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SUMMARY 

 

 Can a robot understand a human’s social behavior? Moreover, how should a robot act 

in response to a human’s behavior? If the goals of artificial intelligence are to understand, 

imitate, and interact with human level intelligence then researchers must also explore the 

social underpinnings of this intellect. Our endeavor is buttressed by work in biology, 

neuroscience, social psychology and sociology. Initially developed by Kelley and 

Thibaut, social psychology’s interdependence theory serves as a conceptual skeleton for 

the study of social situations, a computational process of social deliberation, and 

relationships (Kelley & Thibaut, 1978). We extend and expand their original work to 

explore the challenge of interaction with an embodied, situated robot. 

 This dissertation investigates the use of outcome matrices as a means for 

computationally representing a robot’s interactions. We develop algorithms that allow a 

robot to create these outcome matrices from perceptual information and then to use them 

to reason about the characteristics of their interactive partner. This work goes on to 

introduce algorithms that afford a means for reasoning about a robot’s relationships and 

the trustworthiness of a robot’s partners. Overall, this dissertation embodies a general, 

principled approach to human-robot interaction which results in a novel and scientifically 

meaningful approach to topics such as trust and relationships. 

 

 

 

 



 

1 

CHAPTER 1 

INTRODUCTION 

 

Many scientists have recently come to recognize the social aspects of intelligence (Byrne 

& Whiten, 1997; Sternberg, Wagner, Williams, & Horvath, 1995). In contrast to purely 

cognitive intelligence—which is most often described by problem-solving ability and/or 

declarative knowledge acquisition and usage—social intellect revolves around an 

individual’s ability to effectively understand and respond in social situations (Humphrey, 

1976). Compelling neuroscientific and anthropological evidence is beginning to emerge 

supporting the existence of social intelligence (Bar-On, Tranel, Denburg, & Bechara, 

2003; Bergman, Beehner, Cheney, & Seyfarth, 2003). Regardless of whether or not social 

intelligence is actually the dominant force behind intelligence, it is obvious that it is an 

important part of normal human development and intellect (Greenough, Black, & 

Wallace, 1987; Salzinger, Feldman, & Hammer, 1993). From the perspective of a 

roboticist it then becomes natural to ask how this form of intelligence could play a role in 

the development of an artificially intelligent being or robot. As an initial step one must 

first consider which concepts are most important to social intelligence.  

 One fundamental concept is the relationship (Gardner, 1983). In order to explore the 

possibility of developing a socially intelligent robot it will be necessary to 

computationally model and understand precisely what constitutes a relationship. A 

relationship is defined by the types and extent of influence one person has on another—

their interdependence (see Appendix A for a complete glossary of terms) (Kelley & 

Thibaut, 1978). Relationships, moreover, are dynamic with each interaction among 
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individuals having the potential to alter the nature of the relationship (Rusbult &  Van 

Lange, 2003). Similarly, the present state of the relationship will strongly guide the 

selection of behaviors while interacting. Kelley and Thibaut theorized that an individual 

will adjust its interactive behavior based on its perception of a pattern of outcomes, i.e. 

reward minus cost. They went on to develop interdependence theory, a conceptual 

skeleton for the study of relationships.  

 Due to the complexity of maintaining, judging, and updating multitudes of 

relationships over long periods of time, it becomes necessary to characterize the 

impending reliability of a relationship with respect to the social environment (Lewicki & 

Bunker, 1996; Luhmann, 1990). Trust serves this purpose. Trust enables an individual to 

gauge the risks associated with interacting with another agent (Kollock, 1994; Luhmann, 

1979, 1990). Trust also allows an individual to estimate or predict the likelihood of future 

behaviors being employed (Gambetta, 1990). Finally, in the presence of trusted relations, 

an agent or robot’s abilities may be augmented by the other specialties of the group, thus 

creating a collective that is more survivable than any single individual (Prietula, 2001).  

 If trusted relations are important, then the social situations that generate these 

relations are similarly vital. Later work by Kelley et al. outlined a number of canonical 

social situations and their key interpersonal properties (Kelley et al., 2003).  For humans 

at least, interaction is often causally determined by the type of social situation in addition 

to each individual’s personal responses to the situation (Rusbult &  Van Lange, 2003). 

Their work also demonstrates that relationships develop from an accumulation of 

interaction in a variety of social situations (Kelley, 1979). This dissertation details a 
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general, computational framework for a robot or agent to represent and reason about both 

social situations and the relationships that develop from interaction with a partner.  

