represent changes in acyifor each different environment. The bold whiite

is a baseline for comparison, depicting a linearelese in accuracy. Note that the black line apprates
the white line. Hence, in contrast to the two poergi experiments this type of error increases apmately
linearly.

In conclusion, this experiment demonstrates thaiom deletion inaccuracy has
approximately a linear effect on the robot’s abilib select actions. Unlike the two
previous experiments, each action deletion errsultg in approximately one action

selection error. The impact of action deletion exron action selection accuracy is thus
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greater than the impact of either errors in maglator errors in individual outcome
values. This fact will help to shape our creatidran algorithm for creating outcome

matrices.

5.2.4 Action insertion errors

An outcome matrix can also contain actions that rase possible given the type of
environment. Moreover, because each invalid aatesults in several invalid outcome
values, these types of errors have the potentifdool the outcome matrix with improper

outcome values. Table 5.7 provides a summary oéxiperiment.

Table 5.7 Experiment summary for the action insertion exrexperiment.

Experiment Summary

Action Insertion Errors
Investigate outcome matrix sensitivity to actiondebinaccuracy in the form
of action insertion errors.
Experiment Type USARSIm simulation

The number of action selection errors is less traper action insertion
error.
1) Figure 5.2, Action Insertion Errors, used to creater models.
2) Procedure from Table 5.3 was used to perform exygani.

Independent variable | Percentage of invalid actions inserted into théoaanodel.

Purpose

Hypothesis

Procedure

Dependent variable | Percentage of incorrect actions selected.

Method of Analysis | Target model comparison

Hypothesis is true. The rate of action selectionrsrper actions inserted is
less than one.

Conclusion

Assuming anax_ownaction selection strategy, an action insertionremesults in the
incorrect selection of an action only if the nevii@t adds a new maximum value to the
matrix. Referring back to Table 5.2atch-Tv is an action used by human hospital
patients. For a robot in a search and rescue envigat, an error occurs if the action is
added to the robot’s action model. This actionrinse error would add another column
to the matrix along with outcome values for eactioacpair. Because an incorrectly

added action may not result in a new maximum véuehe matrix, we hypothesized
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that the percentage of incorrect actions selecyethd robot would be less than the rate
errors inserted.

To test this hypothesis, we used the procedurm fFagure 5.2 for the Action
Insertion Errors Experiment to create partner n®eath differing action insertion error
rates. Error was added by first using a Gaussistnilgition to randomly select an action
from a global pool of actions used by both the tabw the human. If the action was not
capable of being performed in the environment, tinenselected action inserted into the
robot’s action model resulting in an error. Thegass was continued until the desired
amount of error had been introduced into the actmuel. We created 18 sets of self
models with 5 percent increments of error addethéomodels ranging from 0 percent
error to 90 percent error. Next the procedure froable 5.3 was used to perform
experiment. The independent variable in this expent was again the percent of error
added. The dependent variable was the percentageasfect actions selected.

Figure 5.6 presents the results for this expertméne bold black line in Figure 5.6
again indicates the average result over all fivegirenments. The bold white line
provides a baseline by depicting an error ratenaf error in action selection per error in
action insertion. The experiment supports our hygsis if the bold black line is below
the bold white line. The results presented in Fegu6 indeed confirm that the bold black
line is below the bold white line. The graph shothat as the percent of actions
incorrectly inserted into the outcome matrix inses from 0 to 90 percent of the total
actions within the matrix, the rate of increaseaation selection error is less than linear

(the bold white line). Thus, the experiment supporr hypothesis.
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Figure 5.6 The graph depicts the percent of incorrect actgmiscted as a function of increasing random
action insertion. As in the other graphs the bd&tk line depicts the average incorrect actionscted for

all environments, the colored lines represent tienges in accuracy for each different environmand,
the bold white line is a baseline for comparisagpidting a linear decrease in accuracy.

In conclusion, this experiment demonstrates tleéib@a insertion errors have a less
than linear effects on the robot’s ability to seélactions. To be more precise, only 22
percent action selection error results when 90gyérof actions within the robot’s action
model are invalid. Thus, action deletion errord vakult in greater action selection error
than action insertion errors. These results furthgport our assertion that the outcome

matrix is indeed a good representation for humdnototeraction.

5.2.5 Error sensitivity conclusions

This section has explored the sensitivity of thécome matrix to different types of
errors. Our purpose was to determine 1) if the @ute matrix representation is sensitive
to several types of errors and 2) if different typef errors affect the usefulness of

outcome matrix. The results are important in thatytwill impact the development our
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algorithm for matrix creation which we present e ttwo remaining sections of this
chapter. Moreover, the results demonstrate tharass in outcome value magnitude,
specific outcome values, and action insertion srraccumulate within an outcome
matrix, action selection errors increase at a lesste. Had we instead found outcome
matrices to be sensitive to these types of ertiesause of the uncertainty inherent in a
robot’s perceptual abilities and in interactionmight have been necessary to abandon
this approach to human-robot interaction. We didwéwver, determine that outcome
matrices are sensitive to action deletion errore Wil use this information to avoid

action deletions when crafting our algorithm fotamme matrix creation.

5.3 The Interact and Update Algorithm

Section 5.1 presented the Outcome Matrix Creatigordghm as a means of creating
outcome matrices from partner models. It shoulcapparent that the Outcome Matrix
Creation algorithm simply fills in the matrix withnissing information. Moreover, the
accuracy of the outcome matrices created by theritthgh depends entirely on the
accuracy of the information contained in the selfl gpartner models. This begs the
guestion, where does the information for the modefee from? The interact-and-update
algorithm serves this purpose.

The interact-and-update algorithm uses informatéarned during an interaction to
revise its partner and robot models. Norman ndias humans continually revise their
mental models with additional interaction (Normdm®83). Our algorithm employs a
similar strategy, updating its representation ef human partner with each additional

interaction. The algorithm works by first predigithe action the partner will select and
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the outcomes the robot and the partner will obtdihen, in the update phase, the

algorithm adjusts the partner model.

Interact-and-update Algorithm

Input: Partner featuresﬁl_I ' and situation features;

Pre-interaction

1
2
3.
4
5

Set a' :matx_own(oI ), “a

Setm' = (e /luse situation features to retrieve self model
Setm ' = z(fl_l . /luse partner features to retrieve model of artn

OutcomeMatrixCreationAIgorithr(nni ,m_i ) /ffrom Box 5.1

' =max_own(0™')  //set self and expected partner actiq

. — N . e
. Set 0 '=0 '(a',a '), o' =0' (a',a ') //set expected outcome
Interact

6. Perform a' /Iperform action in the environment

Update

7.
8.

9.

10. elseif o' # o~
11.
12.1f o' # o then update mi_u(a_i ,ai): 0

13.foralla” inm™

_i*_
If a # a

update m_i_A_i =g , m_i_u(a_i )z )

update m_i_u(ai ,a_i ) =0

Perceivevaluea ', o', 0 ' //Use perception to retrieve values for predictallies

! //If action is not what was predicted then
i /lupdate the model and utility function
i /lelse if the outcome is not what was expected
- /lupdate the utility function
i

! [ffor each partner action in the partner model

14. if p(a_ i)< k then deIetea_i /fremove the action if the probability is suf. dima

Box 5.2

Algorithm for using partner and self models to ¢teeautcome matrices. The algorithm

successively updates the partner models achieviegfer outcome matrix creation accuracy. The foncti
X maps partner features to a partner yOmaps situation features to the robot’s self modetj z maps
partner features to a partner model.

Box 5.2 depicts the algorithm. For clarity, thgaithm is divided into three phases:

pre-interaction, interact, and update. During tihe-ipteraction phase the robot selects

models for itself and the partner, calls the Outeoiatrix Creation algorithm

constructing the matrix, selects an action and #stgredictions for the interaction.

During the interact phase the robot performs themacFinally, in the update phase, the
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robot adjusts its partner model to account for dheial outcome obtained and actions

performed.

Interact-and-update Algorithm Example

Input:

Partner features: axe, oxygen_mask, mal e>
Situation features: f4<re, snoke, debris>

Pre-Interaction Phase:

Step 1: m = y( axe, oxygen_mask, nale ) where m' is the robot model of a firefighter

assistant with action modeh' .A' :( guide-to-victim alert-fire ) and utility function
ml.uI :( (gui de-to-victimaguide-to-victim-3), (alert-fire,guide-to-victim-
7), (guide-to-victimalert-fire,2), (alert-fire,alert-fire, 1) )

Step 2:Use partner features to retrieve model of parmEtJ . If no partner models exist, then assign

m'=m. Thus,m '.A™" :( guide-to-victim alert-fire ) and utility function

m'u” :( (gui de-to-victimaguide-to-victim-3), (alert-fire, gui de-to-
victim-7), (guide-to-victimalert-fire,2), (alert-fire, alert-fire, 1) )

Step 3:Use model m' ,m_I to create matrix. Result is® . Robot
g guide-to- alert-
i i & victim fire
Step 4, 5: Seta’ =gui de-to-victim Seto =-3; g 3 =
Ll R * =i | guide-to-
a =guide-to-victim o  =-3 § victim 3 2
Interact Phase < 2 1
© alert-
Step 6:Performgui de-t o- vi cti m action 2 fire ! -
©
Update Phase: _ _ _
Step 7:Perceive values ' =perform CPR. 0 ' =4; o' =9

i.A_i

Steps 8, 9Add actionper form CPR to m ; outcome valueper f or m CPR, gui de-t o-

victim 4)to m 'y

Step 12:Add outcome valueg(ii de-to-victim, perform CPR, 9)to mu'.

Step 13, 14: p(a_ i )> k forall @™ assumingk = 0.1

Step 15:Goto step 3.

Figure 5.7 This figure presents an example run through theract-and-update algorithm. The partner
and situation features are presented as inputset@algorithm. In steps 1 and 2 these features sad to
retrieve the partner and self models. In step&ntbdels are used to create the pictured matrepsst and
predict actions and outcomes based on the modtdp. & performs the action and steps 7 through 12
update the models. Steps 13 and 14 delete unuedsadf necessary and Step 15 goes back to Step 3
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The interact-and-update algorithm (Box 5.2) taesnput the partner features and
situation features. Partner features are usedcimgnéze and/or characterize the robot’s
interactive partner. Similarly, situation featurese perceptual features used to
characterize the environment. The algorithm bedinsusing the situation features to
retrieve a self model. The functignmaps situation features to subsets of the robot’s
action set and utility values. Thus the robot’s elodf itself depends on the type of
environment in which it is interacting. In the exalmin Figure 5.7 the features of a
search and rescue environment self model of adhdr assistant.

The partner’s features are used to retrieve a lmoidéhe partner. The functiom
selects the partner model from a database of parindels with the greatest number of
equivalent features. During initialization, the tp@r model database is seeded with a
model of the robot. Thus the database always amtat least one model. In Figure 5.7
this results in the partner model being set tortimt model. The pre-interaction phase
also constructs the outcome matrix representingitven situation, selects the action that
the robot will perform, and predicts the actiontttize human will perform;a™, the
outcome value that the robot will receive', and the outcome value that the human
partner will receive, 0™

During the interaction phase the robot perforngsabtion. In the example presented
in Figure 5.7 this is theui de- t o- vi ct i maction.

During the update phase of the algorithm, the trolost perceives the action
performed by its partner and the outcome bothdt the partner obtain (line 7 from Box
5.2). Next, if the partner action does not matahgrediction, then the action is added to

the model if it did not exist and the outcome foe taction pair is updated (line 8). In
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Figure 5.7 this is the case as the robot predithetl the partner would perform the
gui de- t o- vi cti maction when in fact they performed the f or m CPR. If, On the other
hand, the robot predicted the correct action bdtrdit predict the correct outcome then
the outcome is updated in the partner model (lidg MNext, if the outcome the robot
obtained differed from the robot’s prediction thére robot updates its own model to
reflect the received outcome (line 12). Finallyi@at$s and associated outcome values
which have less thak probability of usage based on previous experiereeremoved.
This prevents the model from becoming filled witlrely used actions. The partner
model can be successively updated by looping 83in

In section 5.2 we saw that outcome matrices areersensitive to action deletion
errors than to action insertion errors. The constgorovides a means of balancing the
likelihood of each type of error. A value &=  (Odeletes actions if they do not have a
50 percent probability of being selected by thetrgar This large value d results in
smaller matrices but also result in increased ilioeld of action deletion errors. We can
reduce action deletion errors by reducing the vafle

Line 9 updates the outcome value to match theeperd outcome value when an
unexpected action is encountered. If the actiomnisnown, then the robot does not yet
have information about the outcome values of alhef action pairs. In this case it must
make an assumption as to their value. As currgmthgented, the algorithm assigns a
single outcome value to all action pairs irrespectf the robot’s action. This assignment
results in what we call aaction independence assumptianThe robot is assuming that,
for the unknown action pairs, the partner receites same outcome regardless of the

robot’s choice of action. Alternatively, we couldve assumed that for unknown action
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pairs the human receives the same outcome as blo¢ Bither of these assumptions is
equally valid as the values simply serve as placehns and allude to the robot’s current
ignorance of the human’s action preference.

We contend that this is neither the only algoritttnmatrix creation, nor, perhaps,
even the best algorithm for creating and updatutgame matrices. Rather the algorithm
is only meant to serve as a starting place for namheanced outcome matrix creation
algorithms. Moreover it shows that outcome matricas be created from perceptual
information and demonstrates the connection betveesybot’'s model of its interactive
partner and its ability to represent an interactibruitively, the algorithm directly
updates the outcome values and actions. Henceldgbetlam is susceptible to sensor
noise. Machine learning algorithms could be usedethice this susceptibility. Ng, for
example, describes inverse reinforcement learnsigha problem of learning a task’s
reward function. He has also developed techniqoekérning from a teacher (Abbeel &
Ng, 2004). Numerous game theoretic methods, sudBagsesian games, also exist for
handling uncertainty (Osborne & Rubinstein, 1994)e problem of how to best manage
uncertainty and noise when constructing outcomericest for use in human-robot
interaction is a challenging question. At this patnis not clear what the nature of the
uncertainty will be. For example, are Gaussianaam®dels appropriate? Will the noise
be non-linear? Should game-theoretic or machinmileg techniques or both be used to
manage noise and uncertainty? This dissertatiors due exhaustively probe these
guestions. Section 5.4, however, does begin tooegphe use of clustering methods to

aid in partner model learning.
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5.3.1 Creating accurate partner models

The purpose of the interact-and-update algorithio isreate outcome matrices. But how
accurate are the outcome matrices produced bylgloeitam? Accuracy here is defined

and measured with respect to a target model. Asiséed in section 5.1, the accuracy of

Table 5.8 General experimental information common to althef experiments performed to investigate

the use of the interact-and-update algorithm ferdteation of accurate partner models.

General Experiment Summary
Creating Accurate Partner Models

Purpose

Determine the ability of the interact-and-updatgathm to create accurate
outcome matrices.

Experiment Type

USARSIm simulation and laboratory experiments.

As the number of interactions increases, the acyuviithe robot’s partner

Hypothesis model will increase.
Both procedures are listed within this section:
Procedure 1) Follow partner model creation procedure from Tdbl.

2) Follow the experimental procedure from Table 5.13.

Independent variable

Number of interactions with the partner.

Dependent variable

Percent similarity to a target partner model.

Method of Analysis

Target model comparison.

the outcome matrix produced by the General Matriseaon algorithm depends

primarily on the accuracy of the robot’s partned aelf models. Recall that in section 5.1
we showed that if the robot's partner model and s®bdel are accurate, then the
algorithm can be used to create an accurate matéxcan therefore gauge the ability of
interact-and-update algorithm to accurately createcome matrices by measuring the
accuracy of the models created by the algorithnthdf algorithm produces accurate
models, then these models can be input into thee@emMatrix Creation algorithm to

produce accurate outcome matrices. Section 4.2aleady presented a method and

equations for comparing partner models. To brig8yisit this topic, we examined

mechanisms for determining the difference betweesbat’'s model of its partnem{™)

and the partner’s actual modéh("). We noted that our distance measure must include
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both the model's components and Type | and Il eRapresenting the action model as a
set of actions,a, 1A', and the utility functiony', as a set of tripletda! ,a;',0), we

derived equation (2) from section 4.2 as a measiupartner model distance. In short, we
have derived a measure of partner model distaretewhl now be used to gauge the
ability of the interact-and-update algorithm to @eate outcome matrices.

As described in section 5.3, the interact-and-tgpdalgorithm operates by
successively revising the robot's partner and setfdel information. We therefore
hypothesized that continued interaction with amartwould result in improved partner
model accuracy—both accuracy of the partner’'s aati@del and of the partner’s utility
function. Figure 5.7 presents an example interadietween the robot and a firefighter in
a simulated search and rescue environment. Cowtimieraction here means that the

robot interacted successively with the same hunaamer in a single environment.

Table 5.9 Summary of the creating accurate partner modelsréxpnt conducted in simulation with a
single partner type and in multiple environments.

Experiment Summary

Creating Accurate Partner Models:

Simulation, Single Partner Type, Multi-Environment
Determine the ability of the interact-and-updatgpathm to create accurate
outcome matrices.
USARSIm simulation involving a single partner tygred multiple
environment types.
As the number of interactions increases, the acguwhthe robot’s partner
model will increase irrespective of the type of ieonment.
Both procedures are listed within this section:
Procedure 1) Follow partner model creation procedure from Tdbl.

2) Follow the experimental procedure from Table 5.13.
Number of interactions with the partner, the typemvironment (assistive,
museum, household, search and rescue, prison).

Dependent variable | Percent similarity to a target partner model

Purpose

Experiment Type

Hypothesis

Independent variable

Method of Analysis | Target model comparison

Hypothesis is supported. Accuracy found to incresitie additional
interactions irrespective of type of environment.

Conclusion
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To test this hypothesis we used USARSIm to condluot simulation experiments.
The first experiment examined interaction with agé type of partner (an emergency
medical technician or EMT) in each of the five drfnt environments (see section 3.4.1
for environment types). The second simulation expent explored interaction in a
single environment (search and rescue) with fodiemdint types of partners: police
officer, firefighter, EMT, and citizen. Our motivah in conducting these two simulation
experiments was to show that the results are noitdd to a particular type of

environment or type of partner.

Table 5.10 List of actions available to the robot for eacfiedent type of environment.
Robot actions for each different type of Environmen

Environment Actions
Search and rescue SearchFor-victim Qbserve-victim Light-victim GCuideTo-
victim SearchFor-victim Observe-fire, GuideTo-fire,
SearchFor-fire
Assistive Sear chFor - patient, Cbserve-patient, GuideTo-patient
Household Sear chFor - medi ci ne, Gui deTo-nedi ci ne, Sear chFor - honeowner,
Cui deTo- honeowner, SearchFor-intruder, Observe-intruder,
Li ght-i ntruder, GuideTo-intruder,
Prison Sear chFor - pri soner, Observe-prisoner, Light-prisoner,
Gui deTo- pri soner, SearchFor-visitor, Cbserve-visitor, Light-
visitor, QGuideTo-visitor
Museum SearchFor-fire, Cbserve-fire, QuideTo-fire, SearchFor-
intruder, Observe-intruder, Light-intruder, CGuideTo-intruder

Table 5.11 A list of actions for each type of partner.

Partner Type Actions
Police Officer limt-access, direct-traffic, search-for-victim
Firefighter remove-toxic-material, fight-fire, rescue-victim nove-
debris
EMT startlV, intubate, pefornCPR
Citizen run, cry, scream
Random Any of the above non-robot actions.

The first simulation varies the type of environmenwhich interaction occurred. The
robot’s action models were again environment specihus, each different environment
resulted in a different action model and utilitynétion for the robot. In the search and
rescue environment, for example, the robot useidractsuch asear chFor - vi cti mto

help locate trapped victims. In the museum enviremimon the other hand, the robot
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used actions such @&sar chFor-i ntruder in its role as a security guard patrolling the
museum. Table 5.10 presents the actions availaltleet robot in each environment. An
arbitrary utility function was also created for amvironment.

The robot’s interactive partner in the first siatidn experiment was an EMT. It was
therefore necessary to create a partner modehf&MiT. Table 5.11 presents the action
model for the EMT type. An arbitrary utility funoth was also created for EMT partner

type. The following procedure was followed for dneg a partner model.

Table 5.12 Procedure for creating partner models.
Partner Model Creation Procedure
Procedure for creating an individual partner magiegn the partner type:

1) Using a Gaussian distribution, randomly select eslior the partner’s features
with the exception of the Tool-1 and Tool-2 featut@ch are type specific.

2) Use Table 5.11 to set the action model for thengartype
3) Create arbitrary utility values for the individual.

The simulation experiment involved 20 interactiavith the partner in each of the
five different environments. An interaction consitof the performance of an action
within the environment by both the robot and thieotts partner and the observation by
the robot of its partner’s action and outcome. Tdilwing general procedure was used

for the experiment:

Table 5.13 Experimental procedure used for each of the exparigin this section.

Experimental Procedure

1) The robot uses OpenCV to detect objects in therenwients and creates
situation features based on these objects.

-

2) The robot uses synthesized speech and speech itmogo query the partne
for their features.

3) The robot now has the information necessary tothéninteract-and-update
algorithm. As detailed in Box 5.2 and Figure 5he tobot uses the situation
and partner features to retrieve its self and pammodels, constructs a matr
performs an action from Table 5.10, observes itcm@ue and its partner]

X

[72)
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action and outcome, and updates its self and pamtodels. The value for the
parametek is set to 0.10.

4) The robot’s observation of the partner’s action anttome was accomplished
by asking the partner to state the action theygperéd and outcome that they
receive.

5) The robot’'s model of its partner is recorded aft@ch interaction. Equation (L)
from section 4.2 is used to calculate the accuvady respect to the individual
components of the partner model. Equation (2) exius calculate the overall
accuracy of the partner model.

Figure 5.8 depicts the results for the first siatioih experiment. The graph shows
that with continued interaction the accuracy of #ution model, utility function, and
partner model increase, eventually matching thgetamodel. After the eleventh
interaction, the accuracy of all models increasemmdtically. This is because the
algorithm purges the action model and utility fuoctof seldom used actions and utilities

reducing Type | error (mentioned in section 4.2).

Model accuracy in different environments for a
single partner type
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Figure 5.8 The graph depicts the results from the first sifioha experiment involving different
environments. The results show that model accuiacyeases with continued interaction, eventually
matching the target model.
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Recall that if a situation is independent then rthieot and the human receive their
respective outcome regardless of the action seledtg the other. The action
independence assumption holds when the situatiordependent—as in the experiment
presented above. But what happens when this assumguies not hold? To test this, we
reran the above experiment using a dependent isitudh a dependent situation, the
outcome received by the robot and the human depamitely on the action selected by
the other. Hence, the use of a dependent situat@rsistently violates the action
independence assumption and should result in pparormance by the algorithm. We
indeed found this to be the case. Figure 5.8 atgavs the results when a dependent
situation is used. Here we see that accuracy oltiliey values only reaches 64% after
20 interactions. This is because the dependerdtgituviolates the action independence
assumption discussed in section 5.3. Although #ssirate, the partner model in this
case still contained all of the information expeded during interaction with the partner.
Moreover, because the action independence assunmypde violated for every action pair

in the matrix, this represents a worst case result.
Creating Accurate Partner Models: Multiple Partner Types, Single Environment

The preceding experiment was limited to a singleetyf partner. It is important to
generalize the results to not just multiple enunemts, but also to multiple types of
partners. In order for the interact-and-update ritlym to be of value, it must work
regardless of the information contained within eitthe self-model (as examined in the
previous experiment) or the partner model. Takld Summarizes the experiment.

We again hypothesized that continued interactiotih \& partner would result in

improved partner model accuracy. In this case, heweather than placing the robot in
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different environments, the robot interacted witfiedent types of partners in a single

environment. The search and rescue environmentse&s for this experiment.

Table 5.14 Summary of the creating accurate partner modelgrarent conducted in simulation with
multiple partners and in a single environment.

Experiment Summary

Creating Accurate Partner Models:

Simulation, Multiple Partner Types, Single Envirogmh
Determine the ability of the interact-and-updatgathm to create accurate
outcome matrices.
USARSIm simulation involving a multiple partner ggand a single type of
environment.
As the number of interactions increases, the acyuriithe robot’s partner
model will increase irrespective of the type oftpar.
Both procedures are listed within this section:
Procedure 1) Follow partner model creation procedure from TdblE.

2) Follow the experimental procedure from Table 5.13.
Number of interactions with the partner, the typeartner (EMT, firefighter,
citizen, police officer, random).

Dependent variable | Percent similarity to a target partner model

Purpose

Experiment Type

Hypothesis

Independent variable

Method of Analysis | Target model comparison

Hypothesis is supported. Accuracy found to incresitie additional
interactions irrespective of type of partner.

For this experiment, the robot again interactethwn individual twenty times. The

Conclusion

partner’s features depended, in part, on the pastiype. For example, a police officer
could be male or female, tall or short, but, unlike other partner types, always had a
gun and a badge. Hence, two police officers woulth tlhave had guns and badges, but
one could be a tall male and the other a short flenfable 3.2 provides a list of all
partner features. The features named Tool-1 anttZaere again type specific.

Action models were also type specific. Thus, ageobfficer and a firefighter were
both capable of a different set of actions. A polidficer, for example, could limit-access
to an area, direct traffic, or search for victimdternatively, a firefighter could fight a

fire, rescue a victim, and move debiris.
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The utility functions for each individual were goe and arbitrary. Hence, whereas
one police officer might prefer to direct traffiger all other actions another could prefer
to search for victims.

The target model consisted of predefined setscbbras and outcome values for a
specific partner type. For example, a citizen partwas produced by 1) randomly
selecting the values for the partner features (@xt®ls which are set to baseball-cap
and backpack for this type) 2) setting the actimdel to that from Table 5.11 for citizen
and 3) creating arbitrary utility values for theility function. This procedure was
repeated for each individual partner. A procedorecfeating partner models has already
been detailed above.