1.1 Motivation 

Human intellect has evolved and continues to evolve in a medium of social interaction. 

Moreover normal human brain development requires the nurture and support of social 

relations (Perry, 2001; Perry & Pollard, 1997). Clearly, if some of the goals of artificial 

intelligence are to understand, imitate, and interact with human-level intelligence then 

researchers must also explore the social underpinnings of this intellect. The goal of this 

work is to investigate the effect of characterizing the trustworthiness of social 

relationships on a robot’s ability to understand, learn from, and interact within its social 

environment. There are many reasons why this endeavor is of value.   

 Social perception is important for robots operating in complex, dynamic social 

environments. For humans, social perception may include recognition of intent, attitude, 

and temperament and is a basic developmental skill in children (Pettit & Clawson, 1996). 

An individual’s perception of his or her social environment is a crucial precursor to 

intelligent social action and interaction (Field & Walden, 1982; Travis, Sigman, & 

Ruskin, 2001). This perception allows the individual to judge the potential risks and 

rewards each of its relationships presents. In this work social perception focuses on 

characterizing a robot’s relationships as worthy of trust. It is believed that by 

characterizing relationships in this manner a robot will have advantages in terms of 

learning and performing tasks in complex, dynamic environments. Moreover, in a 

suitable learning paradigm these advantages will be quantifiable as overall task 

performance. This work is motivated by the desire to develop robots with some 
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rudimentary understanding of social situations in the hope that they will then be better 

suited to operate in social environments. Learning within social environments is another 

critical aspect of social intelligence. Social environments offer developing animals the 

opportunity to learn from several different individuals in many different ways (Russen, 

1997). This diversity of learning has an impact on the animal’s ability to perform tasks 

critical to its survival. Current techniques in artificial intelligence tend to restrict a robot’s 

source of learning to a single instructor and/or instruction signal (Mitchell, 1997; Sutton 

& Barto, 1998). The proposed research intends to consider instruction from multiple 

relations. It is believed that richer and more valuable guidance will be possible when 

learning from several relations, each with unique expertise. Moreover, social situations 

afford opportunities to learn not only about a specific task, but also about one’s 

relationships, and which actions are best suited to build those relationships.        

 Finally, social behavior is vital for social intelligence. The challenge of creating 

robots that behave properly in a social environment is an important issue for robotics. As 

robots leave the lab and enter people’s homes and families, it becomes critical that these 

artificial systems interact with humans in an appropriate manner. Because the actions of 

an embodied robot may entail risk for the robot’s interactive partners, it is critical that the 

embodied robot consider the social costs of a potential action. The issues and problems 

associated with trust are of particular concern when a person expects to rely on a robot 

for their well-being. The research delineated in this dissertation is significant in that these 

issues will be examined in detail and for the first time in this context.      

 The proposed research focuses solely on relationships between a robot and a human. 

Multi-robot or relationships between simulated agents, although interesting, are not 



 5 

addressed outside of the related work. Further, this dissertation proposes to investigate 

trusted relationships from the perspective of the robot, not the human. Hence, our 

intention is to ask questions such as can a robot be made to trust a human, rather than can 

a human be convinced to trust a robot. Although the latter is certainly of interest, a 

human-centric dissertation is not the primary motivation of the author.  

   We hope that the results of this work will be broadly applicable both within the 

artificial intelligence community and in other communities. Within artificial intelligence, 

it may be possible to describe many patterns of interaction between agents using 

interdependence theory. This broad applicability might extend to expert systems, 

planning, natural language understanding, and even perception. Moreover, an exploration 

of trust, relationships, and interaction from the perspective of artificial intelligence may 

have consequences for sociologists, social psychologists, and relationship researchers. 

The results and tools generated by this dissertation might serve these other disciplines in 

the same manner that other work in artificial intelligence has served their research 

(Axelrod, 1984; Bainbridge et al., 1994 for a review). While the experiments were 

performed in a human-robot interaction domain, we believe that the results are 

generalizable beyond human-robot interaction and robotics. 

1.2 Principal Research Question 

What effect will characterizing the trustworthiness of social relationships and of 
social situations have on a robot’s ability to select actions? 

As explained above, developing a framework that will allow a robot to characterize its 

social relationships may afford the robot advantages in its ability to select actions. This 
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dissertation determines to what extend a robot’s characterization of its social environment 

aids in selecting actions. 

 From the principal research question the following subsidiary questions emerge. The 

discussion below each question describes why the solution to the subsidiary question is 

vital to solving the principal research question.   