Again simulation experiments involved 20 interan8 with a particular individual.
The experimental procedure listed above was foltbwide robot's model of its partner

was again recorded after each interaction.
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Model accuracy for different partner types in single
environment
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Figure 5.9 The graph depicts the results from the second sitionl experiment involving different
partner types. The results again show that modwiracy increases with continued interaction, evahtu
matching the target model.

Figure 5.9 depicts the results for the second Isitian. Again the graph shows that
the accuracy of all models increases with continuéglaction, eventually matching the
target model. Violating the action independenceumggion again results in decreased
utility accuracy (63 percent). A random partneretyp also included for comparison. The
random partner selected any action available toparner type at random. The graph
only depicts action model accuracy for the randaamtr@r type. An accuracy of 68

percent is achieved for the random partner type.
Creating Accurate Partner Models: Laboratory Experiment

A follow-up laboratory experiment was conducting @rPioneer DX in a mock search
and rescue environment. In this experiment the trobas tasked with assisting a

firefighter to either rescue victims or to obsetkie fire. As with the other experiments,

114



we hypothesized that continued interaction wouldultein improved model of the

partner.

Table 5.15 Summary of the creating accurate partner modelgrarent conducted in simulation with
multiple partners and in a single environment.

Experiment Summary

Creating Accurate Partner Models:
Laboratory Experiment

Determine the ability of the interact-and-updatgathm to create accurate
outcome matrices.
Laboratory experiment conducted in mock searchrasdue environment
with a Pioneer DX.
As the number of interactions increases, the amoluotitcome obtained by
the robot increases.

Procedure Follow the experimental procedure from Table 5.13.

Purpose

Experiment Type

Hypothesis

Independent variable | Number of interactions with the partner.

Dependent variable | Outcome obtained.

Hypothesis is supported. The amount of outcomeimddaby the robot
increases.

Conclusion

In this experiment, the robot’s action model cetei of two actions: 1) moving to
and observing a victim and 2) moving to and obsgna hazard. The robot received
more outcome if the victims survived. The victimgsved only if the robot and the
firefighter work together observing and containithg hazard or rescuing the victims
(Figure 5.10 image 4 shows the victims and hazardence, for the robot, task
performance depended on the accuracy of its mddkeegartner.

The robot’s partner also choose among two poteatizons: 1) containing the hazard
or 2) rescuing the victims. The firefighter arbithapreferred to contain hazards. Hence,
the human'’s utility function showed a preferenaedantaining the hazard.

Both the robot and the human select the actionswreently. The same experimental
procedure used in the two preceding experimenessémted in Table 5.13) was again

used for this experiment.
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The experiment consisted of five interactionstidtly the robot has no knowledge of
the action model or utility functions of its parth@he robot therefore sets its partner
model to the robot’s self model. In other words theot assumes that its unknown
partner has the same actions and preferenced thags. During the first interaction the
robot moves to observe the victims falsely beligvimat the firefighter will also move to
rescue the victims. After the interaction, the rotexeives feedback indicating that the
firefighter moved to contain the hazards. It update partner model accordingly and
during the next interaction it correctly moves tmserve the hazard. Figure 5.10 images
1-3 show the robot moving to observe the victinthia first interaction and the hazard in
the second interaction. Figure 5.10 image 5 depietsvideo sent by the robot to the

human.

Interact and Update Algorithm — First Interaction
3

1
2= .. B

4

Figure 5.10 Photos from the robot experiment. The robot ifitiahoves to observe the victim. After
learning the model of its partner the robot movestiserve the hazard. Photos 1-4 depict the rabdt a
moves through the maze and selects actions. Phatepkts video that the robot sends to its human
partner.

Because the robot does not initially coordinasekiehavior with the firefighter, it
obtains an outcome of zero. Afterward and for tBmaining interactions, the robot
obtains an outcome of two (because two victimssaked). A net increase of two victims

per interaction eight total victims’ results frohretrobot’s modeling of the partner.
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This experiment is merely meant to demonstrate gbtential feasibility of this
approach on a robotic platform. As a pilot studhg tesults show that algorithm operates
on a robotic platform in a laboratory environmeartd as such, should allow for more

extensive testing in more realistic environments.

5.3.2 Interact and Update algorithm conclusions

This section has introduced an algorithm that, wbembined with the General Matrix
Creation algorithm, produces outcome matrices whepinesent a robot’s interaction with
its human partner. The algorithm, however, assupeeseptual competencies which are
difficult to achieve given the current state of thg. It assumes that the robot can
perceive 1) the partner's action, 2) the partnedscome value, and 3) the outcome
obtained by the robot itself. These assumptions Inaiy the current applicability of the
algorithm. Nonetheless, as demonstrated by expatsnéhe perceptual limitations of
this algorithm can be circumvented. Moreover, aistivecognition and affect detection
are current areas of active research (Philiposa.e2004; Picard, 2000). Finally, it is
important that the HRI community recognize the img@oce of activity recognition and
state detection. This research provides a theatatiotivation for these research topics.
It may well be that the challenge of recognizingvrerobot’'s behavior has impacted the
humans interacting with the robot is a critical sfien facing the HRI community.

We have also assumed that the robot knows whainactare available to it. We
believe that this is a reasonable assumption. We mat assumed that the robot has
accurate knowledge of the outcomes values resuitomy the selection of an action pair.
We have simply assigned arbitrary initial values tiee outcomes and then the robot

learns the true values through interactive expedemith the partner.
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Although our results show that interactive experee creates increasingly accurate
partner models, the actions and utilities of thigotts partner were static and contained
no noise. Because the models were static they cbealdnodeled. Alternatively, as
demonstrated in the random partner type, the padoeld have continually selected
random actions or received random utilities. Chearlthis case less can be learned about
the partner. In a sense, the robot cannot know whaixpect next from its partner. In
normal interpersonal interaction there are timesmhumans randomize their interactive
actions, such as in some competitive games. Tgighm will have limited success in
these situations. Noise in the form of inaccurageception of the human’s outcome
values and actions is another potential challefgetunately, game theory provides
numerous tools for managing outcome uncertaintyp@e & Rubinstein, 1994).
Moreover, the results presented in section 5.2 li@veonstrated that outcome matrices
degrade gracefully with increased error (WagnerQ820 Future work may employ
machine learning and/or game-theoretic techniquesduce overfitting.

Near-term practical applications of this work wauikely focus on environments
where the outcomes of the robot's partner are healiailable. In assistive therapy
environments, for example, the robot could askpghgent if an exercise was causing
pain. An entertainment robot, on the other handjhingauge user outcome in terms of
amount of time spent interacting with the robotpAgations in areas such as autism are
more difficult because the nature of the disease fhrait the human’s outcome
expression capabilities.

Neuroscientists have shown that humans activelgaintheir interactive partners

(Rilling, Sanfey, Aronson, Nystrom, & Cohen, 200&@grtainly the interpersonal mental
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models maintained by humans are more complex ahdhian the models used here. Our
purpose is not to claim that the partner modelsusised here are the same as those
formulated by humans, but rather to explore whatimal modeling of its interactive
partner a robot must perform in order to interaatcessfully with the partner and to
present a method for achieving this modeling. Thaetisn that follows introduces a
method by which the robot can learn and generdlaa collections of partner models,

reducing the number of interactions needed to mibsiplartner.

5.4 The Stereotype Matching Algorithm

Psychologists note that humans regularly use catsgm simplify and speed the process
of person perception (Macrae & Bodenhausen, 20@agrae and Bodenhausen suggest
that categorical thinking influences a human’s eatibns, impressions, and recollections
of the target. The influence of categorical thirkion interpersonal expectations is
commonly referred to as a stereotype. For bettefoorworse, stereotypes have a
profound impact on interpersonal interaction (Bar@hen, & Burrows, 1996; Biernat &
Kobrynowicz, 1997). Information processing moddifiaman cognition suggest that the
formation and use of stereotypes may be criticagfack assessment of new interactive
partners (Bodenhausen, Macrae, & Garst, 1998). Ehenperspective of a roboticist the
guestion then becomes, can the use of stereotypekart/ speedup the process of
partner modeling for a robot?

This question is potentially critical for robotparating in complex, dynamic social
environments, such as search and rescue. In envinois such as these the robot may not

have time to learn a model of their interactivetper through successive interactions.
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Rather, the robot will likely need to bootstrap msodeling of the partner with
information from prior, similar partners. Stereatgpserve this purpose.

Before detailing our algorithm for stereotype teag and use, we must first define
our terms. Sears, Peplau and Taylor define a dtgreocas an interpersonal schema
relating perceptual features to distinctive clustef traits (Sears, Peplau, & Taylor,
1991). With respect to our framework, then, a sigyee is a type of generalized partner
model used to represent a collection or categompaif/idual partner models. Thus, the
creation of stereotypes requires the creation @sdhgeneralized partner models.
Moreover, to be useful, stereotypes must be matthéae partner’'s perceptual features.
Stereotype building will therefore be a two phasecpss. First, we cluster partner
models with the centriods of the clusters becontiregpartner model stereotype. Next,
we learn a mapping from partner features to theestgpes. Our implementation utilizes
agglomerative clustering and C4.5 decision treasrn(i@n, 1994). We conjecture that the
algorithm will work for any type of clustering algthm and machine learning algorithm,
but do not offer evidence to support this statemBok 5.3 details stereotype creation

and Box 5.4 describes how to use a stereotype.
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Stereotype Matching Algorithm: Building Stereotypes

Input: Partner Modeim™

Output: Classifier{/ mapping m™ features to a stereotype.

Cluster phase /lthe cluster phase clusters models to buddesttypes

Add m™ to partner model space //the partner model sgaaeset of partner models
for all models in model space
make ecluster

while cent roi d_di st ance (Cj ,Ck)< k

nerge_clusters (Cj ,Ck)

unction learning phase /lthis phase maps stereotypes to partner feature
for all models in model space

setdata[i] € make_pai r ( m™ features, cluster centroid)
Y € build_classifier(data)

return ¢ [lreturn a classifier mapping features to stigmes

© oN om O M wbdE

Box 5.3 Our algorithm for stereotype creation. The algarittakes a new partner model as input. It
then creates clusters of all of the stored modete cluster centroids will serve as the robot’stipar
stereotypes. In the function learning phase, th®trdearns a mapping from partner’s features to the
stereotypes. This mapping can now be used to vetdestereotype given the partner’s perceptualifest

Stereotype Matching Algorithm: Using Stereotypes

Input: Partner featuresl‘l_i N

Output: Partner modem™ .

If classifier == null [lif we have not built th&assifier then return
return null

convert fl_i e fn_i to instance of classifier data
result& {J .classify( instance ) /lluse the features as inpthé classifier

m™ « stereotypelList ( result) /lonce the stereotygen®wn, return the

return m" Il partner model for that stereotype

Box 5.4 The stereotype matching algorithm uses the padriestures to retrieve a stereotyped partner
model.

As depicted above, the building stereotype alboritakes as input a new partner
model. This input is optional. The stereotype haddalgorithm can also be run on the
robot’s existing history of partner models (ternteé model space). The interact-and-

update algorithm is used to create the modelsab@ipy the model space. The first step
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of the algorithm adds the new model to the modatspNext each model in the space is
assigned to a unique cluster. The third and fosteps perform agglomerative clustering,
iterating through each cluster and, if the clusiee®t a predetermined distance threshold,
merging them. Equations (1) and (2) for partner ehodistance, which were first
presented in section 4.2 and briefly reviewed ictisa 5.3, are used to determine if the
clusters are meet the predetermined distance ticebr merging. The cluster centroids
that remain after step four are the stereotypesotdd s ,...,s,. A list of stereotype
models is kept by the robot.

In the next phase we use clustering to createnatifan, ¢, mapping the partner’s
perceptual features to the stereotype. Line 7 fBom 5.3 creates data for the machine
learning algorithm by pairing each model's percaptigatures to a stereotype. In the

final steps, this data is used to train a clagssifreepping partner features to the

stereotyped model. Figure 5.11 presents an example.
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Stereotype Matching Algorithm Example

Input:
P Model M1: Partner featuresiaxe, oxygen_mask, mal e>;

Action Model: gui de-to-victim alert-fire>;

Utility Function: @ui de-to-victi m gui de-to-victim-3), (al ert-
fire,guide-to-victim-7), (guide-to-victimalert-
fire,2),(alert-fire,alert-fire, 1)

Model M2: Partner featuresiaxe, oxygen_mask, mal e>;
Action Model: ui de-to-victim alert-fire >;
Utility Function: @ui de-to-victi m gui de-to-victimO0), (alert-
fire, guide-to-victim-7), (guide-to-victimalert-
fire,2),(alert-fire,alert-fire, 1)

Model M3: Partner features: <badgeyun, nal e>;
Action Model: 4imit-access, direct-traffic>;
Utility Function: (i nmit-access,linit-access,-3), (direct-
traffic,limt-access,-7),(linit-access, direct-
traffic,2),(direct-traffic,direct-traffic,1)

Cluster Phase
Step 4:Use equation (1) and (2) to determine distance fitodel M1 to M2:
d® =0, d" = 025 and the resulting distance t6= 0.125< 025=Kk .
Step 5: M12 & Merge (M1, M2)
The resulting merged model is:
Model M12: Action Model: gui de-to-victim alert-fire >;
Utility Function: @ui de-to-victimguide-to-victim-1.5), (alert-

fire,guide-to-victim-7), (guide-to-victimalert-
fire,2),(alert-fire,alert-fire, 1)

Step 4:Use equation (1) and (2) to determine distance fktodel M3 to M12:
d® =1, d" =1 and the resulting distance6=1> 025= k. No merge.

Function Learning Phase:

Step 7:Data<[Pair(<axe, oxygen_nask, mal e>M12),(Pair(<badge gun, nmal e>M3)];
Step 8:Build mapping, resultis:  Ifaxe, oxygen_nask, mal e> return M12
else return M3

Figure 5.11 An example run of the stereotype building algoritirhree partner models serve as input to
algorithm. In the cluster phase, the algorithmtfireerges models M1 and M2 creating model M12. The
distance between model M3 and M12 is greater tha® €o the model is not merged into the stereotype.
the function learning phase the stereotype clusheespaired with the partner features. A classiiger
constructed from the resulting data. The exampipsskome of the most easily understood steps, asch
the for loops.

The stereotype building algorithm makes two imaetiassumptions. First, it assumes

the existence of a distance functiodl(m‘i,mj‘i), capable of measuring the difference

between two partner models. We have already destrdur method for measuring

partner model distance (see section 4.2). If, h@neadditional information (such as the
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partner’s beliefs, motivations, goals, etc.) isedito the partner model, then creating a
distance function may become difficult because itifisrmation may not naturally have a
measure for determining distance. Second, thedttgre building algorithm assumes that
partner models can be merged to create new partadels. In order to merge a partner
model one must merge the components of the panioelel. For this work that meant
merging the action models and utility functions.tida models were merged by adding
an individual action only if the action was includie half of the data that composed the
merged model. For example, if the merged modelamaated from ten individual partner
models and an action existed in four of the motleds it was not included in the merged
model. If, however, the action existed five of tm@dels then it was included in the
merged model. Similarly, merged utility values welerived from the average utility
value of the composition utility functions. Agaihig is not the last word in either
gauging the distance between partner models orergimg models. This work, however,
does represent, to the best of out knowledge, its¢ fime that a robot has used
stereotypes to guide its interactive behavior.

To use a stereotype the robot simply convertp#rmer’s features into an instance of
data for the classifier and then uses the classdiselect the correct model (Box 5.4).

One important question is how the algorithm reactpartners that conflict with its
stereotypes. For example, a new partner with feattesembling a police officer would
cause the algorithm to retrieve a stereotype adeiaten the merged models of all other
police officers encountered by the robot. Thisieeed model allows the robot to predict
a particular action model and utility function. Vhile interacting with the partner, the

robot finds that its action model and/or utilitynfttion are inaccurate (i.e. if it predicts
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incorrect actions or utilities) then the interandaupdate algorithm alters the current
partner model to reflect the differences. Finatig ihew model is added to the model
space and when the build stereotype algorithmnsagain this model is included in the
stereotype generation process. The end resultaisthie robot’s stereotype of police
officer becomes more general and less specific keigfard to the stereotype’s actions and

utilities.

5.4.1 Examining the use of stereotypes

As mentioned in the previous section, psychologitasn that human use of stereotypes
allows for quicker assessment of new interactivenegas (Macrae & Bodenhausen,
2000). We hypothesized that the use of stereotypes robot would require fewer

interactions to obtain equal partner model accuvargn compared to the interact-and-

Table 5.16 Summary of the use of stereotypes experiment cdadun simulation with multiple partners
and in a single environment.

Experiment Summary

Examining the use of stereotypes:
Simulation Experiment

Investigate the possibility of learning and usihgstered partner models,
stereotypes, to speedup the process of partnerlimgde
Experiment Type USARSIm simulation.
The use of stereotypes requires fewer interactomdtain equal partner
model accuracy when compared to the interact-amni@dtepalgorithm alone.
Both procedures are listed within this section:
Procedure 1) Follow partner model creation procedure from Tdbl.
2) Follow the experimental procedure from Table 5.17.

Independent variable | Number of interactions with a partner; Number oftpers.

Dependent variable | Percent similarity to a target partner model

Ablation experiment consisting of comparison teratt-and-update
algorithm without use of stereotypes. Target madehparison.
Hypothesis is supported. Fewer interactions araired to obtain equal
partner model accuracy when using the stereotygehing algorithm.

Purpose

Hypothesis

Method of Analysis

Conclusion

update algorithm alone. The experiment we condudtedan ablation experiment

comparing the performance of the interact-and-ugpdbgorithm with and without the use
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of stereotypes. The stereotype matching algorithowa the robot to learn, generalize,

and store information about the partners with whidias interacted. Hence, we believe
the algorithm will bootstrap the process of cregtsn accurate partner model. We
reasoned that the stereotypes, even if not peyfeciturate, would still provide useful

information that could later be refined by the rat#-and-update algorithm. If our

hypothesis is correct, then we expect that wherrdbet encounters a new partner the
use of stereotypes will aid in its modeling of tipartner and hence result in greater
partner model accuracy in early interactions. TahlE6 provides a summary of the
experiment.

To test this hypothesis, we again conducted bottulation experiments and real
robot experiments. The simulation experiment had t@nditions: using the stereotype
matching algorithm (experimental condition) and msing the stereotype matching
algorithm (control condition). In both conditionset robot interacted twenty times with
twenty different partners. Hence a total of 40@uacttions occurred. The partner features,
action models and utility functions were identicaboth conditions. Moreover, the robot
encountered the partners in the same predeternoirkat in both conditions (see Table
5.18 for order).

In the control condition the robot used the inté@nd-update algorithm to gradually
build models of each of the partners. Figure 5é&s@nts an example run of the interact-
and-update algorithm.

In the experimental condition, the stereotype matg algorithm (Box 5.3 and Box
5.4) were used to create stereotypes and to matthpartner to an existing stereotype, if

one existed. The stereotype matching algorithm leanrun in conjunction with the
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interact-and-update algorithm or separately. Asiheract-and-update algorithm creates
each new partner model, the model is used as tophe stereotype matching algorithm.

The robot was not given any a priori informatiotated to the stereotypes, such as how
many stereotypes to construct.

Four different partner types were again create@pléce officer type, a firefighter
type, an EMT type, and a citizen type. Each ofrtigot’'s different interactive partners
was randomly generated from one of the four diffetgpes. For example, as depicted in
Table 5.18, the robot first interacts with a figkfier for twenty interactions, then an EMT
for twenty interactions, a police officer, and so. d'he target model consisted of
predefined sets of actions and outcome values fepexific partner type. As in the
previous experiment, partner feature vectors ctewsief values for gender, height, age,
weight, hair color, eye color and two objects thaividual possessed. Table 5.11 lists the
actions available to each type of partner. For éxiseriment, however, we generated an
equal number of each type of partner, randomizedthder in which the robot interacted
with the different partners, and introduced randtifferences to the models. In order to
ensure that the firefighter partner model, for eglandid not always contain the same
actions and utilities, randomized differences weargoduced to the models. These
changes assured that the robot did not interadt widividuals that always perfectly
reflected the stereotype. The procedure from Ta&kl@ was used to create the partner
models.

The simulation experiment was conducted in theckeand rescue environment
(Figure 3.4). Table 5.11 lists the robot’s actiond®l. The robot was given an arbitrary

utility function.
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The following experimental procedure was followed:

Table 5.17 Experimental procedure used in the examining tleeaistereotypes simulation experiment.
The experiment compares an experimental conditioa ¢ontrol condition. Steps 2 and 4, therefordy on
occur in the experimental condition.

Experimental Procedure
1) Procedure from Table 5.12 used to construct a tangelel.

2) Experimental condition: For each new partner, the using stereotypes
algorithm is used to bootstrap the partner modgimogess (Box 5.4).
3) The procedure from Table 5.13 for the interact-apdate algorithm is

followed resulting in partner modeh™ . The robot interacts with each partner
twenty times.

U7

4) Experimental condition: After twenty interactions, the partner modal’ is
used as input to the stereotype building algori(Baox 5.3).

5) The robot's model of its partner is recorded aéeery interaction. Accuracy
was again determined by comparing the percentagetmfns and utilities that
were in both the robot’s partner model and theetangodel for the partner (see
section 4.2 for details).

The independent variable in this experiment wasude or lack of use of the stereotype
matching algorithm. The dependent variable condistgartner model accuracy.

Figure 5.12 shows the results for the experim&he x-axis depicts the interaction
number and partner number (P0-P19) throughout tiperement. The solid red (dark
gray) lines depict a running average of the contoridition. As expected, the accuracy
of the robot’s partner model is consistently potrew interacting with a new partner and
results in the regular wave like pattern (red/dgn&ky). Because the robot does not learn
across partners, it must rebuild its partner meadtl each new partner. Hence, with each
new partner the robot's model is inaccurate untgradually learns about the partner

through interaction.
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Accuracy of partner model as a function of interactions with
different partners
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Figure 5.12 Results from the use of stereotypes simulatioregrent are depicted above. The bold red
(darker gray) line indicates is a moving averagetli@ no stereotyping condition. The bold yellovglgt
gray) line is a moving average for the stereotyptogdition. Stereotyping requires fewer interads t
obtain an accurate partner model once the sterestypmve been constructed. Prior to stereotype
construction, however, both methods perform theesaote that the accuracy of the yellow (light gray
line does not decrease as much as the red linatésrpartners (P7-P19).

In the experimental condition (yellow/light grape), however, we see that learning
and using stereotypes eventually aids the robatfopmance. Initially the robot has no
stereotype information. Hence its performance igaédo the no stereotype condition
during PO, P1, P2, and P4. It must learn this mfdron from its interactions with the
different partners. The first several partners ¢gmally PO, P1, P2, P4, and P6) result in
continued refinement of the robot’'s stereotype nwd&his occurs as the robot
constructs clusters that reflect the different partypes and a decision tree mapping the
partner’'s perceptual features to these clusterbl€Ta18). After the seventh partner the
robot has interacted with enough different partrierbave stereotype models for each
partner type. In this case, the stereotype modeBBgpercent of the same values (actions
and utilities) as the partner model. For the reimngirpartners (P8-P19) the stereotype
models only need slight changes (missing actiomaccurate utility value) in order to

reflect the partner's actual model. This fact i®wh by the relatively high level of
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performance depicted by the yellow (light gray)elim the later interactions. Using 80
percent accuracy as a threshold, the control conditequires an average of 10.2
interactions to reach this threshold. The expertalesondition using stereotypes, on the
other hand, required only 4.45 interactions on ager This result is significant

(p< 001).

Table 5.18 This table depicts the change in number of clasterd decision tree structure as the robot
progressively interacted with different partnersiniy the experiment. We see that by the seventtngar
the robot as created clusters for each type. M@eafter interacting with this seventh partner ribigot’s
decision tree accurately assigns a stereotype niadeld on the partner’s perceptual features (Figid).

Cluster and Classifier Progression with each Partne

Partner | Partner type | Number of Decision Tree After Interaction

Number Clusters

PO Firefighter 0 fire

P1 Police Officer 1 fire

P2 EMT 2 fire

P3 Firefighter 3 if (hair=blonde)->police; else fire

P4 Police Officer 3 if (tooll=axe)->fire; else if (tool=gun)>police
else if (tooll= stethoscopeydoctor; else fire

P5 Firefighter 3 if (tooll=axe)—>fire; else if (tool=gunppolice

else if (tooll= stethoscope@)doctor; else fire

P6 Citizen 4 if (tooll=axe)—>fire; else if (tool=gunppolice
else if (tooll= stethoscop@)doctor; elseitizen

P7 Firefighter 4 “

P8 Police Officer 4

P9 EMT 4 !

P10 Citizen 4

P11 Citizen 4 “

P12 EMT 4

P13 EMT 4 !

P14 Police Officer 4

P15 Citizen 4

P16 Firefighter 4 “

P17 Police Officer 4

P18 Citizen 4 “

P19 EMT 4

Table 5.18 details the ordering of the partneesythat the robot interacted with. As
the robot interacts with each different type it adtusters. Moreover, as shown in Figure

5.13, the robot’s mapping from perceptual featucestereotype model becomes more
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accurate with additional training data (partneRBgure 5.13 graphs the accuracy of the
classifier with respect to additional partners tbe preceding experiment. The graph
shows that additional training data in the formrdéractive partners increases classifier
accuracy. The classification accuracy goes to I@gmt because the partner’s features
were spoken and no artificial noise was added.idlidd systems the accuracy of the
classifier will certainly decrease. The fact tha tlassifier accuracy goes to 100 percent
indicates that the classifier correctly selectsaaentype model when given perceptual

features. It does not mean that the model accyregéiects the partner.

Classifier Accuracy as a function of Partner Number
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Figure 5.13 The graph depicts the accuracy of the classifigppimy a partner's perceptual features to a
stereotype model. As the robot interacts with adid#l partners the classifier has additional tragnilata
and its accuracy increases. The fact that the iilxsaccuracy goes to one indicates that the iflass
correctly selects a stereotype model when givecgmual features. This does not mean that the model
accurately reflects the partner.

As a side note, the classifier that emerges frataraction with several different
partners (see Table 5.18) only uses a single pwrakefeature (from eight possible
features) to select a stereotype for the partnee. dassifier could potentially be used as
a feature selection function, eliminating partnesitires which do not have any bearing

on the partner model. For example, when interactiity five different firefighters the
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classifier encounters partner features for bothenzaidd female firefighters. Hence, the

classifier learns that the gender feature doesatiably map to the firefighter stereotype.
Creating Accurate Partner Models: Laboratory Experiment

A follow-up laboratory experiment was conducting @rPioneer DX in a mock search
and rescue environment. In this experiment the trelas again tasked with assisting a
firefighter to either rescue victims or to obsetive fire. Here we hypothesized that use of
the stereotype matching algorithm would resultddigonal outcome (task performance)

on the part of the robot.

Table 5.19 Experimental summary for the laboratory experimetdting to the use of stereotypes.

Experiment Summary

Examining the use of stereotypes:

Laboratory Experiment
Investigate the possibility of using clustered partmodels, or stereotypes, to
select the improve task performance.

Laboratory experiment conducted in mock searchrasdue environment
with a Pioneer DX.

The use of stereotype matching algorithm resultgaigr outcome obtainment
(task performance) than not using the stereotypehirg algorithm.

Procedure Follow the experimental procedure from Table 5.13.

Purpose

Experiment Type

Hypothesis

Independent variable | Control or experimental condition.

Dependent variable | Number of victims saved.

Method of Analysis | Statistical significance (t-test) of number of ine$ saved.

Conclusion Results were not statistically significant.

In this experiment, in contrast to the simulatexperiments, the robot did not learn
the stereotypes because learning of the stereotggaged approximately 20 interactions
whereas the robot's battery life was well belowi@tractions. Rather, the robot was
provided with two stereotypes (a firefighter and BMT) and used perceptual
information about the partner to select the cormotiel and perform the correct action.
These stereotypes accurately reflected the partrogtel for each type, including the

correct actions available and utility functions.
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If the robot’s partner was of type firefighter thiéhe partner’s action model consisted
of either containing the hazard or rescuing thémis. If, on the other hand, they were of
type EMT their action model consisted of eithertstg an IV or performing CPR. The
firefighter arbitrarily preferred to contain hazardnd the EMT arbitrarily preferred to
perform CPR.

The robot's action model consisted of either mgviao and observing a victim or
moving to and observing a hazard. The robot redeiv®re outcome if the victims
survived. The victims survived only if the robotdahe firefighter work together
observing and containing the hazard or rescuing/ittens (Figure 5.14 image 4 shows
the victims and hazards). Hence, for the robotk tasrformance depended on the

accuracy of its model of the partner.

Stereotype Matching Algorithm — EMT Stereotype
4

|

Figure 5.14 The photos above depict the robot using stereotymeslect the correct partner model and
then performed an action in a notional search @sdue environment. The first three photos depkt th

robot performing the action. The next two depiat thrgets and the robot’s view of the targets. When
interacting with a person with the perceptual feeduof an EMT the robot retrieves the EMT stereetyp

model from memory. It uses this model to determvitéch of its actions the EMT would prefer and then

does that action. The same is true for the fireééigh

Both the robot and the human select the actionswoently. The same experimental

procedure used in the interact-and-update expetsn@mesented in Table 5.13) was
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again used for this experiment with the modificattbat the robot used the algorithm in
Box 5.4 to retrieve a stereotype model for therpart

The experiment consisted of six interactions bwith and without the use of
stereotypes. In the experimental condition (usetefeotypes) the robot uses the partner
features to retrieve the correct stereotype mdéflehe model is that of the firefighter,
then the robot uses the information within the mpartmodel to construct an outcome
matrix indicating that the partner’s preferred awtis to contain the hazard. The robot
therefore selects thebser ve- hazar d action to obtain maximal outcome (Figure 5.14
firefighter sequence). If, on the other hand, ttezeotype of the EMT is retrieved, then
the robot constructs and outcome matrix indicatimg EMT'’s preference to perform
CPR and recognizes that it can best help by setedtie observe-vi cti m action
(Figure 5.14 EMT sequence). A Gaussian distributi@s used to randomly determine
whether the robot would interact with an EMT oriraffghter. In the control condition,
the robot uses a Gaussian distribution to rand@@lgct its action.

All experimental trials resulted in retrieval biet correct stereotype. A total of twelve
victims were rescued over all six experimentalldri& total of eight victims were saved

over all six control conditions. This result wag significant (p = 0.145).

Overall, this experiment demonstrates the uséhefstereotype matching algorithm
(Box 5.4) on real robots in a laboratory environineérhe lack of significance is a
reflection of the small number of trials conducted.

5.4.2 Stereotype matching conclusions
This section has demonstrated that the use ofodygred partner models can bootstrap

the process of learning a model of the robot’'sratdgve partner. The algorithm we have
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presented clusters individual partner model infdromato create generic or stereotyped
partner models that the robot can then use dutignitial interactions with a new
partner. We presented experiments showing thatofishese stereotyped models aids
during early interaction with a new partner. Oviertlle use of stereotypes may be a
natural and important method for the robot to udeenvit encounters unfamiliar
individuals and social situations. Clearly furthekperimentation is necessary in
naturalistic environments with differing partners order to verify the value of these
methods.

The stereotype algorithm has assumed that acke@tnable patterns of partner
characteristics exist in the social environmeny.cRelogical literature indicates that this
is the case and that humans regularly use thignrd#ton to categorize and make
predictions about their own interactions (Bargh,e@h& Burrows, 1996; Biernat &
Kobrynowicz, 1997). Again, questions of sensor eamsfeature and action detection can
be raised. Neither of our experiments purposeiuijgcted artificial noise into the system
to examine fault tolerance. Moreover, our use aegp recognition for partner feature
detection and action and outcome perception raebuiteno perceptual noise. Hence the
scalability of these methods when faced with sigaift error and noise is still an open
guestion.

There may be ethical concerns as to whether oanmbot should be empowered
with the ability to create and use stereotypes. @asition on this topic is that
stereotypes, whether warranted or not, is justherdorm of human social learning and
that in order to best understand this phenomenaus use all of the tools available to

explore it. Hence, imbuing robots with the abilitystereotype their human partner, may
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allow us to better understand the psychology ofestgpes by offering plausible

computational methods by which the phenomena qoosdibly be realized in the brain.

5.5 Creating Outcome Matrices: Conclusions

This chapter has begun to tackle the difficult guo@sof how to create outcome matrices
from a robot’s perceptual information. We began frgsenting the General Matrix
Creation algorithm. This algorithm simply populatéde outcome matrix with
information, but, importantly, demonstrated thae tQuestion of how to create an
outcome matrix can be restated as a question oftbaweate accurate partner models.
The interact-and-update algorithm, therefore, waated as a method for both generating
outcome matrices and refining the robot’'s modelitsf partner simultaneously. The
interact-and-update algorithm uses a robot’s intera experience to continuously refine
its model of its interactive partner. It, howeveid not include methods for learning and
generalizing across partners. Hence, we preseheedtéreotype matching algorithm for
this purpose. The stereotype matching algorithratehg the partner models the robot has
learned and uses the cluster centroids as a gameergartner model representing a class
of interactive individuals.

Admittedly, we have only begun to address the these algorithms in real world
environments with normal people as the users. [Retaxaminations of the type and
nature of the noise and uncertainty faced by robothese situations will be necessary
before any definitive judgment can be made as ¢ #fficacy. For the purpose of this
dissertation, we have merely attempted to show thas possible to create our
representation of interaction. With respect to thsearch questions posed in the first

chapter, we have shown that a robot can represtaraction and that this representation
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can be created from perceptual information obtaibgdhe robot. In the sections that
remain, we will show that this representation camehan important impact on a robot’s

ability to select social actions, represent itatiehships, and reason about trust.
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CHAPTER 6
SITUATION ANALYSIS

Sociologists and social psychologists have longogezed the importance of the
situation as a determining factor of interpersantdraction (Kelley et al., 2003; Kelley
& Thibaut, 1978; Rusbult & Van Lange, 2003). Sotom Asch, a renowned
psychologist, stated that, “most social acts haveet understood in their setting and lose
meaning if isolated.” (Kelley & Thibaut, 1978). & goal of artificial intelligence is to
understand, imitate, and interact with humans ttesearchers must develop theoretical
frameworks that will allow an artificial system tfl) understand the situation-specific
reasons for a human’s social behavior, and (2)idenshe situation’s influence on the
robot’s social behavior. Understanding human irmdi@ra behavior is critical as it implies
that the robot will then be capable of predictimgl @lanning for future interactions and
their consequences. Recognition of the situatiomplacts on a robot’s own interactive
behavior is similarly necessary if robots will bepected to operate in the presence of
humans in social settings such as the home or tinkphace.

This chapter contributes an algorithm for extmagtsituation-specific information
and uses this information to guide interactive b@ra For our purposes, a social
situation describes the environmental factors, idatof the individuals themselves,
which influence interactive behavior. The objecsiv& this chapter are to 1) present a
novel algorithm for situation analysis developed thg author from interdependence
theory that provides a robot with information abotst social environment; and 2)

demonstrate that the algorithm provides informattaat can be profitably used to guide a
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robot’s interactive behavior in certain circumstgcSimulation experiments accomplish
these objectives. These simulations first demotsstizat the algorithm is applicable to

robotics problems involving collaborations amongniams and robots and then examine
the algorithm’s effectiveness across a wide expahsecial situations.

Consider, as a running example, an industrialdgeti involving a toxic spill and
injured victims. A teleoperated robot is assigneddscue victims and an autonomous
robot operates simultaneously to cleanup the dpuking the cleanup, both the human
and the robot will select behaviors directed towatde effort. Perhaps, due to the
properties of the spilled material, the victims chée be cleaned before being rescued. In
this case, the success of the cleanup dependeglgrdin both robots working together.
Alternative chemical spills will allow the robot @nthe human to operate in an
independent manner, with victims being rescued ra¢glgt from the cleanup. In either
case, the situation should influence the autonomobst’'s decision to coordinate its
cleanup behavior with the human or to operate iaddpntly. Moreover, the
effectiveness of the cleanup will depend on thetstability to characterize the situation
and to use this characterization to select thecgg@ate behaviors.

The remainder of this chapter begins by first samamg related research. Next, our
algorithm is described, followed by a set of expemts used to examine the algorithm.
This chapter concludes with a discussion of themsilts and directions for future

research.

6.1 Situation-based Human-Robot Social Interaction

Interdependence theory underlies our framework dduation-based human-robot

interaction. The following section briefly reviewlse aspects of interdependence theory
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that are used in this chapter. Next, an algoritivmich uses aspects of interdependence
theory to produce information about social situadias detailed. Afterwards, we develop
a complete computational process by which a robot use perceptual information to

guide interactive behavior.

6.1.1 Interdependence theory

Recall that interdependence theory is based oncthen that people adjust their
interactive behavior in response to their perceptid a social situation’s pattern of
rewards and costs and represents social situatmmgputationally as an outcome matrix
(Figure 6.1). Figure 6.1 shows the outcome mawixdur toxic spill cleanup example.
The preceding chapter presented methods for cgeaticome matrices from perceptual
information such as strings of speech. In this tdragge assume that outcome matrices
representing a social situation can be createdbaguh to look at the advantages of using
outcome matrices as a representation of sociakictien.

Kelley and Thibaut conducted a vast analysis dhlbeoretical and experimental
social situations and were able to generate a ghatenapped particular social situations
to the dimensional characteristics of the situafialley & Thibaut, 1978). Recall that
the interdependence space (Figure 6.2 depicts thirélee four dimensions) is a four
dimensional space consisting of: (1) an interdepend dimension, (2) a correspondence
dimension, (3) a control dimension, and (4) a sytnyngimension. The interdependence
dimension measures the extémiwhich each individual's outcomes are influenbgdhe
other individual's actions in a situation. In a lomterdependence situation, for example,
each individual's outcomes are relatively indeperiae the other individual’s choice of

interactive behavior (left side of Figure 6.1 foxaeple). A high interdependence
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situation, on the other hand, is a situation inchiheéach individual’'s outcomes largely
depend on the action of the other individual (rigide of Figure 6.1 for example).
Correspondence describes the extentwhich the outcomes of one individual in a
situation are consistent with the outcomes of tiemindividual. If outcomes correspond
then individuals tend to select interactive beheswicesulting in mutually rewarding
outcomes, such as teammates in a game. If outcoordhct then individuals tend to

select interactive behaviors resulting in mutualhgtly outcomes, such as opponents in a

game.
Example Outcome Matrices
#H = Number of Hazards #V = Number of Victims
Robot Robot
Rescue  Cleanup Rescue  Cleanup
Victim Hazard Victim Hazard
#V #H #V 0
g Resouel N5~ g Rescuel N5~
g Victim ny ny g Victim Y 0
- #v | \#H T 0 [ \#H
Cleanup #H\2 " |#H Cleanup #H
Hazard = R Hazard 0 -
Independent Situation Dependent Situation

Figure 6.1 This figure depicts two example outcome matricestii@ cleanup of a toxic spill and the
rescue of victims by a human and a robot. During @me interaction, both individuals choose to e&ithe
rescue a victim or clean up a hazard. The outcommsting from each pair of choices are depictethen
cells of the matrix. The human’s outcomes aredidielow the robot’'s outcomes. In the leftmost mxatri
the outcomes for the human and the robot are intkp# of the other’s action selection. In the nigbst
matrix, the outcomes of the human and the robgelgrdepend on the other’s action selection.
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Three Dimensions of the Interdependence Space

Coordination__Conflicting Correspondence of

Basis of Control Outcomes Axis

Axis

CHICKEN Corresponding
Exchange

w

Prisoner’s
Dilemma

AXis

Interdependence Dependent

Zero Interdependence

Independent

:l Parallelograms denote some
well known social situations

Figure 6.2. Three dimensions of interdependence space are tddpabove (Kelley et al., 2003).
Interdependence theory represents social situatiomsputationally as an outcome matrix within this
interdependence space. The dimensions depictea alve interdependence, correspondence, and basis o
control. Planes within this space denote the locatif some well-known social situations, includitig
prisoner’s dilemma game, the trust game, and the pame. A matrix’s location allows one to predict
possible results of interaction within the situatio

A matrix’s location in interdependence space gesiimportant information relating
to the situation. For example, in a situation ofv Imterdependence the robot should
generally select the behavior that maximizes it$1 amtcome, because its choice of
action will not have a large impact on the outcarhés partner. We term the process of
deconstructing a matrix into its interdependenaspimensionsituation analysisAs
will be demonstrated, the information provided biuaion analysis can be used to

profitably guide interactive behavior selectionayobot.

6.1.2 The situation analysis algorithm

Situation analysis is a general technique we d@esldrom interdependence theory to

provide a robot with information about its socidligtion. As an algorithm, it can be used
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in an on-line or an off-line manner to provide imf@tion about any social situation
represented by an outcome matrix. Thus, in thesorgbot could use situation analysis as
a tool to investigate potential social situationsight encounter or situations that have

occurred in the past among others. The input todlgerithm is an outcome matrix
representing the social situation. The algorithnpots a tupIe,{a,ﬂ, V, 5), indicating

the situation’s location in the four dimensionaemlependence space. Situation analysis
involves 1) deconstructing the outcome matrix matues representing the variances in

outcome and 2) the generation of the dimensionlalegafor the interdependence space.

Box 6.1 describes situation analysis algorithmicall

The Situation Analysis Algorithm

Input: Outcome Matrix O
Output: Interdependence space tup@e, B, X, 5>

1. Use procedure from Figure 6. deconstruct th
outcome matrix.

2. Use the equations from Table 6td@ calculate th
dimensional values for the interdependence spaute.tu

3. Return the tuple.

Box 6.1 An algorithm for the analysis of a social situation
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Matrix Deconstruction with an Example
Example Raw Outcomes  Bilateral Actor Control ~ Mutual Partner Mutual Joint
Parameters (BAC) Control (MPC)  Control (MJC)
Robot
Independent s.... FITTTIT ..........................................................E. .........................
Situation . RescueCleanup v
#H =5 > 1.0 5 2.0\ 2.0 0 0 0 0
#V =2 S @ >
e S92 2 0.25\_|-0.25 1| 0 0 0 0
S o_: |
T 5 1.0 5 2.0 2.0 } 0 0 0 0 |e
ey
PROCEDURE: 8 25 \ -t 025\ | 0.25 NEANE 0 0
1) Add cells ol T T |
2) Divide by two 3 J'_ |
3) Subtract mean mhTTmm T B T : MPC MIC
4) Place resultin
the designated Robot mean: 3.0 ) Robot =-2.0-(2.0) Robot =0-(0) Robot =0-(0)
matrix cell Human mean: 2.25 Variance:gc, =-4.0 PCk =0 JCk =00
Human =-0.25 - (0.25) Human =0 — (0) Human =0 - (0)
Variance: BCy  =-0.5 PCy =0 JCy =00

Figure 6.3. The procedure (Kelley & Thibaut, 1978) for decousting a social situation is presented
above. This procedure is an analysis of variancd@futcome matrix that deconstructs the raw onéco
matrix into three new matrices (the BAC, MPC, and@l representing different forms of control oves th
situation’s outcomes. The outcome values for edcthese three matrices are produced from the raw
outcome matrix by iteratively 1) adding the notedlls; 2) dividing by the number of actions, and 3)
subtracting the individual’'s mean outcome valuee Mariances of each matrix type are generated by
calculating the outcome range for each choice bfbier and each individual. Because this exampte is
an independent situation, the MPC and MJC matdocesot vary.

The first step is matrix deconstruction. This @aare iteratively separates the values
in the input or raw outcome matrix into three sepamatrices (Figure 6.3 depicts an
example) (Kelley & Thibaut, 1978). The BilateraltAc Control (BAC) matrix represents
the variance in outcome resulting from the robotis interactive decisions. This matrix
thus quantifies the robot’s control over its owrtommes. The Mutual Partner Control
(MPC) matrix, on the other hand, represents théamee in outcome resulting from a
partner’s interactive decisions and thus quantiiepartner’s control over the robot’s
outcomes. Finally, the Mutual Joint Control (MJChatnix represents the variance in
outcome resulting from both the robot’s and itstqer’'s joint interactive decisions. In
other words, the MJC matrix describes how eachviddal is affected by his, her, or its
joint actions. As depicted in Figure 6.3, all outwvariance occurs in the BAC matrix

when deconstructing an independent situation. hm@cedure results in values for
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variablesBC, PC, JC individually representing the variance of both tbeot's and the

human’s outcomes in the situation. The subscripthis figure denote the variance of the

outcome for the robot (R) and the human (H) respelgt

Table 6.1 Calculation of the interdependence space dimessiven the variances from Figure 6.3.
Equations (4) and (5) are from (Kelley & Thibau®,78), (6) and (7) were developed by the author.

Dimension Computation
Int?rdepend)ence (PC,% R JC%) (4)
an,da ap =
R'OH R ( 2 2 2)
BCRr + PCR +JCRr
Calculate separately for each individual. Randeois O for independent
situations to +1 for dependent situations.
Correspondencs 5
(;) P 2(BckPCy, +BC, PCR +ICRIC ) ()
2 2 2 2 2 2
(BCR +PCR +JCR + BC +PC +JCQ )

Calculate once for both individuals. Range is frdnfior a situation in which the
dyad’s outcomes conflict to +1 for a situation ihigh the dyad’'s outcomes
correspond.

Basis of Control

)

4( v) (6)

y= 9 where
(Surr(sit)2 )

o = (s + 364, 2 + (30 - 30, )2

2 2 2 2
V= (BCR + PCH ) + (BCH + PCR) + (BCR - PCH ) + (BCH - PCR)
Calculate once for both individuals. Range is frdnfor a situation controlled by

exchange and to +1 for a situation controlled bgrdmation.Sun{ sit ) is a cell
by cell sum of the matrix.

Symmetry

()

2 2 2 2 2 2 @)
_ (BCR + PCH + JCR)— (BCH + PCR + JCH )
- 2 2 2 2 2 2
(BCR + PCR + JCR + BCH + PCH + JCH )

Calculate once for both individuals. Range is frdnfor an asymmetric situation
in which individualR depends o1 to +1 for an asymmetric situation in which
individual H depends orR. The value of 0 denotes a symmetric situation (i.e
mutual dependence).

Once the variances for the situation have beerpoted these values can be used to

calculate the situation’s location in interdeperaespace. This is accomplished using

equations (4-7) from Table 6.1. Equations (4) &jdace from (Kelley & Thibaut, 1978).

Equations (6)

and (7) are contributions of thissditation. Equation (4) subtracts the

outcome resulting from joint action by the indivadis from the outcome resulting from

partner and individual control. This value is thearmalized. Equation (5) subtracts one
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individual’'s control over their own outcomes frommetother individual’'s control. This

value is normalized with respect to both individsialutcomes. These values constitute

the tuple(a, B, y,9), the situation’s location in interdependence space

6.1.3 Using situation analysis to select interactive hebra

The situation analysis algorithm presented abogs Beveral questions. Notably, 1) how
are the outcome matrices created? 2) How is thetitotin interdependence space used
to control a robot’s behavior? 3) Does knowingtaation’s location in interdependence
afford valuable information for determining whickehavior to select? This section
addresses each of these questions in turn.

The previous chapter has discussed in detail oethaals for creating outcome
matrices. For the experiments conducted as patti®fresearch, the number of hazards
and victims perceived is used to construct the mute matrix (Figure 6.1). These
matrices expand upon the human-robot cleanup situaescribed previously. In these
examples, both the human and the robot selectreatiection to rescue a victim or to
cleanup a hazard. The outcome for each pair of®glactions, in this case, is a function
of the number of victims and hazards in the envitent. The functions in Figure 6.1
were selected to give the autonomous robot a mmeder for cleanups and the
teleoperated robot a preference for victims. Pegfegs such as these might result from
the configuration of each robot. In the independsntation, for example, if the robot
chooses to cleanup a hazard and the human chaosescue a victim, then the human
obtains an outcome equal to the number of victim$ #he robot obtains an outcome

equal to the number of hazards. In the dependemitton, on the other hand, positive
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outcome is only obtained if both the robot and thenan select the same action. A

situation such as this could occur if victims mistcleaned prior to being rescued.

Table 6.2 A list of several simple matrix transformations€Tlist is not exhaustive.

Transformation Transformation mechanism Social character
name
max_own No change Egoism—the individual selects the action
that most favors their own outcomes
max_other Swap partner’s outcomes with  Altruism —the individual selects the action
one’s own that most favors their partner
max_joint Replace outcomes with the sum of Cooperation—the individual selects the
the individual and the partner’s action that most favors both their own and
outcome their partner’s outcome
max_diff Replace outcomes with the Competition—the individual selects the
difference of the individual's action that results in the most relative gain
outcome to that of the partner to that of its partner
min_diff Maximize the value of the action Fairness—the individual selects the action
that has the minimal difference to that results in the least disparity
that of the partner.
min_risk Maximize the value of the action  Risk-aversion—the individual selects
that has the greatest minimal actions that result in the maximal
outcome guaranteed outcomes

Before discussing how this information is usedctmtrol a robot's behavior, we
consider strategies by which the outcome matrix lmardirectly used to select actions.
The most obvious method for selecting an actiomfian outcome matrix is to simply
choose the action that maximizes the robot’s ougcowie term this strategyax_own
Alternatively, the outcome matrix can be transfadnte create a new, different matrix
that the robot uses to select a behavior. Tableli§t? several different methods for
transforming an outcome matrix. In the casemaix_otherthe partner’'s outcome values
are swapped with the robot’s outcome values. mh&_jointtransformation, on the other
hand, replaces the robot’s outcomes with the suthefobot and its partner's outcome.
Once an outcome matrix has been transformedntee ownstrategy is used to select an
action. This simple technique of transforming thécome matrix and then using the

max_ownstrategy to select a behavior serves as a caostiaikegy and has the benefit of
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changing the character of the robot’s responseontthonsideration of the actual actions
involved.

Because the situation analysis algorithm simplyvjles information, this
information could theoretically be used in manyfatiént ways to aid action selection.
For instance, rules could directly map a situasofdcation to a particular action.
Alternatively, the information could be used toestltransformations (Table 6.2). One
advantage of the latter method is that it does require knowledge of the actions
available to the robot. Rather, the situation’slidependence space location is used to
alter the robot’s respongedependent of interactive actions availab¥other advantage
of this approach is that one can test a specigastransformations at a given location
to determine which transformation is best at tlaation. In this manner, a mapping of
interdependence space location to transformatiarnbeadeveloped which is independent
of the individuals interacting and the actions &lde. As will be discussed in the next
section, our initial step for this research wasating this mapping of situation location to
transformation.

Finally, does knowing a situation’s location inerdependence space afford valuable
information? We approached this question empigdayl performing two experiments in
simulation. The first experiment investigates tlaue of this information in a practical
scenario. The second experiment considers the dlirowing the situation’s location

over the entire interdependence space.