1) What effect will the development of a theoretical framework that allows a 
robot to represent social situations and recognizing situations that require 
trust have on the robot’s ability to select actions?  

The characterization of social relationships by a robot will require a 

computational method for representing and reasoning about the social situations 

that constitute the development of a relationship.   

2) What effect will deliberation with respect to the social situation have on the 
robot’s ability to select actions?  

Social deliberation involves the consideration of one’s social environment. As 

part of this subsidiary question, we develop a framework for social action 

selection that transforms the social situation perceived by the robot into a situation 

on which the robot will act. Moreover, we demonstrate that our framework for 

social action selection can include the robot’s social dispositions.   

3) What effect will algorithms, developed as part of the theoretical framework 
of social situations, that allow a robot to represent its relationship with its 
human partner and to characterize these relationships in terms of the trust 
have on the robot’s ability to select actions?  

For this subsidiary question, we introduce methods to develop models of the 

partner and to use these models. Social psychological research claims that 

relationships develop from a honing of one’s model of their partner resulting from 

an accumulation of social interaction with the partner (Kelley et al., 2003; Rusbult 
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&  Van Lange, 2003). This subsidiary question tests that claim and ties together 

many of the concepts presented throughout the dissertation.  

1.3 Objectives 

The principal objective of this research is to determine the role and impact of trust-

characterized relationships on a robot’s ability to perform tasks. Towards this goal, many 

novel and scientifically meaningful milestones will be accomplished. This dissertation 

will also provide insight into the phenomenon of trust and social relationships as well as a 

formal basis for developing a robotic implementation. Specifically, this research makes 

the following contributions: 

• A general, computational framework implemented on a robot for representing and 

reasoning about social situations and interaction based on interdependence theory; 

• A principled means for classifying social situations that demand trust on the part 

of a robot and for measuring the trust required by the situation in which the robot 

interacts with a human;  

• A methodology for investigating human-robot interaction theory; 

• A computational framework for social action selection implemented on a robot 

but generalizable beyond robotics. This framework will employ our 

computational representation of social situations in a manner suitable for a robot 

or simulated agent;  

• An algorithm that allows a robot to analyze and characterize social situations;  

• Methods for modeling the robot’s human partner and characterizing a robot’s 

relationship with the partner. 
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1.4 Dissertation Outline 

The current chapter has introduced the focus of this dissertation as well as describing its 

motivations, contributions, and research questions. The next chapter surveys the relevant 

research and theory related to this research problem. Chapter 3 develops a methodology 

for investigating and developing HRI theory. Chapter 4 introduces our computational 

framework that allows a robot to represent and reason about its social interactions with a 

human partner. Chapter 5 presents algorithms and results that allow a robot to construct 

representations of its interactions and to learn from experience with a human partner. In 

chapter 6 we present an algorithm that allows a robot to characterize its social 

environment. In chapter 7 we detail algorithms and results of partner and relationship 

modeling. Chapter 8 explores trust, presenting definitions, computation methods for 

characterizing it and experimental results. Finally, chapter 9 offers conclusions.   
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CHAPTER 2 

CHARACTERIZING HUMAN-ROBOT SOCIAL RELATIONS: A 

REVIEW  

 

Recently scholars from a variety of fields have come to recognize the importance of the 

social environment in the development (Perry & Pollard, 1997), maintenance (Cross & 

Borgatti, 2000), evolution (Byrne & Whiten, 1997) and even the definition of intelligence 

itself (Gardner, 1983). Nicholas Humphrey, one of the earliest proponents of the 

importance of the social environment, observed that animals, most notably the higher 

primates, seem to possess abilities which exceed by far the necessities of their natural 

environments (Humphrey, 1976). He convincingly argued that social skills are the 

foundation of human intellect. Nevertheless, the process of relationship building that 

humans rely on from infancy has yet to be fully examined and adapted to relations 

between humans and robots. If it is true, as many anthropologists, psychologists, and 

sociologists claim, that the social environment plays a critical role in the existence of 

human intellect, then it becomes absolutely essential for roboticists to investigate and 

develop viable mechanisms by which a robot can manage a similar social environment. 