6.1.4 Mapping a situation’s location to a transformatio

A mapping from a situation’s location to a transfiation can be described formally as

the functionf : L - T whereL is the interdependence space location Riglthe space
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of possible transformations. We subdivide the oeeendence space into three areas of

interest to robotics researchers, namely high defeendence (¢, = 0.75) and low
correspondence < ) high interdependencea(, = 075) and high correspondence
(£ >0) and low interdependence df, < 0.75. These areas are abbreviatedlgsl,,,,!,
respectively. The ared, represents situations in which the robot's outcergeeatly
depend on its partner but the robot and the humamotihave action preferences towards
the same goal, potentially resulting in poor outesrfor the robot. The ardg,, on the
other hand, describes situations in which the rebmitcomes also greatly depend on its
partner and both the robot and the human haveraptieferences towards the same goal.
Finally, the ared, represents the location of situations in whichrbi@ot's outcomes do
not greatly depend on its partner. Thus {Ih,,lhh,ll} describes the domain &f The

codomain off is the set of transformations considered as gétti® work (see Table 6.2
for descriptions).

Given the preceding description, the challenge ko determine for each location
in L which transformation fronT results in the greatest overall net outcome. Tahik
we created a random matrix and then used the isituahalysis algorithm to determine
the matrix’s location in interdependence spacel uvei had 1000 matrices in each area

[ lh], - Random matrices consisted of an empty matrixufaaed with random

numbers between 0 and 24. The number 24 was ailyitselected. Next, for every

matrix in each ared,,l,, .|, , we iterated through the sktaltering the matrix according

to the transformation’s specification (Table 6 &jterward, a simulated robot selects the

action from the transformed matrix that maximizessautcome. The robot’s simulated
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partner also selects an action from the originatrimahat maximizes its outcome.
Finally, the robot's outcome resulting from theiactpair (as dictated by the original
matrix) is recorded. Figure 6.5 in section 6.2.4pdpically depicts this procedure and the
other experimental procedures used.

Table 6.3 The cells denote the mean outcome obtained byréresformation at each location. The
shaded cells indicate the mean of the best tramsfiton. The confidence interval is included fonallues.

Low interdependence High interdependence/high High interdependence/low
correspondence correspondence
Transformation Mean Transformation Mean Transformation Mean
outcome outcome outcome

max_own 13.47 £ 0.46 max_own 15.01 £ 0.39 max_own 14.27 £ 0.41
min_own 10.36 +£ 0.46 min_own 8.75+0.40 min_own 7.712 +0.38

max_other 11.67 £0.43 max_other 15.10 £ 0.36 max_other 7.80+0.37
min_other 11.86 £0.43 min_other 10.52+£0.42 min_other 12.94 £ 0.42
max_joint 12.90 + 0.43 max_joint 16.03 + 0.34 max_joint 13.40+0.42
min_joint 11.16 + 0.44 min_joint 9.55+0.41 min_joint 10.52 + 0.43
max_ diff 11.41 +£0.46 max_ diff 10.41 £ 0.43 max_ diff 9.93+0.47
min_diff 12.08 £ 0.42 min_diff 12.48 £ 0.43 min_diff 12.10+0.41
min_risk 13.08 £ 0.41 min_risk 14.82 £ 0.38 min_risk 14.79 £ 0.37

Table 6.3 presents the mean outcome resulting feach transformation at each
location. The transformation that results in theagest mean outcome for each location in
shaded. Note that the difference in mean outcomsefeeral of the transformations is not
great. This lack of difference reflects the similaof the transform in the particular area
of interdependence space. More importantly, it Sbeelows the need of a robot to
interact with its partner in a variety of situatsotocated at different positions in
interdependence space in order to determine thegra transformation preference or
type. The table indicates thanax_own max_joint and min_risk are the best
transformations of the group of possible transfdroms in low interdependence, high
interdependence/high correspondence, and highdependence/low correspondence

situations respectively. From this data the funcfionapping the interdependence space
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max_own 1" =1,

location to transformation takes the following forrfn(l*): max_joint  for |" =1,
min_risk *

where | is the interdependence space location generatethéysituation analysis

algorithm. This function can also be visualizedresdecision tree in Figure 6.4.

Transformation selection
/nterdependence
space dimension
max own 9r < 075 values
transformation Interdep.
ag = 075
>
max_joint B>0
transformation
£<0
min_risk
transformation

Figure 6.4 A mapping of interdependence space location toosnécmatrix transformation.

We have therefore found a mapping from a situ&i@ocation in interdependence to
a transformation. This mapping allows us to creat®mputational process that begins
with the outcome matrix and will end with the séle@e of an action. The next section

develops the remainder of this process.

6.1.5 A computational process for situation analysis

Assuming that outcome matrices can be generated giveh the mapping from
interdependence location to transformation develope the preceding section, a
computational process can be developed that sekectsbot’s behavior from its

perception of the situation. This computationalgass is depicted in Figure 6.5. The
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right side of this figure depicts a stepwise pragedfor generating interactive action
from perception. The first step is the creatioranfoutcome matrix. In our experiments,
these were either derived perceptually, by recaggiobjects in the environment and
using the matrices in Figure 6.1, or generated bgufating an empty matrix with
random values. The next two steps consist of tiviatson analysis algorithm described in
section 6.1.2, which results in an interdependepeee tuple. This tuple is then mapped
to a transformation using the functibalso depicted in Figure 6.4). The transformation
is used to transform the original matrix in the metep. The transformation process
results in the construction of an outcome matrixadich the robot can act—the effective
situation (Kelley & Thibaut, 1978). In the finalegt, the robot selects the action in the
effective situation that maximizes its own outcorfke left side of Figure 6.5 depicts an
example run through the procedure. The next sedigusses our empirical examination

of this process.
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A Computational Process for Situation Analysis

I

Action selected

Example Computational Process
(5 hazards, 2 victims; dep. sit.)
r————s— _R_b_I___l Perception
I im. Robo
| A_B | !
| S A 1 0 | Create Random Conversion of perceptual
: £ 2N\| 0 | Matrix stimuli into outcome matrix
| T 0 5 | T : -
| B0 \\ [2.E | —-—-—-—-—-—'—-—ileenS|tuat|on
| ! | g . .
| I ~ Matrix deconstruction: Generate
| BCr=-2:BGy=-.25 | variances from outcome matrix
: PG=-2; PG=-25 | \ Situation
I JG=3; JG=1.1 | Analysis < l BC, PC, and JC
| : Compute interdependence space
| | < 08070402> | dimension values
I = .5,0.7,0.4,0.
| : / -
| l | I-Space Tuple <a,B,y,5>
: max_joint I N -
| l : v
I ) | Transformation Use decision tree to select a
| SAm. R%bm | > Process < transformation
I
I
: S A 3 0 | Transformation type
| g 2 0 | v
| T 0 -5 : Transform the outcome matrix
B ||[ ; 2.5
I
| : J .
I
| Sim. Robot | ) o
| B : + Effective Situation
| S A 3 0 | Action Selection: Use max_own to
| £ 2\ 0 | select the action maximizing
: T o 75 | outcome
I B p.5 I
I I
I I
| I
I

Figure 6.5 This figure depicts the algorithmic process contilal by this work. The process consists of
six steps. The first step generates an outcomexnatre second step analyzes the matrix’'s varianties

third step computes the situation’s interdependesmce dimensions. These two steps constitute the
process of situation analysis. The fourth step c¢elea transformation and in the fifth step, the
transformation is applied to the outcome matriultasg in the effective situation. Steps 4 and Bstdute

the transformation process. Finally, an actiorelsced.

153



6.2 Experiments and Results

The preceding discussion has describesv an outcome matrix can be mapped to a
location in interdependence space aod information about the matrix’s location can be
used to select a robot’s interactive action. Weehawot yet shown, however, that the
information afforded by the situation analysis aitjon results in better interactive
behavior on the part of the robot. The experimgmesented in this section, therefore,
examine the value of the information generatedhigysituation analysis algorithm. Value
here is operationalized as increase in net outc@ath experiments test the hypothesis
that the use of the situation analysis algorithril keisult in an increase in net outcome
when compared to alternative control strategiese Thist experiment uses the
computational process from Figure 6.5 to guidenautated robot’s action selection in the
cleanup and rescue example described at the baginofi the chapter. The second
experiment generalizes the results from the fixgieement to the entire interdependence

space and compares the algorithm to a larger nuoflmemtrol strategies.

6.2.1 Situation analysis in practice

To revisit the scenario described at the beginmhghe chapter, a teleoperated robot
attempts to rescue victims of an industrial acdideinile an autonomous robot works to
cleanup a spill. We considered two scenarios inukition: one involving greater
dependence (high interdependence condition) anthandanvolving little dependence
(low interdependence condition). Notionally, be@aw$ the properties of the chemical
the high interdependence condition requires thatwctims be cleaned before being

rescued. Thus, in this condition, the robots mush ltooperate in order to complete the
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rescue task successfully. In the low interdepenelendition, both robots can operate
independently of one another. This scenario is dase the well-studied foraging
problem in robotics (Arkin, 1999). Figure 6.6 ddpithe layout. Potential victims and
hazards for cleanup are located within a disases. A disposal area for hazardous items
is located towards the bottom and a triage areaittims is located to the right. Table

6.4 summarizes the experiment.

Table 6.4 Experimental summary for the situation analysigegiment conducted in a search and rescue
environment.

Experiment Summary

Situation Analysis in Practice
Explore the use of information pertaining to aaiiton’s position in the
interdependence space to control a robot’s behavior

Experiment Type MissionLab simulation environment
That the use of the situation analysis algorithsults in an increase in net

Purpose

Hypothesis outcome when compared to alternative control gjiasein dependent
situations.
Procedure Follow partner model creation procedure from Figauz

Conditions: use of situation analysis informati@rsus no use of situation
analysis information; dependent versus indepensiardtion.

Dependent variable | Net outcome

Ablation experiment consisting of comparison betwase of situation
analysis information and no use of situation arialygormation.
Hypothesis is supported. Conditions in which theagion was dependent and
Conclusion the situation analysis algorithm was used restuftegteater outcome being
obtained compared to not using the situation aigaglgorithm.

Independent variable

Method of Analysis
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v MissionLab v6.0.01 (c) Georgia Institute of Technology -0 %

File configure Conmand oOptions Composs ﬂelpl

Scale: 0 100.0 n Refresh| Pause| zoom: 100% y| 4

(Mission area is 1200.0n by 1200.0m}

=

Human Controlled o
Robot

objective N
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Battery : [
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—Select Hardware H

~ Joystick
-~ Mouse

—Select coordinate

+ Morld Coord.
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 ~Select Delay

- Delayed Effect Coigsai b 5
|H Joystick

Figure 6.6 The simulation environment used for the cleanug @scue experiment is depicted above.
The experiment required that a teleoperated robstue victims while an autonomous robot performs a
cleanup. Experimental conditions included indepehdersus dependent situations and the use of our
situation analysis algorithm versus a control sggt The teleoperation interface used by the human
depicted the right.

* Imnediate Effect "

This experiment compares the net outcome obtanyedoth robots as well as the
number of victims rescued and hazards cleaned um $eparate conditions. In the
experimental conditions, the autonomous robot ueeccomputational process depicted
in Figure 6.5 to select its action. In the contomnditions, the autonomous robot
consistently selected the behavior that maximizedwn outcome without consideration
of its partner ihax_ow. The experimental and control condition were ergd in both
high interdependence situations and low interdepecel situations. A high
interdependence situation was created by popul#ti@glependent outcome matrix from
Figure 6.1. Similarly, a low interdependence sitratwas created by populating the

independent outcome matrix from the Figure 6.1.sThhe experiment consisted of the
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following four conditions: high interdependencasaiion analysis, high interdependence-
control strategy, low interdependence-situationlyais low interdependence-control
strategy. In all conditions, the teleoperated ramdéected the behavior that maximized its
own outcome without consideration of its partnemakx_own. The primary author
controlled the teleoperated robot. Because th@pelated robot employs a static actor
script, experimenter bias is eliminated.

Figure 6.7 describes the experimental proceduesl (middle procedure). First, a
random number of victims and hazards were generhliext, a Gaussian distribution was
used to the randomly place the victims and hazarddhe environment. In the low
interdependence condition, the autonomous robatepars the number of victims and
hazards and uses the independent matrix from Figdréo create its outcome matrix. In
the high interdependence condition, the autonomohbst uses the dependent matrix to
create its outcome matrix. The outcome matrix enttested using the situation analysis
algorithm and the control strategy. The behavidrat tthe robot selects are actually
collections of actions that direct the robot todts the closest attractor, pickup the
attractor, transport the attractor to a disposabharhere it is dropped off and finally
return to a staging area. ThdissionLab mission specification system was used.
MissionLabis a graphical software toolset that allows udergenerate mobile robot

behavior, test behaviors in simulation, and execute
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collections of behaviors on real, embodied robdtsagKenzie, Arkin, & Cameroon,

1997).

Experimental Procedure

Interdependence space
to transform procedure

(section 6.1.4)

Emergency cleanup and rescue
experimental procedure

(section 6.2.1)

(section 6.2.2)

Situation analysis versus control
strategies experimental procedure

For every matrix Random number Create random
at each location of victims and matrix
1o hazards
his'hhe
| |
Create Create Use control
v dependent indepen_dent strategy: v
f matrix matrix max_own, U . .
Use transform max_joint, se S|tu_at|0n
taT to select min_risk to analysis to
action \ 4 v select action select action
Use Use situation —
max_own to analysis to Control condition ~ Test condition
select action select action
Two control Two test
conditions conditions
\ 4 \ 4 \ 4 \ 4 \4
Robot’s action selection l

Interaction example

Robot selects action B
Human selects action B

Human or simulated partner
always uses max_own to select
action

Robot receives outcome of 7
Human receive outcome of 2.5

Figure 6.7 The procedures used to create and use outcomecewatiie depicted above. The left side
details the procedure used to generate Table ®iS.pFocedure first iterates through all matriceeach

areasI wi oo and then iterates through the set of transformatio produce the matrix the robot will use
to select actions. The middle procedure first @ga random number of victims and hazards. Next, an
independent and dependent matrix is created framntimber of victims and hazards. Finally, in the
control conditionsmax_ownis used to select an action. In the test proceditigation analysis is used to
select an action. The right most procedure, fiesteggates a random matrix and then transforms thexma
with respect to a control matrix or uses situatimalysis. The robot selects an action from thesframed
matrix. The interaction example at the bottom desdhe method used to determine how much outcome
each individual receives from the presentationrofatcome matrix.
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We conducted thirty trials in each of the four dibions: independent
situation/control robot, independent situation/tesbot, dependent situation/control
robot, dependent situation/test robot. In theseeexgents, interaction occurs when both
individuals (autonomous robot and teleoperated ttobo both simulated robots) are
presented with an outcome matrix and simultaneosslgct actions from the matrix
receiving the outcome that results from the acfair. We recorded the number of
victims rescued and the hazards collected aftdn #&d. We predicted that the situation
analysis algorithm would outperform the controhstgy in the dependent condition but
not in the independent condition. Independent 8duna, by definition, demand little
consideration of the partner’'s actions. Thus, eséhsituations, the autonomous robot’s
performance is not affected by the actions of thener. Dependent situations, on the
other hand, demand consideration of the partned, ve@ believed that our algorithm
would aid performance in these conditions. The @doce tests the hypothesis by
comparing task performance (number of victims aazihds retrieved) with and without
the situation analysis information.

Figure 6.8 illustrates the results from the clgaand rescue experiment. The left two
bars portray the results for the independent sdnatn these conditions, the autonomous
robot forages for hazards to cleanup and the huvpanated robot uses MissionLab’s
search and collect behaviors to forage for victiirtsus, in all of the 30 trials each robot
retrieves either a victim or a hazard. As predictib@ robot using situation analysis
information and the robot not using situation asalyinformation both retrieve 30

victims and 30 hazards in this condition.
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Cleanup and Rescue Experiment Results
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Figure 6.8 Results for the cleanup and rescue experiment r@septed above. The line graph portrays
the net outcome for each condition. The bars dep&ihumber of hazards and victims retrieved. Higzar
cleaned are shown above the number of victims ezkclihe left two bars and line points depict the
independent conditions for both the test and therobrobot. In these conditions both the contnadi dest
robot perform equally well. The right two bars dimeé points examine the dependent situation. Nud in
this situation the test robot outperforms the aumobot.

In the dependent condition, because the retriefval victim or a hazard required the
cooperation of both robots, the best possible se@® thirty. The autonomous robot’s
use of situation information results in ten addhitib victims being rescued. Thus, as
predicted, in the dependent condition the auton@mobot’s use of situation information
affords better performance than the robot that d¢gonsider the situation. In this case,
the information provided by our algorithm indicaties the autonomous robot that its
outcomes for this situation rely on collaboratioithwits human-operated partner. The
control strategy, on the other hand, fails to coesithe partner’s role even though the
situation demands collaboration, hence resultingoorer performance.

Overall, this experiment demonstrates that thermétion resulting from an analysis
of the social situation can improve a robot’s apito perform interactive tasks similar to
collaborative foraging. The algorithm we have pregm uses perceptual stimuli in the

environment to produce information about the sosi&lation. Minimally, we have
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shown the feasibility of our approach and the pidénmportance of situational

considerations in human-robot interaction, ideasckvinave not been investigated as a
part of HRI in the past. Nevertheless, the resoiithis experiment are limited in several
ways. First, the situations encountered as parthefexperiment are derived from a
limited portion of the interdependence space. Sgconly a single control strategy was
considered. The next experiment generalizes thesdts to the entire interdependence

space and considers additional controls.

6.2.2 Situation analysis over the entire interdependespeee

Whereas the previous experiment only explored higterdependence or low
interdependence outcome matrices, this experimensiders outcome matrices from
every corner of the interdependence space. We eeathie algorithm’s performance
over thousands of different matrices representingbmad spectrum of the
interdependence space. Because of time-constriim&s not possible to test each of
these matrices using interaction between a humdnaarobot. Rather, the human was
replaced with an agent that selected the behawiatr maximized its own outcome
without consideration of its partnaméx_ow. The same strategy was employed by the
human in the first experiment and the agent inéRjgeriment.

For this experiment, we also compare the algorghperformance to four different
control strategies. For the first control strateglye autonomous robot consistently
selected the behavior that maximized its own outomithout consideration of its
partner (hax_own. For the second control strategy, the autononrobst consistently
selected the behavior that minimized the differen€dts and its partner's outcome

(min_diff). For the third control strategy, the autonomaulsot consistently selected the
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behavior that maximizes the sum of its and itsrai$ outcome rhax_join). For the
final control strategy, the autonomous robot cdesity selected the behavior that

resulted in the greatest guaranteed outcomie (risK.

Table 6.5 Experimental summary for the situation analysipeginent conducted over the entire
interdependence space.

Experiment Summary

Situation Analysis over the entire Interdependenc&pace
Explore the use of information pertaining to aaiion’s position in the
interdependence space to control a robot’s behavior

Experiment Type Numerical simulation

That the use of the situation analysis algorithsults in an increase in net
outcome when compared to alternative control sjiase

Procedure Follow partner model creation procedure from Figauz

Purpose

Hypothesis

Independent variable | Action selection strategy.

Dependent variable | Net outcome

Comparison of several different alternative acsetection strategies to the
use of situation information.

Hypothesis is supported. The use of situation aigipformation results in
Conclusion significantly greater net outcome being obtainedhgyrobot than does any of
the control strategies.

Method of Analysis

Figure 6.7 describes the experimental proceduesl sight procedure). First, a
random matrix is created from an empty matrix papd with random numbers between
0 and 24. The random matrix in this case does awe factions assigned. Hence, these
matrices are abstract in the sense that the reveadigosts are associated with selecting
one of two non-specified actions. Once a matrixrsated, it is presented to both the
simulated robot and the agent. Both simultaneossllect actions from the matrix
receiving the outcome that results from the acpai. The simulated robot uses either
situation analysis or one of the previously disedssontrol strategies (section 6.2.1) to
determine which action to select from the matrikisTexperiment was conducted as a
numerical simulation and hence did not occur inl@ot simulation environment. In other
words, the simulated robot in this case was antapan selects an action in accordance

with the strategy dictated by the experimental doomd but did not actually have to
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perform the action in an environment. Consequédntighis experiment did not require

perceptual generation of the outcome matrix andattteons selected by the agents did
not affect the environment. One consequence is ttlatconclusions drawn from the

results of this experiment do not relate to a raydask in particular.

In order to ensure coverage over the entire spaeegxamined one hundred trials
each consisting of 1000 randomly generated outaoateices. We recorded the outcome
obtained by each individual for the pair of actimeected. We predicted that the net
outcome received by the simulated autonomous relooid be greater and statistically
significant when the robot used the computationadcess from Figure 6.5 when
compared to the controls. We reasoned that, onageerthe information provided by
situation analysis would be valuable to the rolootifs selection of its behavior. We thus
hypothesized that the use of this information wawslult in a greater net outcome than
the control strategies.

Figure 6.9 presents results for this experimehe $econd bar from the left depicts
the net outcome using the situation analysis algori The next four bars to the right
indicate the net outcome for the control conditio®@ur algorithm significantly
outperforms the controls in all four conditiong € 0.01 two-tailed, for all). The
maximum possible outcome for a robot with compketpriori knowledge of all of its

partner’s actions is also depicted to the leftréderence.
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Quantifying Situation Analysis Gains
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Figure 6.9 Results of this second experiment are presentedealithe second bar from the left indicates
the net outcome when the situation analysis algorits used. The next four bars are the controlgHer
experiment. Error bars indicate 95% confidencerirle Analyzing the situation resulted in the gesstitnet
outcome of when compared to the control stratedibs. leftmost bar portrays the maximum possible net
outcome. Note that use of the situation analygjerihm results in significantly greater outcomarttthe
other control strategies.

The results confirm our prediction that use of $iteation analysis algorithm results
in greater net outcome than does the use of theat@trategies. The graph also indicates
that our procedure outperforms the four differeantmol strategies. Furthermore, the
results show that our procedure is beneficial rage to an agent or robot that will face
many different social situations from unique locas in the interdependence space. Still,
the algorithm performs far below the maximum passiBetter performance could likely
be achieved by increasing the size of the domathcanlomain of, the mapping from
interdependence space location to transform (frectian 6.1.4). In this work, we

subdivided the interdependence space into threasardenotedl, |, ,l,. Greater

subdivision of the space would make better usehef information provided by the
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situation analysis algorithm. We also limited thenber of transformations considered to
nine. Additional transformations would increase #hgorithm’s performance if a novel
transformation outperformed all other transfornragiat some location in the space.

The value of the situation analysis algorithmpessented in this chapter, stems from
the very fact that it knows nothing of its intetimet partner. The computational process
does not assume anything about the partner. Rdtbperates only on the information
available within the outcome matrix. This is in t@ast to game theory, which operates
on the presumption of the partner’s rationality §@®e & Rubinstein, 1994). We expect
that the performance of this approach would inaedsstically as additional, partner

specific, information is provided.

6.3 Situation Analysis Conclusions

This chapter has introduced a method for captuifigrmation about social situations
and for using this information to guide a simulatedot’s interactive behavior. We have
presented an algorithm for situation analysis armbraputational process for using the
algorithm. Our approach is derived from the socfdychological theory of
interdependence and has close ties to the psychadbghuman-human interaction
(Kelley & Thibaut, 1978). The value of knowing @usition’s location in interdependence
space has been highlighted with experiments inidigahat, on average, this information
can aid in selecting interactive actions and timasoeme situations this information is
critical for successful interaction and task perfance.

We do not address the challenge of managing wingrtin this chapter. Much work

has already addressed this topic with respect & dhtcome matrix (Osborne &
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Rubinstein, 1994). The uncertainty present in thee@me matrix will result in similar
uncertainty in the situation’s location in intereéeplence space.

We have presented one method for using informatlmout a situation’s location to
guide behavior selection. Our method relates theixslocation to a transformation of
the matrix. For the most part, we have not usedfalhe information available. We did
not, for example, explore the effect of a situagsosymmetry on the behavior of the
robot. Symmetry describes the balance of contat tte robot or its partner has over the
other. The value of this dimension could play apanant role in determining behavior.
This possibility could be explored as part of fetuesearch. Moreover, we have assumed
throughout that the partner consistently selects rfax_own transformation. The
exploration of different partner types will also the fruits of future research.

In summary, it is our contention that this apptoaftfers a general, principled means
for both analyzing and reasoning about the sotiaatons faced by a robot. Because the
approach is general, we believe that it can beiegpbd a wide variety of different robot
problems and domains. The development of theotefiGaneworks that include
situation-specific information is an important acgastudy if robots are expected to move
out of the laboratory and into one’s home. Morepuercause this work is based on
research which has already been validated forpateponal interaction, we believe that it
may eventually allow an artificial system to reasdaout the situation-specific sources of
a human’s social behavior. The results of this tdrapave shown that our theoretical
framework, and the representations included theoain have a strong positive impact on
a robot's ability to select actions. Moreover, thagsults serve as partial evidence

towards the second subsidiary question posed infitee chapter—what effect will
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deliberation with respect to the social situaticewén on the robot’s ability to select
actions? The chapters that follow explore the us¢his framework with respect to

relationships and then to trust.
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CHAPTER 7
REPRESENTING AND REASONING ABOUT RELATIONSHIPS

Relationships are a fundamental aspect of humaalsation (Duck, Acitelli, Manke, &
West, 2000). Every human being alive today hasnfhbirth, relied on a vast network of
other human beings for survival. From the doctothe delivery room to an army of
teachers, instructors, and friends, humans areeshapd guided by their relationships. It
is telling that a lack of relationships is one impat indicator of social dysfunction
(Farrington, 1993). Clearly then socializationrigical for human development as reports
of children raised with minimal socialization ofténdicate severe disorders (Toth,
Halasz, Mikics, Barsy, & Haller, 2008). Hence, foumans, having relationships is
essential for survival.

Relationships are also critical for learning. Treaxs build relationships with their
students that are mutually rewarding and oftenntlagerial taught is specifically tailored
for the student (Trigwell, Prosser, & Waterhousg99). Young non-human primates, for
example, predicate their learning with respectrttedationships—accepting the tuition of
only those individuals with which they have stromgationships (V. Horner, personal
communication, February 9, 2006).

Relationships are important for cooperation. Thare simply some things which
cannot be completed successfully without the hélptleers. Games, such as soccer for
instance, require the participation of others. Refships allow an individual to better

predict and reason about the actions of the otbesom or people in a cooperative or
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competitive team. If a robot is to be a good teatenoa a good competitor it must build
relationships which allow it to predict the actiaf¢he other members of the team.

Finally, relationships impact communication in ion@ant ways. Interpersonal
communication is often regulated by the charadiesi®f the relationship (Sears, Peplau,
& Taylor, 1991). Speaking to a superior influenced just what is communicated but
also how it is communicated (Schatzman & Strau8S51L Similarly, how something is
communicated often identifies important charactessof the relationships. For all of
these reasons it will be important for a roboteason about its relationships.

The purpose of this chapter is to begin to develmp theoretical and algorithmic
underpinnings that will allow a robot to reason athits relationships. The chapter begins
with a definition of the term relationship and udke framework set forth in the

preceding chapters to create methods that allowoth@ characterize its relations.

7.1 Relational Disposition

Relationships develop and are defined by the intenas that compose them (Kelley et
al., 2003). Interdependence theory describes @iae&hip between two individuals as a
type of summary of the dyad’s interactions overdes of interactions. The definition
offered by the American Heritage Dictionary concutsstates that a relationship is “a
particular type of connection existing between wdlials related to or having dealings
with each other (Relationship, 2000).” Both dedonips of the term agree that a
relationship represents a distinctive connectiambeen individuals which develops from
their having repeated interactions with one another
Recall from section 4.1 that the selection of @i by both individuals in an

interaction results in outcomes for both individudsing the notational tools developed
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in the previous chapters, we can represieatresult of a series of interactions between

two individuals as §},...,0;0;' ,...,05 ] whereN is the number of interactions. Each of
the N interactions occurs when both individuals selmtsaction(af(,a;i) and results in

an outcome for both individua(t;)f(,o;i). As will be shown, the pattern of outcomes that

results from a series of interactions can be usedescribe the overall interdependence
properties of these interactions. These interdeperel properties characterize the
distinctive connection that has developed from gbges of interactions. Consider the
interactions of teammates. Teammates select actimisresult in mutually positive or
mutually negative outcomes. In soccer, for exampleen a teammate scores a goal, that
individual's actions result in positive outcomes foe entire team. Hence, the pattern of
outcomes is correspondent. In contrast, the intierss of opponents are typically
conflicting, with the actions selected by one indihal resulting in contrasting outcomes
compared to that of the opponent. Again conside@ngoccer example, when an
opponent scores a goal, positive outcomes resulttfe opponent while negative
outcomes result for one’'s own team. Hence, we @ the pattern of outcomes to

characterize a relationship in terms of its intpefedence properties.
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Kelley’s Two-dimensional Distribution of Relatioripk
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Figure 7.1 Kelley and Thibaut noted that relationships canoalse presented within the

interdependence space (Kelley & Thibaut, 1978).sThigure presents their original mapping of
relationships within the interdependence spacelel{ednd Thibaut recognized that relationships can b
described in terms of interdependence and correfspme, two of the same dimensions that are used to
describe social situation.

Kelley and Thibaut note that relationships, like tnteractions they accrete from, can
be described in terms of their interdependence esgacation (Figure 7.1). Close
relationships, such as that of a husband and wefe] to be characterized by a high
degree of interdependence. Thus the actions ofitsband tend to have a large impact
on the outcomes of the wife, and vice versa. Theraations of casual acquaintances, in
contrast, are marked by little or no interdependebetween the two individuals.
Correspondence, the extent that each partnersomés are consistent with the other
partner’'s outcomes, can similarly be used to mapdifference between friends and
enemies, with friends having correspondent outcoamelsenemies conflicting outcomes.
Colloquially the term relationship is often used describe a particular type of
relationship such as mother-daughter, husband-wifdriends. These and many other

relationship types represent generic labels forrnom interpersonal relationships. Still
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they can and have been described with respecetoltdtation in interdependence space
(Kelley & Thibaut, 1978). Figure 7.1 depicts theuk of research conducted by Kelley
and Thibaut relating a dyad’s interactions to we dimensional interdependence space

location.
The outcomesd,...,0,;0; ,...,0y ] represent the end result of several interactions

between two individuals. As a roboticist, it is ionant to develop robots capable of
characterizing their developing relationship withiaman. To do that, the robot needs to
not only recognize the pattern of outcomes thattteasspired between it and the human,
but must also be able to map that pattern of outsoback to the human’s transformation

tendencies. Recall from section 4.3, that an imldial transforms the given matrixog )

to produce an effective matrixO{) which includes the individual'srelational

disposition. Disposition is defined as a stable, social charaenanifested in an
individual. An individual's disposition describeglarative or predominant tendency with
respect to an individual’'s social character. A tielaal disposition then describes a
durative tendency with respect to an individuagtionship with another individual.
Dispositions are exacted via transformation tentbsn Enemies, for example, will
tend to have a relational disposition marked byflazin often attempting to minimize
their interactive partner’'s outcomes. Recall theg transformation process is described

formally as O, = f(0O,,8) where O, is the effective outcome matrix), is the given

outcome matrix, @ is the transformation, and the functibriransforms the matrix.
Interdependence theory originally developed thensfi@mation process from data

describing human interaction. Hence, we expect tiattransformation process of the

robot’s human partner can be expressed formall@as= f(O(;i ,H‘i). Disposition then
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is an individual’s tendency to select a particuigre of transformation. One’s relational
disposition reflects an individual’'s tendency tdesé a particular type of transformation
when interacting with a particular individual. Geglezation over classes of individuals
may also be possible using the stereotype techsidascribed in section 5.4. Table 7.1
lists several transformations. Consider againgt@mple, the difference between friends
and enemies. Friends will tend to choose prosdcasformations such asax_joint

max_othey or min_diff whereas enemies will tend to choose antisociastcamations

such agnin_joint max_ownmin_other andmax_diff One problem for the robot then is
to determine its partner’'s relational dispositiooni a series of interactions with that

partner.

Table 7.1 A list of several different types of transformatsoand a description of each. A relational
disposition describes an individual's tendency & @& single transformation when interacting with a
particular partner. Hence, the table below dessri#gveral relational dispositions.

Relational Disposition Types

Name Character Description
max own | Egoistic—the individual selects the actign
B that most favors their own outcomes.
min own | Ascetic—the individual selects the actign
B that minimizes his/her own outcomes.
max other| Altruistic —the individual selects the actign
B that most favors their partner.
min other | Malevolence—the individual selects th
B action that least favors the partner.
max_joint Cooperative—the individual selects th
action that most favors both their own and
their partner’s interests.
min_joint Vengefulness—the individual selects th
action that is most mutually disagreeable.
max diff | Competitive—the individual selects the
- action that results in the most relative gain to
that of its partner.
min diff | Fair—the individual acts in a manner that
B results in the least disparity.

[1°)

11°)

D

7.2 Diagnostic Situations

Consider the following scenario: A robot interaetgh one of two types of humans,

enemies and friendlies, perhaps in a military demd&ihe relational disposition of
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enemies is to consistently use transformations thatimize the robot’s outcomes
(min_othe} whereas the transformational tendency of friegsdlfnax_othey is to
consistently select transformations that will mazienthe robot’s outcomes. Can a robot
separate enemies from friendlies based solely eir ffattern of interaction? We will
assume that the robot only has control oveows transformation. This section presents
foundational material that will result in a solutito this problem.

A diagnostic situation is a situation that revealgartner's matrix transformation
tendencies (Holmes & Rempel, 1989). As such, diaginaituations can potentially be
used to discern a partner’s relational dispositfdonsider the outcome pattern resulting
from interaction between an outcome maximizing tofmax_own and a friendly
(max_othe). Let the transformation paim@x_own max_othey represent each member
of the dyad’s relational disposition. An outcome xinazing robot will consistently
select the action that results in the most outcéondtself. A friendly will select the
action that will result in the most outcome for jgartner—the robot. Hence, after each
interaction both individuals will select the actigair which results in the maximum
outcome for the robot. Over any number of inteca®j the outcome resulting from the
transformation pair lax_own max_othey will be greater or equal to any other

combination of transformation types from Table fordthe robot. Formally the following
relationship of outcomes holds® >0f where the transformation paiméx_own

max_othey is denoted by the subscript 1 and the transfaomaiair fnax_ownany) is
denoted by the subscript 2.
Alternatively, consider the pattern of outcomesuténg from interaction with an

enemy. The transformation pam#&x_ownmin_othe} will represent each member of the
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dyad’s relational disposition. In this case, théat attempts to maximize its own
outcome while its partner is attempting to minimibe robot’s outcome. The actual
outcome received by the robot will depend on a attaristic of the situation called
symmetry. Recall from section 6.1, that symmetrgoddes the degre® which the

partners are equally dependent on one another.rterty, unlike the interaction with
the friendly, the robot’s outcome will not alwaye maximal when interacting with an
enemy. We can use this fact to discern a pattenntefactions with a friendly partner

from a pattern of interaction with an enemy. Figdr2 presents an example.
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Example: Diagnostic situation

Robot Hypothesized interaction
R R
h a,
9 7 9 7 9 7
H
é a 4 7 4 7 4
5 12 15 12 1 12 15
T _n
(s 2 5 2 5 2
Given Robot Human Effective
Situation Transformation: Transformation: Situation
max own max other
Result: action paifaf,a}'),
outcome pair(152)
Robot Resulting interaction
R R
a a,
9 7 9 7 9 7 9 7
H
é a | 7 4 7 4 7 @ 7 4
5 12 15 12 1 12 15 12 15
I _H
s 2 5 2 5 2 5 2
Given Robot Human Effective
Situation Transformation: Transformation: Situation
max own min other

Result: action pai(af,aiH )
outcome paif(7,4)

Figure 7.2 An example of a diagnostic situation. The robot &mel human are presented with a given
situation. The robot selects an action according toax_owntransformation and predicts the outcomes
resulting for both itself and the human partnethé human selects according tonax_otherrelational
disposition. In the resulting interaction depictelow, the human actually selects according noax_own
relational disposition. The situation is diagnogtiecause different outcomes for the robot resalnfr
different relational dispositions.

Consider another scenario. Rather then interaetitty enemies or friendlies, in this
scenario the robot interacts with competitors oopsrators. Competitors attempt to
maximize the differencenfax_difj in outcome between themselves and the robot

whereas cooperators attempt to minimize the diffegein outcomenfin_dif)). If we

176



compare the difference in outcomgo¥-o"|) resulting from interaction with

competitors versus cooperator, here again, theltsesue clear. In this casehe
difference in outcomewill always be greater or equal when the transtdram pair is

(max_diff max_dif§ versus hax_diff min_diff. Formally the following relationship of
outcomes hold:#;olR —01'*‘ >‘02R —oﬂ where the transformation paiméx_diff max_dif}

is denoted by the subscript 1 and the transformatair fnax_diff min_diff) is denoted
by the subscript 2. In other words, for a givemation, the difference in outcome will
never be less when the partner’s typaniax_diffwhen compared to a partner type of
min_diff

We have thus formulated two rules for discerningastner’s type. In the enemies
versus friendlies scenario the robot’s relationspdsition wasmax_ownand in the
competitors versus cooperators scenario the robafational disposition was the
max_difftransformation. A systematic investigation of eaaibot relational disposition in
Table 7.1 indicates that each robot dispositioretgan discern between two different
partner types given a method of comparison. Talieligts each robot type with the
partner transformation types that it can distiniguas well as the method of comparison.

For example, the robot can use thax_owntransformation type in conjunction with the
o; > o} method of comparison to discern a partner of tye_othefrom one that is of
type min_other Similarly, the robot can use thmax_diff transformation type in

conjunction with the+olR —of‘ >‘o§—o§‘ method of comparison to discern a partner of type

max_diff from one that is of typemin_diff To emphasize the discussion above,
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combinations of robot type and methods of comparisdl discern particular partner
transformation types

Table 7.2 The table below lists the diagnostic charactedstior different combinations of robot
transformation type, first transformation type, @et transformation type, and comparator. Each e$dh
combinations does not result in an inverted charation. The combinations of robot type, hypothes
transformation type and method of comparison oefult in diagnostic and non-diagnostic situationd, a
hence, can be used to determine the partner’samddidisposition.

Diagnostic Situation Characterization

Robot type Hypoth. Real Method of Diagnostic Non- Inverted
Transform. | Transform. Comparison diagnostic
Type type
max_own max_other min_other oR > oR Yes Yes No
1 2
min_own min_other max_other H H Yes Yes No
o <0,
max_other max_own min_own H H Yes Yes No
0 >0,
min_other min_own max_own 01R < 0; Yes Yes No
max_diff max_diff min_diff ‘OlR _OlH‘ >‘0§ _0;‘ Yes Yes No
min_diff min_diff max_diff ‘OlR _OlH‘ <‘0§ _OE‘ Yes Yes No
max_joint max_joint min_joint OlR _,_qH > 0; _,_0; Yes Yes No
min_joint min_joint max_joint OlR _,_qH <0§ +0§ Yes Yes No

Before moving on to how to discern the differenoetween partner relational
disposition types, we must consider the natureiafribstic situations more deeply. As
mentioned above, a diagnostic situation is a sdoathat will reveal the partner's
transformation type. With respect to Table 7.2agdostic situation occurs whenever the
method comparison holds. Thus, for the friendliad anemies example, a diagnostic
situation is any situation in which the outcomeutsg from interaction with a friendly
is greater than the outcome resulting from therawion with an enemy. Clearly this
should be the majority of situations. Diagnosttaaiions do not conclusively tell us that
our hypothesized partner type is the partner’'s rga¢, but they do lend support to the
hypothesis. Hence, we cannot conclude that thengais friendly (hax_othey simply

because the outcome resulting from one interactiitim the partner was greater than the
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outcome that would have been expected from int@raakith an enemyniin_othe}.
Figure 7.2 presents an example of a diagnostiatsito.

Not all situations are diagnostic however. Manyations do not reveal the partner’s
transformation type. These situations are termen-diagnostic as they do not tell us
anything about partner’s transformation tendencié& most obvious example of a non-
diagnostic situation is a situation that is popedatvith all of the same outcome values.
Returning to our friendlies and enemies exampleyradiagnostic situation will result in

the same outcome for the robot regardless of whefleepartner type is a friendly or an
enemy. Hence, our method of comparison for thege,ty? >o0X, will not hold.

Unfortunately, the occurrence of non-diagnostioation does not tell us that the partner
is an enemy and not a friendly. It simply tellsneghing. Figure 7.3 presents an example

of a non-diagnostic situation.
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Example: non-Diagnostic situation

Robot Hypothesized interaction
ch a;
9 7 9 7 9 7
H
é a 4 6 4 6 4 6
2 1 15 1 19 1 15
H
(s 7 5 . 5 @
Given Robot Human Effective
Situation Transformation: Transformation: Situation
max own max other
Result: action paifaf,a;'),
outcome paif(15,7)
Resulting interaction
9 7 9 7
é 4 6 4 6
S 1 15 1 15
T
5 7 5 7
—_— ]
Given Robot Human Effective
Situation Transformation: Transformation: Situation
max own min other

Result: action paifa?,a}'),
outcome paif(15,7)

Figure 7.3 An example of a non-diagnostic situation is preseérgboveThe situation is non-diagnostic
because the outcome pair is the same regardldgbe diuman’s transformation type. The top row presen
the interaction hypothesized by the robot and tlddia row presents the resulting interaction. Ty k
point here is that this given situation does nditidguish between the human’s differing relational
dispositions. Even if the robot were to interacthwa human in many different non-diagnostic situai
the robot would not be able to determine the humealational disposition.

If, on the other hand, the pattern of outcomes tbsults is inverted with respect to
our method of comparison, the outcome resultingnfiateraction with an enemy was
greater then that of a friendly, then we can repegctmethod of comparison. We call this

an invertedsituation. The situation is inverted from our esta¢ions with respect to the
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method of comparison. In contrast to a non-diagastuation an inversion tells us that

our method of comparison and, hence, our hypotedspartner type must be wrong.

Considering our example, an inversion tells us that partner type is not a friendly.

Figure 7.4 presents an example of an invertedtgiua

Example: Inverted situation

Robot Hypothesized interaction
a a,
9 7 9 7 9 7
H
S a7 4 7 4 :7) 4
% 1 15 1 1 1 15
I _w
(s 2 5 2 5 2
Given Robot Human Effective
Situation Transformation: Transformation: Situation
max_own max_own
Result: action pai(af,alH )
outcome paif(9,7)
Robot Resulting interaction
a a;
9 7 9 7 9 7
H
s a7 4 7 4 7 4
% 1 15 1 1 1 15
L _n
(s 2 5 2 5 5
Given Robot Human Effective
Situation Transformation: Transformation: Situation
max own min other

Result: action pai(azR,azH )
outcome pair(152)

Figure 7.4 An example of an inverted situatiohhe situation is inverted because the robot's autem
the resulting interactionm{in_othe} is greater than the robot's outcome in the hypsitted interaction

(max_own.
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Returning to Table 7.2 each of the combinationsobbt type, method of comparison
and partner types results in both diagnostic and-diagnostic situations. These
combinations do not result in inverted situatiorfsormally we define the set

Y :{D, I, N} as representing the three classifications of sdoadiagnostic, inverted,

and non-diagnostic, respectively.

We now develop an algorithm for determining aatitan’s classification type given a
situation O, a robot transformation typé', and the predictec{o‘k,ok‘i ) and actual

outcomes(of(,o;i) of an interaction. It should be noted that muéhtre preceding

discussion described transformation pairs such msx(own max_othey and
(max_own min_othej whereas the algorithm uses predict(mi,o,;i ) and actual
outcomes (of(,o,j). The conversion from transformation pairs to ouotes follows

directly by using the functiorQ;' = f(OG‘i 6" ) Hence, in the examples presented above

the following series of steps are used to convernfpairs to transformations to pairs of

outcomes,
1) f(Ogi , max_other ) =0
2)max_owrdO;' )= &'
3) f(0g' , min_other )= O
4)max_owrO;' )= a;’.
5) Finally O(a, ,a;') = (o‘k,ok‘i) is used to create the outcome pairs.

The preceeding steps represent the partner’s tnanation process (Figure 2.5 and

described in detail in section 4.3). The algorittBox 7.1) follows directly from Table
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7.2, essentially classifying the situation basedeach of the algorithms parameters.
Overall, the parameters to our algorithm z(@@i,(of(,o,j J (o}, 0f )) This algorithm

will be the basis for an algorithm that charackesizhe partner’s relational disposition.

Figure 7.5 provides an example.

Determining a Situation’s Diagnostic Characteristis

Input: Hypothesized interaction reSL(tl)i ,O_i) , real interaction resulté)i ,0_i ), robot

transformationd'
Output: Situation’s diagnostic characteristidé = {D, I, N}

if ( //Combinations of robot type and
//method of comparision resulting in

(6' =max_owrand '0' =0') or . [ IPeTIST
/Inon-diagnostic situation.

(6 =max_othemnd "0~ =0™')or

(6" =max_jointand 0+ 0" =0 +0™")or
(6' =max_diffand |"0' ~"0”'| =|0' ~07|))
return N

else it //Combinations of robot type and

@ =max_owrand ‘0' <0')or /Imethod of comparision resulting in

i i 4 llinverted situation.
@ =max_otheand 0~ <0 ')or

@' =max_jointand '0'+ 0™ <0 +07')or
(6' =max_diffand | 0'~"0”"| <|o' —07))

4. return | /Ireturn inverted situation type
5. else
return D /Ireturn diagnostic situation type for all
/lother situations

endif

Box 7.1 The algorithm above characterizes situations imsediagnostic characteristics. The robot
type is used to determine the comparator thatheilused. Next the outcomes are used in conjuneatittn
the information from Table 7.2 to determine therekgerization.
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Example: Determining a Situation’s Diagnostic Cleseastics
Hypothesized interaction
Robot yp
alR aR Robot Effective Action
2 > Transformation: Situation Robot
c 9 7 max_own Robot Predicted
@ H
g a | - 4 outcgme
5 pair
T 12 15 - , (152)
a" Human Effective Action
2> 2 Transformation: Situation Human
Given Situation | ~ max_other Human
Resulting interaction
Robot Effective Action
Transformation: Situation Robot
max_own Robot ;
- — Resulting
© outcome
% pair
T ) ) (7.4)
Human Effective Action
Transformation: Situation Human
Given Situatio. 9 min_other Human
. . | *
Algorithm inputs:8' =max_own (152)", (7.4)
Result:D, situation is of type diagnostic

Figure 7.5 The example above uses the given situation fronurBiy.2 and demonstrates use of the
algorithm from Box 7.1. The given situation is tséormed by the robot and the human to produce an
effective situation and finally an action. The aatipair results in an outcomes for both the rolmat s
partner. In the hypothesized interaction (top rtivé) outcome pair is predicted. In the resultingriattion,

the outcome pair is the result of an interactiotwieen the robot and the human. These pairs of méso

as well as the robot's transformation type are uasdnput to the algorithm which characterizes the
situation as diagnostic.

7.2.1 Diagnostic Situations as a function of Matrix Size

We can use the algorithm presented in previousosetd explore the proportion of non-
diagnostic to diagnostic situations. A robot treafaced with the challenge of discerning
its partner’s relational disposition does not gafigrhave complete control over the

situation it faces. Rather, it must use whateverasions present themself to determine
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the partner’'s type. Hence, the existence or lacHiagnostic situations is an important

guestion faced by a robot attempting to discerpatsner’s relational disposition.

Table 7.3 Summary of the diagnostic situations as a funatbmatrix size experiment.

Experiment Summary

Diagnostic Situations as a Function of Matrix Size
Investigate the preponderance of diagnostic sdnatamong matrices of

Purpose different size.
Experiment Type Numerical simulation
. As matrix size increases, the ratio of diagnostindn-diagnostic situations
Hypothesis -
will increase.
Procedure Follow the procedure presented in Table 7.4.

Independent variable | Matrix size: 2x2, 3x3, 4x4, 5x5, 6x6, 7x7, 8x8, 929x10.
Dependent variable | Percentage of diagnostic situations

Method of Analysis | Graph analysis

Hypothesis is supported. As matrix size increatbesnumber of diagnostic
situations increases becoming asymptotic at abpeit7x7.

Conclusion

We conducted a numerical simulation to determiow lthe ratio of diagnostic to
non-diagnostic situations changed with respecthto dize of the outcome matrix. We
reasoned that one important cause of non-diagnastiations is constriction of
individual's action space. Action space constrictioccurs when either or both
individuals has few actions to choose from in thteriaction. This constriction results in a
smaller matrix size in terms of the number of cahsnand/or rows. The smallest matrix
that still offers a decision choice for both indiugls is a 2x2 matrix. This matrix results
in only four pairs of potential outcomes. Henceheaambination of transformation pairs
is mapped to an outcome pair space of size fourfulfker reasoned that increasing the
action space would increase the relative numbediadnostic situations compared to
non-diagnostic situations. Table 7.3 summarizeeiperiment.

We used a numerical simulation in this experiméle tested the hypothesis by

presenting a simulated robot and simulated partnatrices of different sizes and
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recording the number of diagnostic situations tlestulted. To do this, the following
procedure was employed:

Table 7.4 Experimental procedure for the diagnostic situatias a function of matrix size experiment.

Experimental Procedure

1) Create 1000 matrices of the following differentesiz2x2, 3x3, 4x4, 5x5, 6x6
7x7, 8x8, 9x9, 10x10. Each matrfD) was populated with random values
aribitarily ranging from[— 2020].

2) For the max_own robot type, the transformation process
OL = f(0,max_own); max_own(OiE): a, was used to determine the robat’s
predicted action. The matching hypothesized transftion for the partne
(Table 7.2 row 1 column 2) was used in conjunctigith the functions
o; = (0,67); max_own(07')=a_' to determine the partner's action. The

=

predicted outcomes were calculated fr@te,,a,') = (oi o’ ) .

3) The same procedure as in the previous step wastegbesing the partner|s
real transformation type (Table 7.2 row 1 columnT)e real outcomes wefre

calculated fromO(a} ,a.') = (0,07 ).
4) Next, the algorithm from Box 7.1 was used to chiemawe the matrix as either
type {D,N} diagnostic or non-diagnostic.
5) The characterization of the situation was recorded.

6) We repeated the procedure for theax_own max_other max_diff and
max_jointrows from Table 7.2

The independent variable for this numerical sirokaexperiment is matrix size.
Hence, we manipulated the action space of botlviehails to produce random matrices
of a desired size. The dependent variable is thebeun of diagnostic situations that

resulted.
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Diagnostic versus Non-diagnostic situations

1
0
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% w 0.9 ~— .
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a il y
- © 0.8 —
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8 o7 7
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o o~
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2x2 3x3 ax4 5x5 6X6 Y 8x8 9x9 10x10
Matrix size
—&— max_joint v min_joint —— max_other v min_other
max_diff v min_diff max_own v min_own

Figure 7.6 The graph above depicts the percentage of diagnsistiations as a function of matrix size.
We hypothesized that matrices with fewer actionsuldiaresult in a smaller percentage of diagnostic
situations than matrices with more actions. Thedris true regardless of the type of comparisonenad

Figure 7.6 depicts the result. As the matrix smeeases from 2x2 to 6x6, the percent
of diagnostic situations grows from 65 percent@p@rcent before leveling off at around
size 7x7 for each of the robot transformation typEse number of non-diagnostic
situations is equal td—n wheren is the number of diagnostic situations for all data
points in the figure. The graph provides suppaat tihconstrained action space can limit
the robot’'s ability to determine its partner’s tedaal disposition. For a 2x2 matrix
approximately 65 percent of situations are diagopgtroviding information about the
partner’'s relational disposition. For matrices ofes7x7 and greater, this percentage
grows to approximately 90 percent.