One important first step towards this goal is to examine the development of relationships 

by robots and the characterization of these relationships in terms of trust. This chapter 

reviews relevant work from many disciplines, highlighting gaps in the existing field of 

knowledge that this dissertation proposes to explore and detailing in depth the most 

pertinent literature.         
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2.1 Human-Robot Interaction 

Human-robot interaction (HRI) is an emerging field of study that blends aspects of 

robotics, human factors, human computer interaction, and cognitive science (Rogers & 

Murphy, 2001). HRI is primarily concerned with the details of how and why humans and 

robots interact (see Fong, Nourbakhsh, & Dautenhahn, 2003 for a review). HRI touches 

on a wide variety of topics from the detection of human emotion (Picard, 2000) to 

human-oriented behavioral design (Arkin, Fujita, Takagi, & Hasegawa, 2003). This 

section begins by first reviewing the mechanics of human-robot interaction. Next, process 

models of interaction are explored. Finally, HRI methodology is reviewed.  

2.1.1 Interactive communication 

For humans, interaction is natural (Sears, Peplau, & Taylor, 1991). Robots, on the other 

hand, lack the basic competencies required to successfully interact with humans (Fong, 

Nourbakhsh, & Dautenhahn, 2003). Speech recognition and synthesis are a means of 

communication that can be used to facilitate human-robot interaction.   

 Speech synthesis has had a long and successful history within artificial intelligence 

(see Lemmetty, 1999 for a review). Recent work involving robots has focused on 

development of mechanical vocal cords for human mimetic speech generation by a robot 

(Shintaku et al., 2005). For other robots, such as the Sony QRIO, speech recognition is 

integrated with the robot’s control architecture (Sony Corporation, 2006). Several 

software packages for speech recognition exist (Microsoft Speech SDK 5.1 information 

page, 2006; Open Mind Speech, 2006). Moreover, improvements in recognition have 

allowed many commercial applications for recognition technologies to flourish (Karat, 
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Vergo, & Nahamoo, 2007). Speech synthesis applications, like speech recognition, has 

become an established technology (Robert, Clark, & King, 2004). In addition to the raw 

perceptual challenges of recognizing and producing communicative acts for a human, an 

HRI researcher must also consider the style of interaction.  
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Figure 2.1  A process model for turn-taking interaction is depicted above. This style of interaction 
involves iterative distinct responses. 

2.1.2 Styles of interaction 

Dyadic social interaction (see Appendix A for glossary of terms) typically involves either 

a concurrent style of interaction or a turn-taking style of interaction (Kelley, 1984). A 

concurrent style of interaction requires that the individuals select their actions at the same 

time. Turn-taking style, on the other hand, allows each individual the opportunity to 

observe the social action of their partner before selecting their own social action. The 

major difference between these styles is thus the timing of interaction between members 

of the dyad, and not what is expressed. Either style of interaction could therefore be used 
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to investigate the development and characterization of human-robot relationships. We use 

both the turn-taking and concurrent style of interaction for experimentation.  

 As will be discussed in section 2.2.1, trust (Kollock, 1994) and relationships (Kelley 

et al., 2003) in general develop from repeated interaction among individuals. Hence, a 

process model for turn-taking can be used to describe the cycle by which a human and a 

robot interact repeatedly over some number of iterations. Figure 2.1 depicts a cycle from 

this general turn-taking process model. This model relates to the transition network style 

of dialogue models (see Green, 1986 for a review). In Green’s model vertices represent 

the states of the dialogue between the user and the robot. Edges determine the transition 

from one dialogue state to another in this model. 

 The general process model from Figure 2.1 describes an iterative procedure. Assume 

that A is the human, B is the robot, and that the interaction begins arbitrarily with (1) 

deliberation by A concerning which interactive behavior to employ. First, (2) A 

determines which interactive behavior to employ and uses the behavior. Next (3) B 

perceives A’s interactive behavior. Then (4) B deliberates to determine the proper 

response based on knowledge of A’s interactive behavior. Next (5) B produces an 

interactive behavior and finally (6) A perceives B’s interactive behavior continuing the 

cycle. In this model the robot selects interactive behaviors at a higher, deliberative level 

in the robot architecture.   

2.1.3 HRI methodology 

Fong et al notes that two design methodologies dominate HRI research: the functionally 

designed approach and the biologically inspired approach (Fong, Nourbakhsh, & 

Dautenhahn, 2003). Functionally designed methodologies focus on social task 
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performance without any correlation to living creatures. Biologically inspired 

methodologies tend to mimic or simulate their biological counterparts. This dissertation 

will employ a biologically-inspired approach, drawing heavily from work in psychology 

and sociology. 