These results have implications for robot appiices in which the robot must
determine its partner’s relational disposition @wfinteractions. Military applications
involving interaction among both enemy and frienidigividuals is one such area. In this
case, the robot is better served to have a largenaspace that will afford a larger

proportion of diagnostic situations in general.
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7.3 Characterizing Relationships

Diagnostic situations can be used to characteneedlational disposition of an unknown
partner. In this section we present an algorithiat tiilizes diagnostic situations to
determine relational disposition of an unknowniiattive partner.

The previous section described diagnostic sitnatimon-diagnostic situations, and
inverted situations. We described a set (rows d¢fld&.2) of combinations of robot and
partner types along with methods of comparison téstilted in only diagnostic or non-
diagnostic types. We noted that the combinationsobbt type and partner type along
with the method of comparison do not result in nsu@ns.

In this section, we develop an algorithm basedhmnrows of Table 7.2 that will

allow us to determine a partner’s transformatigrety ™" . In the most general sense, the
algorithm operates by hypothesizing a partner typgeracting with the partner over
successive situations, and observing the resultieointeractions. The algorithm from
Box 7.1 is used to classify the situation as diatjep non-diagnostic, or inverted. If an
inverted situation occurs, then the hypothesizquk tis rejected. If a non-diagnostic
situation occurs then additional interactions viith partner will be necessary. Finally, if
a diagnostic situation results, the situation issider evidence that the hypothesized
partner type is the true type. Once the robot'slevte reaches a predefined threshold,
the robot concludes that, indeed the hypothesiypé is the correct type. Box 7.2

presents the method in the form of pseudocode.
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Characterizing a Partner’s Relational Disposition

Input: Series of interaction®),, ..., O,
output: 87 OT

1. Foreachd™ OT //For all partner transformation types

For eachQ,,.. .,Oj /IFor a series of interactions

Use Table 7.2 to determin@ OT . //Use the table to determine the robot’s type

Interact with the partner to determine the actugatomes.
Use algorithm from Box 7.1 to characterize theatitin.
Determine if the characterization of the situatdiows one to rule out the partner’s type
or conclude that the hypothesized type is thetiype.
8. Endfor
9. Endfor

2
3.
4, Predict the outcomes that would result from intéoacwith this type of partner.
5
6
7

Box 7.2 The algorithm above characterizes the partnera&ioglal disposition. It takes as input a series
of interactions and outputs the partner’'s transédirom type. The algorithm operates by iteratingtigh
each type of relational disposition and severaranttions, predicting the outcomes that would tefsoim
interaction with the partner type in line 1. Afiateracting the algorithm in Box 7.1 is used toretaterize
the situation. The characterization is used toeeittule the type out or, possibly, conclude that th
hypothesized is the true type.

The algorithm’s first step simply iterates througtach hypothesized partner
transformation type. Next, for each hypothesizednea type the robot interacts in

several situations. In step 3, the robot uses Tal@do determine which transformation,
6 OT, it should use to test the hypothesized type. Néad robot uses the partner’s
transformation processQ; = f(0,67), max_owdO;')=a' to predict the partner's
action and its own transformation process to pteitticown outcome Oy = f(O,H‘),
max_own(OiE)= a,. These actions are used to predict the outcontenttiaresult from
the interactionO(a, ,a;') = (o:(,olzi ) . Next, in step 5, the robot interacts with thetipeir

and records the outcomes that resu(lof(,o;i). Next, the parameters

(0,6?i (01,07) ok of )) are used as input to the algorithm for determirdrgjtuation’s
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diagnostic characteristics (Box 7.1). In step & thsults are used to determine if the
characterization of the situation allows one toerolut the hypothesized type if the

situation is inverted, or alternatively, conclutiattthe hypothesized type is the true type
if a predefined threshold of diagnostic situatibas been meet.

The final step of the algorithm assumes the excgeof a threshold. The threshold is
used to determine if the number of situations dtterazed as diagnostic or inverted is
enough to conclude that the hypothesized typeeg#itner’s true type or to rule out the
hypothesis. If we can assume that the partneraiosial disposition is constant, then a
single characterization of a situation as invertedenough to rule the relational
disposition out. If, on the other hand, the parseglational disposition is not constant,
but rather principally governed by a single transfation type with occasional
alternative types, then we can define a ratio tfasions characterized as inverted and
use this ratio to rule out a hypothesized relatiotigposition. If the situation is
characterized as diagnostic we still cannot coreltitht the hypothesized relational
disposition is the partner’s true relational digpos. Rather, we must define a threshold,
either a particular number of diagnostic situationsa ratio of diagnostic situations, in
order to conclude that the hypothesized relatiotigposition is the partner's true

relational disposition.

7.3.1 Accuracy of Relational Disposition Algorithm

Much of the previous discussion has assumed tleapantner’s relational disposition is
fixed. In other words, the partner uses a staticfioed transformation during all
interactions. This, however, is not realistic. Humawill often alter or dynamically

change their relational disposition (Sears, Pepkaulaylor, 1991). While it is not
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uncommon that a human’s relational disposition walinain largely static, occasional
changes are also normal.

Preliminary experiments involving the algorithmegented in Box 7.2 showed that if
the partner's relational disposition is static thére algorithm could determine the
partner’'s type with perfect accuracy. In this casesingle inversion was sufficient to
reject a partner type hypothesis, and thresholdiregnumber of diagnostic situations
encountered at an arbitrary value of 100 resultecbirect type determination in each of

a 1000 attempts.

Table 7.5 Summary of the relational disposition algorithm esiment.

Experiment Summary

Accuracy of Relational Dispositions Algorithm
Explore the ability of the relational dispositioalgorithm to determine the

Purpose partner’s relational disposition.
Experiment Type Numerical simulation
As the percent variability of the partner’s relatb disposition increases, the
Hypothesis percent correct determination of the partner’stietal disposition will
decrease.
Procedure Follow the procedure presented in Table 7.6.

Independent variable | Percent variability of the partner’s relationalghsition.
Dependent variable | Percentage correct determination of partner’s type.

Method of Analysis | T-test analysis for significance.
Hypothesis is supported. As the percent variabilftthe partner’s disposition
Conclusion type increases the ability of the algorithm to deiee the partner’s relations
disposition decreases.

Still, because a human partner’s relational digjoos is not expected to remain
constant, a more realistic test of the algorithnuldaallow for occasional variability in
the partner’'s transformation type. We hypothesitledt as the amount of partner
variability increased the accuracy of the algoritttndetermine the partner’s type would
decrease. Our independent variable was the vatjalof the partner’'s relational
disposition, which ranged from O percent to 20 eetcvariability. Hence, a single

relational disposition was randomly chosen for gagtner. That disposition was then
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randomly replaced with another relational dispositiat a rate determined by the
independent variable. Our dependent variable wasattcuracy of our algorithm for
relational disposition characterization. In othesrds, the percentage that the algorithm
correctly determined the partner’s type. Tablepfdvides a summary of the experiment.

We tested this hypothesis as a numerical simulat\gain, our numerical simulation
of interaction focused on the quantitative resoftshe algorithms and processes under
examination and attempts to simulate aspects of rtiit, the human, or the
environment. The advantages and disadvantagesiofagiproach have already been
discussed in section 7.2.1. This numerical simoagixperiment again involved a single
simulated robot and simulated human. Both selecuohinal actions from outcome
matrices and received the outcomes that resultgdthle actions were not performed by
either individual.

To test this hypothesis the following procedures falowed:
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Table 7.6  Experimental procedure for the relational dispositalgorithm experiment.

1)

2)
3)
4)

5)

6)

7
8)

9)

Experimental Procedure
One thousand situations populated with random wal@bitrary range o
[— 20,20] was used) were created.
The robot’s partner was assigned a random “tamgddtional disposition.
The robot is presented with one outcome mai@y from the thousand.

The robot performs steps 1-4 of our algorithm fbaracterizing a partner
relational disposition (Box 7.2).

For step 5 of our algorithm for characterizing atipar’s relational disposition
the robot uses its relational dispositia, to select an actionaf) according

to the transformation procesd. = f(0,6'); max_own(OL )= a. . The partne
also uses its relational dispositiond™, and transformation proces
O; = f(O,tS"i ); max_own(O;): a; , to select an action.

The resulting outcomes, fror(tni ,o‘i) are calculated from the action pair a
the outcome matrix,@(a, ,a;' ))

The robot performs steps 6 and 7 of our algoritbncharacterizing a partner
relational disposition (Box 7.2).

Steps 3-7 are repeated until our algorithm hasroted the partner’s
relational disposition.

The partner relational disposition returned by dlgorithm is compared to th
partner’s true relational disposition and the resutecorded.

—h

S,

nd

S

\"ZJ

e

With each new situation faced by the dyad, thengais relational disposition was

selected in accordance with the independent variaénce, if the independent variable

was set to explore the results of using the algoritvith a partner that varies their

disposition in 7 percent of situations, then thetnea’s disposition had a 7 percent

chance of being different from the base type wabheinteraction.

Step 7 of our algorithm determines if the situasocharacterization allows us to rule

out the partner type hypothesis or conclude that hifipothesis is true. Because the

partner has a non-constant relational disposittas,not possible to reject a partner type

hypothesis because of a single inversion. Ratherexperimented with different ratios
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for rejecting or accepting the partner type hypsitelettingd be the number of
diagnostic characterizations, the number of non-diagnostic characterizationghe
number of inverted characterizations, dnte the total number of all characterizations,
the conditions for rejecting a partner type hypsiben this experiment was set to

¥> 004 andT > 10 The conditions for accepting a partner type higpsis was set to

n+d

> 004 andT > 10Q These values were empirically derived.

Accuracy of Algorithm for Partner Transformation Determination

100.0

80.0 92.5

60.0

40.0

48.9

Correct Partner
Transformation

20.0 +

Percent Determination of

0.0 L L L O N B |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Percent variabilty of Partner Transformation Selection

Figure 7.7 The graph above depicts the accuracy of the pastnelational disposition as a function of
partner transformation type variability. We hypdatized that as the partner’'s transformation vaiitgbil
increased the algorithm’s accuracy would decreBise.results above support our hypothesis.

Figure 7.7 presents the results of the experimést.hypothesized the overall
accuracy of algorithm decreases as the variabiitythe partner's transformation
selection increases. The rate of decrease is ajppately linear. Yet the slope of

decrease ISL% =-218. When the partner’s relational disposition did waty,

the algorithm, using the ratios for accepting agi@ating a partner hypothesis described

above, was successful 92.5 percent of the time.rWhe partner’s transformation type
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varied 20 percent of the time, the algorithm waby @8.9 percent accurate. Each data
point in Figure 7.7 also displays the point’s cdefice interval.

The results of the numerical simulation indicdiattthe accuracy of our algorithm for
determining a partner’s relational disposition @ases rapidly with partner variability

(slope of decrease é'% =-218). Domain specific testing will be necessary to

determine if the reduction in accuracy will inhilétsk or domain specific performance.
For example, warfare domains may result in mininfEss than 5%) partner
transformation variability. Still, even with thisw amount of variability, an accuracy of
=80 may be insufficient if the result of being chamtded as an enemy is being fired
upon.

Transformation similarity may also make the resalppear worse than they actually
are. For instance, thenax_joint transformation has similar outcome and action
characteristics as themin_diff transformation. Hence, a coarser division of
transformations as pro and antisocial could poddigtresult in much better algorithm
performance.

Alternatives to this algorithm, such as standamcime learning techniques, may
also improve performance. The use of support veaerhines or other machine learning
techniques could potentially outperform the presérdlgorithm. The advantage of the
algorithm we present is that its performance is Inaged on training data and hence
affords relational disposition determination withdeing first trained to do so. It may not
be possible to train a robot to determine theitrafts relational disposition in every

environment they will face, hence the value ofdlgorithm we propose.
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7.4 Conclusions

The preceding chapter has begun the long and cdigalig task of investigating how a
robot should represent and reason about its raktips. Using interdependence theory
as an underpinning, we have argued that relatipssigcrete from a series of interactions
and that these interactions result in a patternoaicomes which can be used to
characterize the relationship. We have developgdrithms based on this pattern of
outcomes that allow a robot to determine its paisneelational disposition. Our
algorithm is based on the robot’'s ability to chéedze a situation as diagnostic, non-
diagnostic, or inverted.

The experiments presented in this chapter are mumie of an introduction to the
study of human-robot relationships than a conclusiWwe have examined the hypothesis
that a constrained action space is one cause foidiagnostic situations. Our results
indicate that, indeed, matrix size is a factor émtermining the proportion of non-
diagnostic to diagnostic situations. We have als@amened an algorithm that
characterizes a partner’s relational disposition: @sults here indicate that the accuracy
of the algorithm’s determination of partner typemases rapidly with increased partner
type variability.

Overall, the research presented in this chaptpresents a novel and interesting
approach to the exploration of human-robot relatimps. We have developed the first
algorithms allowing a robot to discern and chandote its relationships and have
illuminated aspects of this topic of research whighy prove critical for human-robot

relationship understanding.
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CHAPTER 8
TRUST IN HUMAN-ROBOT INTERACTIONS

Trust. The term itself conjures vague notions efrig relationships and lifelong familial
bonds. But is trust really so indefinable? As weaied in the second chapter, the
phenomena of trust has been seriously exploredunyerous researchers for decades.
Moreover, the notion of trust is not limited to enpersonal interaction. Rather, trust
underlies the interactions of employers with tlegirployees, banks with their customers,
and of governments with their citizens. In many svayist is a precursor to a great deal
of normal interpersonal interaction.

For interactions involving humans and robots, adeustanding of trust is particularly
important. Because robots are embodied, their @eti@an have serious consequences for
the humans around them. Several people have aldiadyas a result of their work with
robots (Economist, 2006). A great deal of reseasclourrently focused on bringing
robots out of labs and into people’s homes and plades. These robots will interact
with humans—such as children and the elderly—urnfamiith the limitations of a
robot. It is therefore critical that human-roboteiraction research explore the topic of
trust.

In contrast to much of the prior work on truste tlesearch presented here does not
begin with a model for trust. Rather, we begin vatlvery simple ideaf it is true that
outcome matrices serve as a representation foraaten, then should it not also be true
that some outcome matrices include trust while rstftdo not?In other words, some

interpersonal interactions require trust, yet ath@o not. If an outcome matrix can be
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used to represent all interactions then it sholdd aepresent those interactions which

require trust. Our task then becomes one of detengniwhat the conditions for trust are.

8.1 Recognizing Situations that Require Trust

We begin the task of delineating the conditions tmst with a definition. As first
introduced in section 2.3tfust is a belief, held by the trustor, that theustee will act in
a manner that mitigates the trustor’s risk in a ga@tion in which the trustee has put its
outcomes at risk.

Rather than recognizing interactions that reqtrist, we will present conditions for
recognizing situations that require trust. Redadt tsocial situations abstractly represent a
class of interactions. This section develops camakt for classifying a situation in terms
of trust. Classification of a situation in terms tadist is a binary task, i.e. a true/false
statement concerning whether or not the selectioanoaction in a situation would
require trust. The section that follows introduaesethod for measuring trust.

Consider, for example, the trust fall. The trut fs a game played in an attempt to
build trust between two or more people. One pessmply leans backward and falls into
the awaiting arms of another person (Figure 8.18. Will use the trust fall as a running
example to explain our conditions for trust.

Assume that the trust fall involves two peopleeTgerson leaning back acts as the
trustor, whereas the person doing the catchingesgmits the trustee. The trustor decides
between two potential actions in the interactiagan back and do not lean back. The
trustee also decides between two potential actioatsh the falling person and do not
catch the falling person. Hence we can represenintieraction as a 2x2 outcome matrix

(Figure 8.1). In this interaction the trustor hottle belief that the trustee will break their
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fall before they hit the ground. Moreover, the actbdf leaning back puts the trustor at
risk of possible injury. The actual result of timeraction depends on the actions of the
trustee. Their choice of action can result in ipjur no injury to the trustor. As

described, the situation implies a specific pattfrautcome values.

Figure 8.1 An example of the trust fall. The trust fall isragst and team-building exercise in which one
individual, the trustor, leans back prepared tbtéathe ground. Another individual, the trusteatahes the
first individual. The exercise builds trust becatise trustor puts himself at risk expecting that thustee
will break her fall.

The definition for trust listed above focuses twe @ctions of two individuals: a
trustor and a trustee. These individuals can betrariy listed as the interacting

individuals in an outcome matrix (Figure 8.2). With loss of generality, we limit our

discussion of the decision problem to two actioajsgnd a, for the trustor,a,’ anda;’
for the trustee). We will arbitrarily label; as the trusting action ara, as the untrusting

action for the trustor. Similarly, for the trustéiee actiona,’ arbitrarily denotes the
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action which maintains trust and the actiaj the action which does not maintain trust.
The definition for trust implies a specific temploggattern for trusting interaction.
Because the definition requires risk on the parthef trustor, the trustor cannot know
with certainty which action the trustee will seleitttherefore follows thal) the trustee
does not act before the trustde can model this condition in outcome matrixation
asi=-i.

Situational Trust with Example

Trustor selects trusting actic

and trustee maintains trust
Outcome from trustor selecti Trustor Example:

u u ir ;

) . ; ; The Chicken
action that does not require trus Action Action not Situati
requiring trust requiring trust Ituation

Trustor selectsrtisting actior ' .
and trustee violates trust ai a'2 l

Trustee maintainsai—i
Trustee trust

Trustee does nota—i
maintain trust 2

Figure 8.2 The figure visually depicts the reasoning behirel development of the conditions for trust.
The matrix on the left visually describes the ctinds for trust. The matrix on the right presents a
example.

The definition for trust notes that risk is an on@ant consideration for the trustor.
Risk refers to a potential loss of outcome. Theuawnce of risk implies that the
outcome values received by the trustor depend erattion of the trustee. Our second
condition notes this dependence relation by statag2) the outcome received by the
trustor depends on the actions of the trustee df anly if the trustor selects the trusting

action. Recall thato' denotes the outcome received by the trustor.dftthstor selects

the trusting action then we are comparing the out,,0' and ,,0' from Figure 8.2.
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The statement indicates that there will be a diffee, ,,0'—,,0' >¢,, where ¢, is a

constant representing the minimal amount for depeoe, between these two outcomes.
The trustor may also select the untrusting actlomyever. The existence of the

untrusting action implies that this action doesuregjrisk on the part of the trustor. In
other words, the outcomézoi) received by the trustor when selecting the untrgst

action does not depend on the actions of the guSteis leads to a third conditio) the

outcome received when selecting the untrustingpaaloes not depend of the actions of

the trustee.In other words, the outcomes for acti@ do not depend on the action
selected by the trustee. Stated formalh/zoi —220“<£2, where &, is a constant

representing the maximal amount for independentedas these two outcomes.

The definition for trust implies a specific patiesf outcome values. It indicates that
the trustor is motivated to select the trustingiaactonly if the trustee mitigates the
trustor’s risk. If the trustee is not expected tibigmte the trustor’s risk then it would be
better for the trustor to not select the trustintjca. We can restate this as a condition for
trust, 4) the value, for the trustor, of fulfilled trusthé trustee acts in manner which
mitigates the risk) is greater than the value of tnosting at all, is greater than the value
of having one’s trust brokenAgain described formally, the outcomes are valued
4;,0>,0>,0.

Finally, the definition demands th&) the trustor must hold a belief that the trustee
will select actiona,” with sufficiently high probabilityformally p' (al‘i)> k wherek is

some sufficiently large constant.
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The preceding conditions are necessary for aitigigteraction. Sufficiency occurs
when these conditions are met and the trustor tset@tiona; . The first four conditions

describe the situational conditions necessary rigstt By testing a situation for these
conditions one can determine whether or not amante situation requires trust. Box

8.1 presents an algorithm for determining if a puéasituation requires trust.

Testing for Situational Trust

Input: Outcome matriO
Assumptions Individuali is trustor, individuati is trustee, actiomi is the trusting action and

action ai2 is not a trusting action.
Output: Boolean stating i© requires trust on the part of individual

1.1f i = =i is not true [lthe trustee does not act beforertrstor
Return false

2.1f ll0i —210i > &, isnottrue //the outcome received by the trudtggends on the
Return false /laction of the trustor when selecting the trustgtjon

3.1f ‘uoi —Zzoi‘ <&, is not true //the outcome received by the trustses not depend on

Return false /theaction of the trustor when selecting the untrustintion
4.1f ,0'>,,0'>,,0" isnottrue //the value of fulfilled trust is gteathan the value of not

Return false [ftrusting at all, is greater than the value ofihgwne’s trust
Else /l broken.
Return true

Box 8.1 The algorithm above depicts a method for detemginvhether a social situation requires trust.
The algorithm assumes that the first individuahis trustor, the second individual is the trustke,action

ai is the trusting action, and the acticﬂui2 is not a trusting action.
The chicken situation (see Figure 8.2) is an exangd a social situation that
potentially meets the conditions for situationaistr The first condition will be assumed

to be true. In this situation, the second conditreaults in values (from the matrix)
12-0>¢,. Thus, actiona; does depend on the actions of the partner fortaohs
&, <12. The values assigned to the constafig,,k are likely to be domain specific.

The constant, represents a threshold for the amount of risk@atsd with the trusting
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action. The constant,, on the other hand, represents a threshold fotattie of risk
associated with the untrusting action. The thirddition results in value48—4{ <é&,.
Here, the actiora, does not depend on the actions of the partnecdastante, > 4.
The final condition results in value$2>{84} > . MHence, for individual one, the
selection of actiora,; involves risk that can be mitigated by the actiohthe partner and

the selection of actiora, does not involve risk that is mitigated by thei@us of the

partner. Appendix B lists additional situationsttimaeet the conditions for situational

trust under the assumption= —i ori < -i.

8.1.1 Interdependence space mapping of situational trust

The preceding discussion has introduced a methotesting whether or not a situation
demands trust. In this section we use this methdddt a hypothesis about the nature of

trust itself.

Table 8.1 Summary of the interdependence space mappinguattisinal trust experiment.

Experiment Summary

Interdependence space mapping of situational trust
Determine if situations meeting the conditionsditnational trust occupy a
particular portion of the interdependence space.

Experiment Type Numerical simulation

Situations which do meet the conditions for trustcdrve out a subspace of
the interdependence space.

Procedure Follow the procedure presented in Table 8.2.
Independent variable | Whether or not a particular situation meets thedd@ns for trust.

Purpose

Hypothesis

Dependent variable | Location within the interdependence space.

Method of Analysis | Graph analysis.

Hypothesis is supported. Situations meeting thelitioms for trust do not
create a subspace within the interdependence space.

Conclusion

Given that all social situations occupy some lapatin the interdependence space,

we considered the possibility that situations desivantrust carve out separate portion of
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that space apart from those situations not demgrtdirst. For example, if all situations
demanding trust occur in a limited location of timerdependence space, then the
interdependence properties of that location coubdide important information as to the
nature of trust itself. We therefore hypothesizbdttthose situations that meet the
conditions for trust would indeed carve out a salspof the interdependence space.
Table 8.1 summarizes the experiment.

Our hypothesis was based, in part, on our expsgiemvestigating the
interdependence conditions necessary for deceptioresearch currently under review
we have demonstrated that social situations thatawhthe use of deception form a
subspace of the interdependence space. Henceenitesereasonable to expect that the
situations that met the conditions for trust wosldhilarly form a subspace within the
interdependence space.

We used a numerical simulation to test this hypsth The following experimental

procedure was followed:

Table 8.2 Experimental procedure for the interdependencecespmapping of situational trust
experiment.

Experimental Procedure
1) E:rea]te 1000 matrices populated with random valuistaxily ranging from
024).

2) Our algorithm Box 6.1 was used to determine theasibn’s location in
interdependence space. The situation’s locationreasded.

3) Each situation was used as an input to the algorithBox 8.1 and the result
was recorded.

Figure 8.3 depicts the results. The graph oneftehbnd side depicts those situations
which our algorithm for situational trust indicates demanding trust. The graph on the
right hand side depicts all 1000 situations witbsth demanding trust colored red and

those not demanding trust colored blue. In thetrigind side, notice that the situations
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demanding trust are interspersed throughout with gtiuations not demanding trust.
Figure 8.4 depicts the same graph in two dimensionsasier understanding. Again we
see approximately the same scattering regardlegge afonditions for trust. We conclude

that the conditions for trust do not result in &space of the interdependence space.

3D Interdependence Space of situations 3D Interdependence Space of situations
meeting the conditions for trust

085

og-{" i

oas— -

LGRS

Interdependence
Interdependence

075~ o7

07 k! ;
05

05 4 Correspondence

Syrmatry

Symmetry

Figure 8.3 The graphs depict the interdependence space nmabirandom situations. The left hand
side depicts only the situations meeting the caomtfor trust (red). The right hand side depiathithose
situations meeting the conditions for trust andsthaot meeting the conditions (blue). We hypotleskiz
that the situations meeting the conditions forttmsuld form a subspace in the right hand side lyréds
can be seen, the situations meeting the condifamsust are interspersed with situations not rimgethe
conditions. Hence, our hypothesis is false; theasibns meeting the conditions for trust do noinfoa
subspace of the interdependence space.
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2D Interdependence Space of situations 2D Interdependence Space of situations not

meeting the conditions for trust meeting the conditions for trust
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Figure 8.4 The figure depicts 2D graphs of situations meetirggconditions for trust (left hand side) and
situations not meeting the conditions for trusgtftihand side). Comparison of the graphs to et fvith

the graphs on the left indicates no difference.déeim none of the 2D graphs does the space dftgihs
meeting the conditions for trust form a subspacethaf interdependence space separate from those
situations that do require trust.
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Looking closer at the conditions for trust, theasens become apparent. The
conditions for trust place conditions on the pattef outcomes for only the trustor but
not for the trustee. Yet a situation’s mappinghe tnterdependence space results from
the pattern of outcomes fdyoth individuals. Hence, while the trustor's pattern of
outcomes is not random, the trustee’s is randoner&y the combination of the trustor
and trustee’s patterns of outcomes does not carsebapace of the interdependence
space. Hence, interdependence space conditionstch@mused to test or to measure the

amount of trust.

8.1.2 Canonical situations and the conditions for trust

But do our conditions for trust agree with normativuman understanding of trust? In
other words, does the Testing for Situational Talgbrithm (Box 8.1) select the same
situations as requiring trust as would a humanroug of humans? We hypothesis that it

does.

Table 8.3 Summary of the canonical situations and the caditfor trust experiment.

Experiment Summary

Canonical situations and the conditions for trust
Provide evidence that the conditions for trust agwéth normative human
understanding of trust.

Experiment Type Numerical simulation
Our conditions for trust select the same situatessequiring trust as would

Purpose

Hypothesis a human or group of humans.
The following procedure was used:
1) Select situations to examine.
Procedure

2) Input into the algorithm from Box 8.1.
3) Record algorithm’s output.

Independent variable | Situations tested.

Dependent variable | Determination of whether or not the situation dedsamust.

Experiment provides evidence in support of the liypsis. Several situations
commonly associated with trust are judged as demgricust by our
algorithm. Similarly, situations not expected tquige trust are judged not tg
require trust by our algorithm.

Conclusion
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In this section we qualitatively compare exammethose situations which meet the
conditions for trust to those which do not. Ourlgsao demonstrate that the situations
selected by our algorithm as demanding trust inielig match those situations in which
humans use trust. Additionally, we strive to shdwattsituations which are typically not
considered to demand trust are also deemed toeqoire trust by our algorithm. The
purpose of this analysis is to provide support tfeg hypothesis that the Testing for
Situational Trust algorithm (Box 8.1) does relaietie conditions underlying normative
interpersonal trust. It is challenging, if not ingstble, to show conclusively outside of a
psychological setting that indeed our algorithmatgs to normal human trust processes.
Table 8.3 summarizes the experiment.

In order to test this hypothesis, we selected $ingations listed in Kelly et al.’s atlas
of social situations (Kelley et al., 2003). Tabld &8ists the five social situations. The
situations were selected because they represdetdalit areas of the interdependence
space. Each situation was used as input to theitgoin Box 8.1. The values for
constants were arbitrarily set & =6 ands, =6. The independent variable is the
situations selected for testing. The dependentakbeithen is the determination of
whether or not the situation demands trust.

The results are listed in the rightmost columnTable 8.4. This column states
whether or not the algorithm indicates that thaatibn demands trust on the part of the
trustor. The trustor is assumed to be the individepicted on the top of the matrix. The
trusting action is assumed to be located in tist dolumn of each matrix.

For example consider the Cooperative Situatioa, fitst row from Table 8.4. The

outcome matrix for the situation is used as inputhe algorithm. The first line in the
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algorithm is assumed to be true. The second linethef algorithm calculates

40 —,,0' > £ as13-6> 6. Hence the second condition for situational tisstue. The
third line of the algorithm calculatefg\zoi —zzoi‘ <¢g, as |6—6| < 6. This third condition

for situational trust is also found to be true. dfyn the forth line of the algorithm

computes,,0'> ,0'>,,0' to be 13> 66> 6 which is false. The final output of the

algorithm for this situation is false.

Table 8.4 Several situations arbitrary situations are depietbove. The table includes a description of
the situation and the situation’s outcome matrixe Tirst condition the algorithm in Box 8.1 is aswgd to
hold for all situations. Columns 3-5 present theutes for the remaining conditions. The right moaiumn
presents the algorithms final output, stating whetr not the situation demands trust.

Social Situations for Qualitative Comparison

Situation Outcome Condition | Condition | Condition | Situational
Matrix 2 3 4 Trust?
Cooperative Situation—Each 13 6 True True False False
individual receives maximal 12 6
outcome by cooperating with the™ g 6
other individual. 6 0
Competitive Situation—Each 6 12 False False False False
individual gains from the other|| 6 0
individual’s loss. Maximal 0 6
outcome is gained through nont 12 6
cooperation.
Trust Situation—In this 12 8 True True True True
situation, cooperation is in the(| 12 0
best interests of each individua||™ g 4
If, however, one individual 8 4
suspects that the other will not
cooperate, nhon-cooperation is
preferred.
Prisoner’'s Dilemma 8 12 True False False False
Situation—Both individuals are|]| 8 0
best if they act non-cooperatively~ 4
and their partner acts 12 4
cooperatively. Cooperation and
non-cooperation, results in
middling outcomes for both.
Chicken Situation—Each 12 8 True True True True
individual chooses between safg¢ 4 8
actions with middling outcomes 0 4
and risky actions with extreme|| o 12
outcomes.

The following additional situations were analyzed:
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1. The Cooperative situation describes a social s@omain which both
individuals interact cooperatively in order to reeemaximal outcomes. Given the
algorithm’s parameters, the trustor faces a siain which the trusting action is
dependent on the trustee. The untrusting actiogpmrast, is not dependent on the
trustee. Nevertheless, the trustor stands to lo#@nyg if the trustee does not maintain
trust (6 versus 6). Hence, selection of the trgséintion does not involve risk as the
trustor stands to minimally gain as much by setgcthis action as by selecting the
untrusting action. We therefore conclude that tliteason does not meet the
conditions for trust.

2. The Competitive situation also does not demandt,tiust for different
reasons. In this situation the trusting and uningsactions afford equal risk. Thus the
trustor does not face a decision problem in whichan select an action that will
mitigate its risk. Rather, the trustor’'s decisiorolgem is simply of a matter of
selecting the action with the largest guaranteettomoe. Trust is unnecessary
because the trustor’s decision problem can be dalwhout any consideration of the
trustee’s beliefs and actions.

3. The Trust Situation describes a situation in whraktual cooperation is in
the best interests of both individuals. As the namnwald portend, this situation
demands trust. The trustor’'s outcomes are depermtetite action of the trustee if it
selects the trusting action. Further, nominal oomes are risked when selecting
untrusting action. Finally, the trustor stands &ngthe most if it selects the trusting

action and the trustee maintains the trust. Thstdris second best option is not to
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trust the trustee. Finally, the trustor’'s worstioptis to select the trusting action and
to have the trustee violate that trust.

4, The Prisoner's Dilemma is perhaps the most extehsistudied of all
social situations (Axelrod, 1984). In this situatit®oth individual’s depend upon one
another and are also in conflict. In this situatiselection of the trusting action by the
trustor does place outcomes at risk dependent @m@adhon of the trustee. Given the
parameters selected, however, the untrusting adialso critically dependent on the
action of the trustee. Hence, the decision probfaned by the trustor is more
complicated than simply dissecting the problem imtsting and untrusting actions.
Importantly, both actions require some degree sK dn the part of the trustor. Our
conditions for situational trust demand that theiglen problem faced by the trustor
offer the potential for selecting a less risky actiAs instantiated in Table 8.4, this
version of the prisoner’s dilemma does not offéess risky option. Note, however,
that by changing one of the trustor outcomes, stay® and the algorithm’s constants

to € =8¢&,=9 the situation does then demand situational tr@sterall, the

prisoner’'s dilemma is a borderline case in whiah $pecific values of the outcomes
determine whether or not the situation demands.trus

5. The Chicken situation is a prototypical social aiton encountered by
people. In this situation each interacting indidtlohooses between safe actions with
intermediate outcomes or more risky actions withrenmiddling outcomes. An
example might be the negotiation of a contractafdrome or some other purchase.
This situation, like the Trust Situation, demandsst because it follows the same

pattern of risks as the Trust Situation.
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Table 8.4 and the analysis that followed examisederal situations and employed
our conditions for situational trust. In severdlations our algorithm indicated that the
conditions for trust were met. In others, it indezhthat these conditions were not met.
We related these situations back to interpersomatons commonly encountered by
people, trying to highlight the qualitative reasdhat our conditions match situations
involving people. Overall, this analysis provideslminary evidence that our algorithm
does select many of the same situations for thagtdre selected by people. While much
more psychologically valid evidence will be reqdir® strongly confirm this hypothesis,
the evidence in this section provides some sudporur hypothesis. We now move on

to the problem of measuring trust.

8.2 Measuring Trust

Several trust researchers have recognized the tempa of risk in defining,
characterizing, and quantifying trust (Deutsch, Z;.9Buhmann, 1979, 1990). Risk is

typically quantified as the expectation of a logsmction (Risk, 2007). Formally,

R(x, y)= L(x y)p(y) is the risk associated with predictirgvhen the true value i

Here, we define the loss function to be the diffier in outcome associated with a

partner’s choice of one action over another. Irepthords, the los& for individual i

when action a;' is selected by individual i - over action a;' is equal to,
L (al‘i,a;i)=‘0‘ (ai,a;‘)—oi (aj,az“l =‘llo‘—21oi‘. The expectation of the loss function

is pla;') where p(0) is the probability. This expectation can also baditioned on

external evidence, such as the situation’s cormedpace, the partner’s recent history,
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etc. Overall then the risk to the trustor assodiatéh selecting the trusting actios is
measured afR' (ai‘i ,az‘i): L (ai‘i ,a, )(p(a;i )) We propose that trust,, is proportional
to the risk assumed by the trustor given that thieason requires trust, namely

rOR (a[i ,a;‘). Box 8.2 provides an algorithm for measuring trust

Measuring Trust

Input: Outcome matrixO
Output: Real numberr measuring trust or NULL

1. Use the algorithm from Box 8.1 to generate Baoke

2.1t (b = false) //Determine if the situation requires trust
Return NULL
3.0f pt (a{' )S k //Ensure that the trustor holds belief that

Return NULL [lthe trustee will select the trusting actio
Else

setr =R (8,85 )= L, (a7 a;' [ plas'))

4. Return T [/return the measure for tri

Box 8.2 The algorithm above depicts a method for measuhadrusted required by a social situation.

Using a situation described in section 2.3.2, thgestor-trustee game, we
successively created situations that placed thetaryinvestor) at risk to explore the
algorithm’s predictions. Recall that the investarstee game is a situation that has been
used by scientists to explore the neuroscientifigios of trust (King-Casas et al., 2005).
The game appoints one individual as the investog (tustor for this discussion) and
other individual as the trustee. The investor i&egisome quantity of money. He or she
chooses some amount to invest with the trustee.ahi@unt invested is multiplied by a
factor. Finally the trustee decides how much tedweck to the investor. Change in trust
has been shown to correlate with investor recipyanithis game.

In Table 8.5 we demonstrate our algorithm for meag trust via the investor-trustee

game. In our simplified version of the game, theestor is given a quantity of money
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delineated in the first column of Table 8.5. Theastor has a binary decision choosing to
either invest all or half of the money with thesiee. The trustee also chooses between
two potential actions, either returning all or nasfethe appreciated money back to the

investor. Money invested with the trustee doubthegalue.

Table 8.5 The table demonstrates the change in trust meagth respect to the changing conditions of
the investor-trustee game. The table shows thahegrobability that the trustee will violate theist
increases, so to does the trust measure. Henaatbant of trust necessary to selected the trustatign
increases. Moreover, as the loss increases irniaeléd the initial money given to the investor thast
measure increases.

Investor-Trustee Demonstration of Algorithm for Measuring Trust

Initial Investor Outcome Matrix Situational =i i[q-i 5-i
Money Trust? p(a2 ) Ll(al &y ) r
50 100 75 true 0.0 100 0
0 0
0 25
50 100 75 true 0.5 100 50
0 0
0 25
100 50
50 100 75 true 0.9 100 90
0 0
0 25
%
0 0
0 0
25 50 375 true 0.5 50 25
0 0
0 12.5
50 25
50 100 75 true 0.5 100 50
0 0
0 25
100 50

The second column of Table 8.5 depicts the outcoragix resulting from an initial
investor amount depicted in the first column. Tle&trcolumn denotes whether or not the
situation meets the conditions for situational tru3nly the situation without initial

investment fails to meet the conditions for sitoa#il trust. In the top half of the table, the
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forth column of the table varies the probabilityathhe trustee will choose to not return
the investor’'s investment. When the probabilityt tthee trustee will violate the trust is
zero (last column), the situation presents no rfBkr measure of trust returns zero,
reflecting the risk to the investor. As the proliidpthat the trustee will violate the trust
increases so to does our trust measure. The fine¢ rows in Table 8.5 demonstrate the

trust measure’s change with increasing initial stugent.

-]

Towzd Mo
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2 . o
s a0 Frobability

Figure 8.5 Graphical depiction of the increase of our proposadt measure with respect to increasing
loss and probability of untrusting action selecti@ur trust measure is a unitless measure which is
proportional to the amount of loss and the prolitgbdf selecting the untrusting action. The measare
useful for comparing situations that require trust.

Table 8.5 demonstrates our measure of trust fparéicular situation. Because the
investor-trustee game has typically been tied tmegyathe situation is a good intuitive
demonstration that allows us to show various leeélss and probabilities of loss. In

general, the risk associated with the trust meashess the function depicted in Figure
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8.5. As described, our trust measure is linear wéhpect to amount of loss and
probability of loss. Results from Cumulative Prasp&heory contradict the linearity of
our trust measure at extreme amounts of loss (Kye&s Kahneman, 1992). Future
refinements of our trust measure could include Qatiwve Prospect Theory’s measures
of expected utility. Regardless, further experiméon involving the use of human
subjects will be necessary in order to provide toltil evidence that our algorithm for

measuring trust is quantitatively accurate.

8.3 Recognizing Relationships that afford Trust

In this final section we connect much of the prewgdheory and discussion by asking if
a robot can determine if a particular partner carirbsted in a particular situation. The
examination of this topic forces the robot to assuhe role of the trustor, deliberating
with respect to the actions of its human partnéais yuestion is potentially relevant to
many robotics problems today. Automatic pilots edpto fly planes and drive trains
might question the authority and decision makingtieé human while in transit.
Autonomous robots operating in dangerous locatisunsh as space might reject the
actions of a human if they are deemed to put thieeeteam or mission at risk. While the
applications of today do not require robots capalblesjecting the advice or actions of a
human, the applications of tomorrow will.

Selecting the most trusted partner requires thedbat have models of all of the
potential partners. Hence the robot will need teract with each partner, constructing
models of each individual. Next, the robot facest@ation requiring trust and must select
one individual to be the trustee. In this finaltgat, we propose a method for recognizing

relationships that afford trust.
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8.3.1 Selecting a Trusted Partner

The selection of a trusted partner begins withradgon. The robot must interact and
construct a model of all of its potential partn€sice these models have been developed,
the robot can then predict each partner’s likelyoacbased on knowledge of the partner.
Questions of trust are primarily concerned with titustee’s internal tendency to act in a

manner that mitigates the risk assumed by thearughus, to determine that a partner is
trustworthy, the robot must conclude that, givemeosituation5 requiring trust, the

partner’s transformationd™ , will be such to create an effective situati®n in which
the partner will select action," resulting in outcome,0' such that,,0'> ,0'>,,0' for
the trustor. To make this conclusion the robot nhgdtl the belief thatp' (ai‘i‘ﬁ‘i)> k.
To select the most trusted partner for the sitmatibe robot solves the equation

argmaxp' (al‘“é?“ ) determining the partner with maximum likelidaaf selecting action

a,' given the partner’s transformation. Box 8.3 démsithe process algorithmically.

The following section proposes a means for evatgadiur method of selecting a trusting

partner.
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Selecting a Trusted Partner

Input: Partners—1,,...,—,, trusting situatiorO .

Output: Most trusted partner .

1. The robot interacts with individuarsil, .. ,—ik constructing models
ml'i ,mz'i ,...,m;i for each partner.

2. The robot is then presented with a situaﬁSnrequiring trust.

3. For each partner the robot generates quie(ai‘i ‘B_i )

4. The robot selects the most trusted partner twrep

argmax p' (ai‘i ‘0“ ) =i,

5. Return the most trusted partné?.

Box 8.3 A method for selecting the most trusted partneoragrseveral potential partners is presented.

Consider, for example, coworkers at a dangeroius goch as a prison. Both
individuals must place their own safety at rislonder to perform tasks, such as checking
on inmates. Each individual must believe that &tlare attacked while performing a task
that the other individual will act in a manner tlatl mitigate their risks. The trustor in
this example is the individual walking and obsegvinmates. Their outcomes are at risk
because they are alone or outnumbered by dang@ease. Their coworker, in the
meantime, remains safe but must be able and witbngact and come to their rescue if
an attack occurs. The coworker is thus the trustee.

While this situation clearly demands trust, we camv consider how the situation
changes if we allow the trustor to interact withd duild models of different coworkers.
Once the trustor does this we offer them the oppdst to select the coworker whom

they trust the most.
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8.3.2 Selecting the most Trusted Partner

Table 8.6 Summary of the selecting the most trusted partreerment.

Experiment Summary

Selecting the most trusted partner
Investigate the possibility of using the algorithpresented in this chapter tg
select the most trusted partner.

Experiment Type Laboratory experiment
Use of the selecting a most trusted partner algoriwill result in greater

Purpose

Hypothesis outcome obtainment than use ahax_ownstrategy which does not consider
the partner when selecting an action.
Procedure Follow the procedure presented in Table 8.7.

Independent variable | Experimental versus control condition.

Dependent variable | Average outcome obtained.

Ablation experiment consisting of comparison of &xperimental condition
Method of Analysis | involving use of the selecting a most trusted paraigorithm to a control
condition.

Hypothesis is supported. The average outcome aatamthe experimental
Conclusion condition was significantly greater than the outeosbtained in the control
condition.

We conducted a robot experiment to explore theceftd selecting the most trusted
partner on the robot’s task performance. The erpart was designed to complement the
prison guard example presented above. The roltbisrcase is tasked with guarding one
of two types of prisoners: escape threats or hgdts. The robot also has two potential
teammates for the task: a fast but weak human gragnd a strong but slow human
partner. The fast partner is better able to capas®aping convicts while the strong
partner is better able to quell riots.

The purpose of the experiment is to demonstragealgorithm from Box 8.3 for
selecting the most trusted partner. Our experineentpares the same robot in the same
situation with and without use of the most truspadtner algorithm. Hence this is an
ablation experiment. We hypothesize that use ofallgerithm would result in greater
average outcome. Our independent variable in thger@ment is thus an experimental

condition in which the robot uses the algorithmsusr control condition in which the
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robot does not use the algorithm. In the contraidtion the robot used max_own
strategy to select the action that maximized itsn awutcome without regard to the
partner. The dependent variable here is averag®mét obtained by the robot. Outcome
obtained is a crude measure of task performandde Ba7 summarizes the experiment.
The design of the experiment is meant to notignedsemble a scenario in which
selecting the most trusted partner might be ctifimathe robot’'s performance and well-
being. The scenario chosen focuses on a prisorragmuent in which the robot must
select the most trusted partner for a dangeroks Mismerous other scenarios are also
possible. This scenario was chosen because itageia highlights the generality of this

framework in different environments.
Experimental Setup

The experiment was conducted in a laboratory enument. Figure 8.6 depicts the
layout. Two notional prison cells are located néatone another with a divider
preventing the robot from observing both cellsra tbcation. The robot’s base is located
approximately seven feet from both cells in a ghailine. The top half of Figure 8.6
(left-most photo) depicts the robot at its basdtmys A human operator sat at a notional
prison operations desk. The robot’s base is natéat within the sight of the human
operator.

The robot used gestures to communicate its paptreéerence to the human operator.
Notionally, the human operator would then assignuman teammate to the robot. To
make its partner preference known the robot moweddrd approximately three feet into

an area easily observed by the operator.
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Experimental Setup

Base Position Riot Observation Escapee Observation
Position Position
Riot Escapee Riot Escapee
Prisoners Prisoners Prisoners Prisoners

Robot moves to stat
its partner preferenc

Robot start plac Robot start
place
Operation des Operation des
Q Humar operato Q Humar operato
Partner preference statemgnt Team action perforenanc

Figure 8.6 The top of the diagram shows the laboratory setuptfe most trusted partner experiment.
Left photo shows the base position which is locatbdut 10 feet in front of two containers repreisent
cell blocks. The center position shows the robcarabbservation position in front of riot prisoneféie
right photo depicts the robot observing the escapemners. The two lower diagrams depict the astio
the robot performs in the experiment. In the lédigdam the robot first moves to a position withiaw of
the operator and then moves to state “yes” or ‘with respect to its partner preference. In the trigh
diagram, the robot moves to observe either theprisbners or the escapee prisoners.

The robot’s convict observation actions were penfed by moving to locations in
front of the two cells. The center image in the talf of Figure 8.6 depicts the robot
observing the cell containing the riot threat cetwiand rightmost image depicts the

robot observing the cell containing the escapeatheenvicts. The bottom half of Figure
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8.6 portrays the robot’s motions when stating &gper preference and making its prison

cell observations.
Partner Preference Statement

When the robot selects it partner it must commuaida selection to the human operator.
The process of partner selection has three stagélse human operator asks the robot in
a verbal statement if it prefers partner2) the robot uses the algorithm in Box 8.3 to
determine which partner it prefers; 3) if the partpreferred by the robot is the same as
the one asked about by the human operator themlio¢ produces a “yes” motion, if not
then the robot produces a “no” motion. Figure 8epidts the robots stating “yes” and
Figure 8.8 depicts the robot stating “no.” To states” the robot moved its camera neck
in an up-and-down motion imitating the same moadmman makes when shaking their
head yes. To indicate “no” the robot turned bac# #orth through approximately 180

degrees imitating a human shaking their head no.

Rovio indicating Yes

Figure 8.7 Robot movement for stating “yes” to the operatggestion regarding its partner preference.
The robot moves its neck up and down to state yes.
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Rovio indicating No

Figure 8.8 Robot movement for stating “no” to the operatongestion regarding its partner preference.
The robot moves back and forth in a half circléntdicate no.

Partner Models

Prior to the experiment two models of human pagneere created. Both models
contained the actionsthase-convict, ignore-escape, defend-fromattack and
flee-riot. Thechase-convi ct action results in the human partner chasing aap2sg
convict. Theflee-riot action results in the human partner fleeing thisoo. The
def end- from at t ack action results in the human partner defendingrdimt and the
prison during an attack. Thenor e- escape action results in no action from the human

partner. The robot’s model of ti@st human partner contained the belia(h‘i) that that

human would select thehase- convi ct action with a probability of 0.90, theynor e-
escape action with a probability of 0.10, theefend-fromattack action with a
probability of 0.10, and| ee-ri ot action with a probability of 0.90. The robot’s mbde
of thestrong human partner contained the bel'(az(h“) that that human would select the
chase- convi ct action with a probability of 0.10, thiegnor e- escape action with a
probability of 0.90, thedef end-from attack action with a probability of 0.90, and

flee-riot action with a probability of 0.10. Hence, the robamodels of the two
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partners’ indicated different action preferencegaid these models were given to the

robot.
Experimental Procedure

In addition to stating its partner preference thbot’'s action model consisted of the
following two actions:observe-ri ot -convi ct andobserve-escapee-convict. The
observe-riot-convict resulted in the robot moving to a position whetrecauld
observe the cell containing the convicts with aeptal to riot. Theobser ve- escapee-
convi ct resulted in the robot moving to a position whereould observe the cell
containing the convicts with a potential to escape.

Prior to experimentation, twenty outcome matriogseting the conditions for trust
were created. These twenty outcome matrices werg insboth the experimental and
control conditions. As mentioned above, the robgdstner models were constructed
prior to experimentation by the experimenter. Henwse of the algorithm for selecting

most trusted partner began with step two of Box Bi3his step, the robot is presented

with one of the twenty outcome matrices createarpto experimentationﬁ. The

experimental procedure is listed below:

Table 8.7Experimental procedure for the most trusted pagmperiment.

Experimental Procedure

1) Twenty outcome matrices populated with randonuesl(arbitrary range
[— 20,20] was used) meeting the condition for trust (Box 8ére created.

—

2)  The robot is presented with a new outcome ma®ix(one of the twenty
created in step 1). The robot is randomly taskedh whiserving either th
convicts with a potential for rioting or the comgcwith a potential for
escaping.

(1%

D

3) Experimental condition: The algorithm from Box 8.1 is used to determing if
the situation demands trust.
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4)

5)
6)

7)

8)

9)
10)
11)

12)

Experimental condition: For each of the two potential partners, the rg

uses the partner models to retrieve bekixéé;i) that the partner will sele¢

the trusted action.

Experimental condition: The robot selects the partner with the grea
likelihood of selecting the most trusted action.

Experimental condition: The human operator verbally asks the robot
would prefer to have one of the two potential parsras a teammate.

Experimental condition: If the robot is asked to be a teammate with
same partner that if prefers then it makes thenyeson, otherwise it make
the no motion.

Experimental condition: The robot selected the trusting action.

Control condition: The robot selected the action that maximzed its
outcome without regard to the partnerak_owi.

The robot moves to either observe the convictl wipotential for rioting o
convicts with a potential for escaping (Figure 8.9)

Notionally, the convicts with a potential for ringj attempt to riot and th
convicts with a potential for escaping attemptgoape.

The robot observes the convict's actions and theamuteammate selects
action according to its action preference relation.

The robot receives maximal outcome (actual valuecdép on5) if the
convicts attempting to escape are captured anddheicts attempting to rig
are prevented from rioting. This occurs if the rohas selected the strol

human partner as a teammate when it is observingas with the potential

for rioting and if the human partner selects thef end-from attack
action, which it does with probability of 0.90. Thebot also receive
maximal outcome if it has selected the fast humaringr as a teammal
when it is observing convicts with the potential éscaping and if the huma
partner selects thenhase- convi ct action, which it does with probability ¢
0.90. All other combinations of robot and humanicactresult in reduce

outcome (actual value dependsér).

bot

—

"

test

own

e

t
9

5
te
AN
nf
)

In essence, the experimental condition used ouwrigthgn for selecting the most trusted

partner whereas the control condition did not.
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The Robot’s Observation Actions

Convicts with a potentic ~ Convicts with a potentic ~ Convicts with a potentie
to riot to riot to riot in the dark

Figure 8.9 Examples of the robot's observation actions frone tiwo (left and center) prisoner
observation points. The image to the right depctgexperimental trial conducted under limited light

Results

We ran twenty trials in each of two conditions: onentrol condition and one
experimental condition. Recall that the purposé¢hefexperiment is to show that use of
our method for selecting the most trusted partryern bvobot results in greater average
outcome in situations demanding trust.

As depicted in Figure 8.10 the average outcomeived in the control condition was
-7.24 versus 10.57 in the experimental conditiowlich the robot used our algorithm to
select the most trusted partner. This difference stasstically significant (p<0.03). In
terms of partner selection, in the experimentaldtt@n the robot consistently selected
the best partner. In the control condition, on olieer hand, the robot selected the best
partner in 35 percent of the trials. With respeaxttiie results for the team, in the
experimental condition the human robot team recease average of 13.05 outcome per
trial versus -2.19 for the control condition. Thifetence however was not statistically

significant (p ~ 10.1).
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Selecting the most Trusted Partner

20.0

15.0

10.57

10.0

5.0 8

Average outcome

0.0
Trusted Partner Algo m%x_own selecti’un
-5.0 1

-7.244

-10.0

-15.0

Figure 8.10 Results from the selecting the most trusted parengreriment. When the robot uses the
algorithm from Box 8.3 to select the most trustedtiper the average outcome was 10.57. The control
condition, in contrast, in which the robot usednax_own strategy to select its action without
consideration of the partner resulted in an aveageome of -7.24. The difference between these two
conditions was statistically significant (p<0.03).

The results support our hypothesis that our algarifor selecting the most trusted
partner does indeed aid the robot’s task performaltés not clear, however, that the use
of the algorithm aids team performance. Although tkam results indicate a difference,
the difference was not found to be statisticallgndficant. The fact that we used only
twenty trials in each condition is likely the cause this lack of significance. Still, the
team results indicate that selection of the masitéd partner by the trustor does not
always aid the trustee. This again demonstratesrthevay nature of trust. Namely, that
acts of risk mitigation by the trustee may not haveositive impact on the trustee’s
outcomes.

This experiment, in and of itself, serves as a dwmation of our algorithm for
selecting the most trusted partner which is basethe theoretical principles described in

sections 8.1 through 8.3. It does not, howeveryeseas a conclusive proof of the
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algorithm we have presented. This experiment is méancomplement the other
experiments by demonstrating a particular situattowhich a real robot selects actual
actions as part of a grounded situation. Furthsting in additional domains will be

necessary to show that the algorithm and the eaplply to other domains.

8.4 Conclusions: Trust in Human-Robot Interactions

The preceding chapter has introduced ideas for idgfimrepresenting, and measuring
trust based on interdependence theory. We havengests algorithms for segregating
those social situations that demand trust from e@hwdich do not, algorithms for
measuring trust, and algorithms for selecting thestmrusted partner from several
potential candidates.

Many different types of experiments have beengresl in this chapter. Some of the
experiments have consisted of simple demonstrationsierical simulations, and also
laboratory experiments involving the use of reddats. Our results have both supported
our hypotheses and refuted them. Overall, the reBeand the results presented serve
more as an introduction to the approaches presdmaezin than as a conclusion. These
ideas will need to be further tested on a variétyasdware systems and in a multitude of
environments. We believe that these ideas will seas a basis for various different
research avenues. Moreover, although the evideocdahk theories and hypotheses
presented may not be as complete as desiredhi¢ isreadth and scope of our framework

that offers the most potential for robotics andddificial intelligence.
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CHAPTER 9
CONCLUSIONS

In this final chapter we summarize the principaules of our research, discuss directions

for future work, and present some final remarks.

9.1 Summary of Contributions

This dissertation makes the following contributions:

A general, computational framework implemented on a robot for
representing and reasoning about social situationand interaction based on
interdependence theory We have presented a computational framework based
on interdependence theory that affords a meansmgsenting interactions and
social situations as outcome matrices. As arguedhiapter 5, outcome matrices
are an established method for representing inieracin game theory,
experimental economics, and neuroscience commsir(iielley, 1979; Osborne

& Rubinstein, 1994). Moreover, the presented fraorbws general in the sense
that the results that have been presented aréeddiota particular robotic system,
social situation, environment, or type of humartmper

A principled means for classifying social situatios that demand trust on the
part of a robot and for measuring the trust required by a situation in which a
robot interacts with a human. This dissertation has introduced a novel, general,
and principled method for representing and reagprabout trust. Using a

definition for trust developed from a lengthy laéure review, a series of
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conditions for trust have been expounded. In Chapteve showed that these
conditions could be used to determine if a paricuiteraction demands trust on
the part of the robot or the robot's partner. Ferthwe have argued that the
amount of trust can be measured as risk and des@lopethods for measuring
trust.

A methodology for investigating the theory underlig human-robot
interaction. This dissertation has explored a top-down mettagofor exploring
the theory that underlies human-robot interactithis top-down methodology
begins with the definition of concepts such asti@ship and trust (Chapters 7
and 8). These concepts are then related to our datigmal representation of
interaction and social situations. We then devegeperal purpose algorithms that
tie these concepts to the robot’s interactions. Tdpsdown methodology stands
in contrast to the bottom-up methodologies typicamost current day human-
robot research (Fong, Nourbakhsh, & Dautenhahn3200

A computational framework for social action selecton implemented on a
robot. Interdependence theory postulates the existence mfocess for social
action selection that includes a person’s own maerpredispositions. This
process is called the transformation process. Tisisedation has demonstrated
that the transformation process can be used byat for social action selection
(section 7.3).

An algorithm that allows a robot to analyze and cheacterize social
situations. This dissertation has presented an algorithm (B that allows a

robot to map an interaction to a portion of thesidependence space and, by
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doing so, characterize the situation in terms sfiftterdependence properties
(section 6.1). This characterization affords infotiorathat has been shown to be
an important factor for social action selection amfeased task performance (as
measured by outcome obtainment).

* Methods for modeling the robot’'s human partner andfor characterizing a
robot’'s relationship with the partner. This dissertation has explored and
developed techniques that afford a robot the gbititmodel its human partner
(section 5.3). Moreover, we have shown that theskrtiques can be extended to
learning about clusters of human types, or stepsotgarning (section 5.4). We
have shown that stereotyped models of human part@ar bootstrap the process
of learning about a particular partner. Finally, nseve demonstrated techniques

by which a robot can determine its partner’s undiegl type (section 7.3).

9.2 Research Questions Revisited

The first chapter detailed several questions thaiwesnded to explore. In this section we

review these questions stating the conclusionsatbr& has set forth.

1) What effect will the development of a theoretical lamework that allows a
robot to represent social situations and recognizip situations that require
trust have on the robot’s ability to select action®

The development of a theoretical framework allowangobot to represent and
recognize situations that require trust has beawshto afford better partner
selection and task performance (sections 8.1 tlro8@). Moreover, this
dissertation has shown that the creation of ther#ieal framework, in and of

itself, allows for a general and principled invgation of human-robot interaction
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2)

3)

(section 4.1). Finally, the representations foreiattion and social situations
described and developed as a part of this resdeeh played an integral role in
the creation of methods for everything from steypetlearning (section 5.4) to

reasoning about trust (section 8.1).

What effect will deliberation with respect to a so@l situation have on the
robot’s ability to select actions?

This research has resulted in algorithms that alleevrobot to deliberate with
respect to the robot's human partner (section 5tBg interdependence
characteristics of the situation (section 6.1), #reldyad’s relational disposition
(section 7.1). In all of these cases, the robotasweration of the different
aspects of the interaction has resulted in greatezome obtainment which is a

general reflection of better task performance.

What effect will algorithms, developed as part of e theoretical framework
of social situations, that allow a robot to represet its relationship with its
human partner and to characterize these relationsips in terms of the trust
have on the robot’s ability to select actions?

This dissertation has presented algorithms thatvadlaobot to reason about the
relational disposition of its partner (section 7 Xpreover, we have demonstrated
that the methods and techniques created pertaioitrgst offer the robot a means
for selecting the best partner for a task (sed®@). Hence, these results serve as
evidence that a robot’s ability to represent itatrenships and to characterize
these relationships in terms of trust is affords tbbot techniques for improved

task performance as determined by the outcomedairah
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Principal Research Question

4) What effect will characterizing the trustworthiness of social relationships
and of social situations have on a robot’s abilityo select actions?

Overall, the characterization a robot’s social treteships and situations in terms
of trust has an important effect on the robot's i@ogerformance. As
demonstrated by sections 5.3, 5.4, 6.2, and 88 ¢haracterization affords
improved task performance. In a larger sense, bilgeyaof the robot to represent
and reason about trust, relationships, and thedependence characteristics of
the situations that it faces has a significant icbman the robot’s social behavior.
As indicated by the results from sections 5.3, 6.2, 7.3 and 8.3, a robot capable
of deliberating about its interactions, its parfrard the social situation, is better
suited to act in an appropriate manner in a widerety of situations then a robot

which lacks these capabilities.

9.3 The Road Ahead

The presented framework offers numerous avenugsotential research. Applications of
this work could conceivably touch many differen¢as of artificial intelligence. Some of
the most promising and immediate applications of Work is in the domain of assistive
therapy. Assistive therapy often involves one-omr-ameractions with the same person
over the course of the treatment, a good oppostunit partner modeling (Feil-Seifer,
2008). Moreover, therapeutic treatments often weakepeatedly asking the patient for
their current state. This information could potehtibe translated in outcomes.

Before discussing long-term avenues of this resgare will briefly describe how
this framework could be deployed on a fielded ratsosystem. On a deployed system it

will be necessary for the robot to generate outcoalaes reflecting the partner’s state.
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Smile/frown detectors, pose detectors, and affectspeech recognition could all
potentially be used to provide estimates of thengais outcome value. The robot’s
outcome value, on the other hand, will likely bedtito task performance for most
applications. Embuing the robot with action recagnit presents is a significant
challenge to deploying this framework. Neverthelessearchers have begun to explore
this challenge (Philipose et al.,, 2004; Picard, ®@00The implementation of these
underpinnings should allow a robot to create ougomatrices representing its
interactions. Sensor noise and uncertainty preadditional challenges. Game theory
offers a variety of techniques for managing undetyawhich could potentially be
explored to address these challenges (Osborne &hBem, 1994). Once the preceding
concerns have been addressed, the framework sheutthpable of interactive action
selection on a fielded robotics system.

Although the development of fielded systems isimportant next step for this
research, it is the theoretical extensions of ff@ismework that hold the most promise to
advance our understanding of human-robot interactio
* Emotion — The outcome values described throughout thigdetson may serve as a

placeholder for emotion. Emotion is an important antive area of research within

the artificial intelligence community (Velasquez Maes, 1997). The relation of
outcome values to emotion is unclear, yet certaimgortant. Outcome values are
defined as scalar real numbers, but emotions &ea ofescribed multi-dimensionally

(Ortony, Clore, & Collins, 1988). Do outcome valussve as a scalar descriptor of

emotion? Or can interdependence theory be usedptaie emotions? Fear, for

example, could be described as the negative outasmilting from deliberation
with respect to future negative outcomes. Jealmasyyd similarly be delineated as
negative outcomes resulting from positive outcomee®ived by another individual.

Still, other emotions, such as anger, seem diffimutlescribe as an outcome value. A
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framework tying the broad areas of emotion andritgeendence together would be
an important theoretical result for both artificiadelligence and psychology.

Symbol Grounding — Symbol grounding refers to the problem of how segyi
meaningless symbols are translated into meanimgéudikers for artifacts in the real
world (Harnad, 1990). The framework detailed in thissertation offers the
possibility of grounding symbols in terms of theveed and cost they afford the
robot. For example, the symbol of firefighter contesrepresent the actions and
outcomes afforded by a firefighter in specific ations. When and if this framework
becomes tied to emotion, it may then be possiblydéscribe symbols such as
firefighter in terms of the emotion that the symbpobduces. This connection would
begin to touch Damasio’s somatic-marker hypothestsich states that emotional
processes guide behavior via associations with iemotmprinted memories
(Damasio, 1994).

Deception —Deception is generally defined as “causing anatbiéelieve what is not
true; to mislead or ensnare (Deception, 1999)”. Mskey notes that deception is a
deliberate action or series of actions brought abfmr a specific purpose
(McCleskey, 1991). The framework presented in tligseaftation offers a means of
understanding and reasoning about deception. Deocegdn be modeled as an action
or series of actions taken by the deceiver withpingose of influencing the target to
select a particular action or series of actionse ghestion then becomes how the
robot’'s model of the partner influences its abitdydeceive.

A general theory of interaction —Many of the concepts and ideas discussed in this
dissertation relate not only to robots but to aystem of interacting entities. Whether
one is exploring how two companies interact to mmaze profit and cooperation, a
husband and wife interact to minimize fighting,eonuman and a machine interact to

perform a task, many of the same principles apllynay be possible to forge a
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general theory of interaction encompassing allhafsé seemingly disparate fields,

and in doing so, provide tools for each field tovadorward.

9.4 Towards a Socially Intelligent Robot

While the dream of creating a sociable robot i @tgreat many years away, the theory,
and principles on which these social beings willdased must be created today. This
dissertation has approached this challenge by éixtgrand adapting theories of human
social psychology and game theory to the probleswed by an interacting human and
robot. The theories and principles developed heheive been formulated from first
principles and generally accepted definitions. Ftbese definitions we have crafted and
tested algorithms. We have shown that this appréesdts to research that is not tied to a
particular robotic platform, environment, or humae feel that this type of underlying
scientific theory will be critical for the futureuscess of the human-robot interaction
field.

The challenge of creating sociable robots uniguelgiges human psychology and
artificial intelligence. Simple optimization algtitms are unlikely to succeed in a way
that results in naturalistic interaction. Moreovewyill not be feasible to perfect a robot’s
interactions. The imperfection of human socializajppays a large role in defining us as
humans. The interactive, socially intelligent robotshe future should share our social
fallibility (Sharkey & Sharkey, 2010 in press). Igiae the horror of interacting with a
robot that has optimized for every rebuttal, evgie, every tender moment. Social
intelligence is defined by a human’s social flekipiin a myriad of different situations
and different partners. The creation of a new dlyciatelligent being will likely tell us

as much about ourselves as it will tell us abohbtizs.
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APPENDIX A
GLOSSARY OF TERMS

Actor script A predefined set of interactive instructions taatindividual follows when
interacting with the robot. Used to control the lams behavior.

Basis of contral The waysin which each partner affects the other’s outco(kedley &
Thibaut, 1978).

Belief: A possibly uncertain truth statement held byrativiidual.

Bilateral Actor Control (BAC) The human or robot’s ability to affect its own carmnes
in a social situation (Horswill, 1998; Kelley & Thaht, 1978).

Concurrent interaction styleA style of interaction in which both individuakelect
actions at the same time.

Correspondencerhe extenthat each partner’s outcomes are consistent \weghothers
(Kelley & Thibaut, 1978).

Diagnostic situationA situation or network of situations that is usgdan individual to
assign credit for a partner’s action selectionitbes the partner or the environment
(based on Rusbult & Van Lange, 2003).

Disposition A durative or predominant tendency with respectn individual’s social
character.

Dyad A group of two; a couple; a pair (Dyad, 2006).

Dyadic interactionOne-to-one interaction occurring between only tadgividuals.

Effective situation A conceptual term used to denote the cognititeysformed and
internal representation of a social environment Hraindividual uses to determine
how to act (Kelley & Thibaut, 1978).

Given situation A conceptual term used to denote the direct pezdeexperience of a
social environment (Kelley & Thibaut, 1978).

Individual: Either a human or a social robot.

Interaction influence—verbal, physical or emotional—by onealiidual on another.
(Sears, Peplau, & Taylor, 1991).

InterdependenceThe extentthat each partner’s outcomes are influenced byother
partner’'s actions (Kelley & Thibaut, 1978).

Interdependence spacA four dimensional space used to represent adldity social
situations (based on (Kelley et al., 2003).

Mutual Joint Control (MJC)The individual’s ability to affect both its own meomes and
the outcomes of its partner in a social situatibelley & Thibaut, 1978).
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Mutual Partner Control (MPC)he individual’s ability to affect their partnertaitcomes
in a social situation or interaction (Kelley & Thilta1978).

Outcome A unitless scalar value representing an individuatility, reward, and/or
happiness.

Outcome matrixA conceptual and computational representaticenahteraction and
social situation that includes information abow thdividuals interacting, actions
available, and resulting outcome for the selectiban action pair by the dyad
(Kelley & Thibaut, 1978).

Outcome matrix deconstructiomhe algorithmic process of separating an outcome
matrix into the BAC, MPC, and MJC representing éhdéstinct types of control.

Partner featurePerceptual features related to the recognitichstate determination of
the partner.

Partner stateThe emotional, behavioral, or physical state efiartner.

Partner typeA partner’s classification in terms of dispositiavith respect to a space of
types.

Relationship A particular type of connection existing betwéedividuals related to or
having dealings with each other (Relationship, 2000

Risk The expectation of a potential loss of outcome.

StereotypeAn interpersonal schema relating perceptual featto distinctive clusters of
traits (Sears, Peplau, & Taylor, 1991).

Situation A particular set of circumstances existing in atijgular place or particular
time (Situation, 2007).

Situation analysis A two-step algorithmic process that uses an ou&amatrix to
produce a situation’s location in interdependemaes.

Situation featurePerceptual features related to the recognitiah @nsideration of the
situation and/or social environment.

Situation-based interactiomnteraction that includes consideration of th@iemmental
factors or social situation, as well as the intengc individuals themselves, as
influences of interactive behavior.

Situation network A finite state representation of causally conedcsocial situations
that is used to describe the movement to and fritmatens resulting from mutual
interactive behavior selection (based on Kelley34)9

Social environmentAny environment with more than one social robohioman.

Social learningImprovement with respect to some performance oreasn some class
of tasks with experience derived frons@cialenvironment.

Social situation the social context surrounding an interactionwieein individuals
(Rusbult & Van Lange, 2003).
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Socially deliberative pathwayA computational process by which deliberation rothee
individual's motives and other internal predilecois included in the individual's
action decision.

Socially reactive pathwayA computational process in which deliberation roviee
individual's motives and other internal predilea$o is not included in the
individual’s action decision.

Symmetry The degreeto which the partners are equally dependent on aweher
(Kelley & Thibaut, 1978).

Transformation A computational method, applied to the valuesanfoutcome matrix
that results in the selection of an action.

Transformation proces3he process by which a given situation is modifiednclude
the individual’'s own internal tendencies and conseto produce an effective
situation (Kelley & Thibaut, 1978).

Trust A belief, held by the trustor, that the truste# act in a manner that mitigates the
trustor’s risk in a situation in which the trustess put its outcomes at risk.

Trustee In a social situation meeting the conditions fiarst, the individual that must
determine whether to act in a manner that allegitite trustor’s risk.

Trustor In a social situation meeting the conditions fiarst, the individual the must
decide whether to place their outcome at risk dr no

Turn-taking interaction styléA style of interaction in which individuals iténgely select
interactive actions.

Unpopulated outcome matriAn outcome matrix devoid of outcome values.

Untrusting actionA potential action for the trustor that does entail risk.
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APPENDIX B

EXAMPLE SOCIAL SITUATIONS

The following list describes several canonical dosituations. Sixteen situations are
presented (Kelley et al., 2003). These situatiopsesent several different areas of the
interdependence space. The abbreviations denotetdrdependence space location in
Figure 6.2. The outcome matrices depicted by arenakized. The situation’s potential

for meeting the conditions for situational truslissed.

Social Situations

Name Verbal Description Outcome Interdependence | Situational
(based on Kelley et al., 2003) Matrix Space Location Trust?
I-space abbr.
Chicken Each individual chooses between 8 12 1.0,0.2,-0.3,0.0 Yes
Situation safe actions with middling outcomeq g 4
and risky actions with extreme 4 0 CHK
outcomes. 12 0
Competitive | Each individual gains from the other] 6 12 0.5,-1.0,-0.5,0.0 No
Situation individual’s loss. Maximal outcome | 6 0
is gained through non-cooperatiorn.|~ 6 COMP
12 6
Conflicting Each individual's outcomes depend| 12 0 1.0,-1.0,1.0,0.0 No
Coordination on the other individual, yet both 0 12
Situation individuals action preferences are i~ 12 CNCO
conflict. 12 0
Cooperative Each individual receives maximal 12 6 0.5,1.0,-0.5,0.0 No
Situation outcome by cooperating with the | | 12 6
other individual. 6 0 COOP
6 0
Correspondent{ Each individual’s outcomes depend| 12 0 1.0,1.0,1.0,0.0 No
Coordination on the other individual and both 12 0
Situation individuals action preferences 0 12 CRCO
correspond. 0 12
Hero Situation Individuals have a mutual desire ¢ 15 0 0.7,0.5,0.3,0.1 Yes
coordinate their actions but a conflic] g 0
of interest exists as to which action{tg~ o 5 HERO
choose. 4 12
Independent The action selected by each 12 0 0.0,0.0,-1.0,0.0 No
Situation individual has no impact on the 12 12
outcome received by the other 12 0 IND
individual. 0 0
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Investor- This situation is a trust situation fo 36 23 1.0,-0.3,-0.3,0.3 Yes
Trustee the investor and a prisoner’s dilemmfp 24 5
Situation situation for the trustee. 12 18 Not listed
48 10
Martyr Individuals have a weak mutual 30 20 0.4,0.0,-0.3,0.8 Yes
Situation desire to coordinate their actions bjf g 12
a strong conflict of interest as to 60 10 Not listed
which action to choose. 4 0
Exchange Each individual has a choice as td 12 12 1.0, 0.0, -1.0, 0.0 No
Situation whether or not to have a positive gr| 12 0
negative impact on the other 0 0 EXCH
individual. 12 0
Prisoner’s Both individuals are best off if they 8 12 0.8, -0.8,-0.6, 0.0 No
Dilemma act non-cooperatively and their 8 0
Situation partner acts cooperatively. 0 4
Cooperation and non-cooperation | 12 4 PRD
results in intermediate outcomes fq
both.
Strong Threat| One individual has greater control 8 12 0.8, 0.0, -0.6, 0.0 No
Situation over the dyad’s outcomes. The othg} 12 4
individual, if exploited, has 0 4 STHR
significant power to reduce the || g 0
outcomes of both individuals.
Trust Situation| In this situation, cooperationisinthd 12 8 1.0,0.2,-0.3,0.0 Yes
best interests of each individual. If| | 12 0
however, one individual suspects th4t" g 4 TRU
the other will not cooperate, non-| | g 4
cooperation is preferred.
Asymmetric Same as the investor-trustee 10 14 1.0,-0.9,- 0.1, -0.7 Yes
Investor- situation, except that the situation’s| 13 11
Trustee asymmetry is increased. 21 17 Not listed
Situation 6 5
Slight Individual two has slightly greater 7 1 1.0,0.8,0.2,-0.2 No
Asymmetric control over individual one’s 19 9
Situation outcomes. Still, both individuals 1 10 Not listed
action preferences correspond. | | 7 15
Weak Threat One individual has greater control 6 12 0.5,0.0,0.5,0.0 No
Situation over the dyad’s outcomes. The othg} 12 6
individual, if exploited, has limited 0 6 WTHR
power to reduce the outcomes of bothg 0

individuals.
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APPENDIX C

LIST OF TRANSFORMATION TYPES

The following table depicts a list of transformatiypes developed for this dissertation, a
description of the robot’s character if the robfieo selects the transformation type, and
the mathematical method for performing the tramagtion.

Transformation Types

Name Character Description Transformation Method
nmax_own Egoistic—the individual selects the actign No change
that most favors their own outcomes.
m n_own | Ascetic—the individual selects the actign 5t = 1 1
- 0" =Mmax{,o0 )—.. 0
that minimizes his/her own outcomes. Xy (Xy ) Xy
max_ot her | Altruistic —the individual selects the actign ol= 0?2
that most favors their partner. oo
m n_ot her Ma'levolence—the individual selects the ) ot = max(x 02)_X 02
action that least favors the partner. Y Y Y

max_cert Risk-averse—the individual selects the; i 1 1\ = mi 1 1
- if \min(,,0",,,0°) =min(,,0,,,0
action that results in the maximal guaranteed( (:07:2107) (20" ))
outcome. XyO1 = max(xyol)
else
if (min(1101,2101) > min(lzol,zzol))

0" = max(,0")
else

Al _ 1
0 =max(,o0)

mn_cert Risk-seeking—the individual selects the: i 1 1\ = mi 1 1
- if \min(,,0,,,0°)=min(,,0,,,0
action that results in the minimal guaranteed ( (1107,210°) (12072, ))

outcome. 0" = max(,0")
else
i (ming,0',,,0") < min(,0" ,,0))
10" = max(,0')
else
Al 1
0 =max(,0)

max_j oi nt | Cooperative—the individual selects the o'= o'+ o2
action that most favors both their own and weooyem
their partner’s interests.

D

m n_j oi nt | Vengefulness—the individual selects th

Al 1 2 1 2
. A . 0O =max(, 0+ 0")—\{, 0+ 0
action that is most mutually disagreeable. | ¥ (Xy i ) (Xy I )

max_di ff Competitive—the individual selects the ot =
action that results in the most relative gain to Xy
that of its partner.

1_ A2
><y0 ><y0 ‘

2

1
xyo _xyo

mn_diff Fair—the individual acts in a manner that A1 ¢ 1 2‘
- . . . 0] max({,, o0 —. 07—
results in the least disparity. Xy Xy xy )
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