 
Figure 2.2  Although extremely mobile, robots such as the Clodbusters (Hsieh et al., 2007) on the left 
have been designed with little capacity for interaction. Kismet to the right, on the other hand, has been 
designed specifically for interaction. Although many degrees of freedom control its facial expressions the 
robot was not designed for general purpose motion over long distances. 

 Methodological evaluation of an interactive robot is often influenced by the 

capabilities of the robot. Mobile robots have traditionally tended to possess great 

capabilities for exploring their environment, yet little capacity for interaction with 

humans (Kortenkamp et al., 1998; Thrun et al., 1998) (Figure 2.2 gives an example). On 

the other hand, Kismet (Figure 2.2 left)—an actuated expressive robotic head—is capable 

of an impressive array of interaction yet largely stationary (Breazeal, 2002).  

 Field testing is another method of evaluation often employed (Pineau, Montemerlo, 

Pollack, Roy, & Thrun, 2003). Interactive robots in the field range widely with regard to 

purpose and capabilities (e.g. Nourbakhsh, 1998; Thrun, Schulte, & Rosenberg, 2000). 

Proof of concept systems are common (Fong, Nourbakhsh, & Dautenhahn, 2003). One 

long-term goal of this work is to develop robots capable of building trusted relationships 
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with people in need of assistance. Several HRI research projects have explored the use of 

robots as assistive navigators for humans. One of the earliest was Horswill’s Polly robot 

which gave tours of an office environment (Horswill, 1998). Nourbakhsh also developed 

a robot tour guide for an office environment (Nourbakhsh, 1998). Thurn et al. 

investigated the use a robot as a museum tour guide (Thrun, Schulte, & Rosenberg, 

2000). Stoychev and Arkin explored using robots for office delivery tasks (Stoytchev & 

Arkin, 2001).  Researchers have recently begun to study the prospect of using robots to 

assist the visually impaired (Lacey & Dawson-Howe, 1998; Shoval, Ulrich, & 

Borenstein, 2000). Autistic children have been one area of focus (Scassellati, 2000; 

Werry & Dautenhahn, 1999). Others have investigated using robots to assist the elderly 

(Pineau, Montemerlo, Pollack, Roy, & Thrun, 2003) and the disabled (Mataric´, Eriksson, 

Feil-Seifer, & Winstein, 2007).  

 In many ways interaction describes the surface of relationship building. Further, the 

details of interpersonal interaction often causally relate to the social situation that 

spawned the interaction (Kelley et al., 2003). Metaphorically, the social situation serves 

as interactive scaffolding from which an interpersonal relationship develops. The next 

section will therefore review research from psychology and sociology created to explore 

the nature of interpersonal relations.    

2.2 Interpersonal Relations 

For humans, social relations form the environmental fabric of our existence (Byrne & 

Whiten, 1997; Gardner, 1983; Humphrey, 1976; Travis, Sigman, & Ruskin, 2001). This 

research investigates social relationships from the perspective of a robot. A necessary 

starting point for this investigation is a consideration of which, if any, theories of human 
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relationships are relevant to this endeavor. This section reviews theories pertaining to the 

development, maintenance, and continuation of human interpersonal relations.      

2.2.1 Relationship theory 

Social interaction is defined as influence—verbal, physical, or emotional—by one person 

on another (Sears, Peplau, & Taylor, 1991). Relationships develop from interaction 

between two individuals or dyads. Several theories describing why and how relationships 

develop have been proposed. An investigation of relationships between humans and 

robots requires an underlying conceptual framework to support the design methodology. 

Because this is a biologically inspired approach we turn to related work from social 

psychology for this theoretical framework. Note that the purpose of this theoretical 

framework is two-fold: first, it is necessary to have a basis for understanding the actions a 

human will choose; second, it is necessary to have a basis for determining the correct 

robot responses to a given social situation. The theoretical framework selected must 

provide both. This section first reviews competing alternatives from social psychology, 

selects one, and then details the theory from the psychological perspective describing 

why it is the correct choice for implementation on a robot. 

 Social penetration theory views the development of a relationship as a process of 

increasing self-disclosure (Altman & Taylor, 1973). As a relationship develops the 

individuals in the relationship confide, share, and offer more personal information to the 

other person. Supporters of the theory claim that social penetration theory successfully 

explains several aspects of relationships such as each individuals dependence on the other 

individual in close relationships (Sears, Peplau, & Taylor, 1991). Critics of penetration 

theory claim that the theory is not supported by data, fails to explain high levels of 
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reciprocity and altruism in middling relationships, and does not account for differences in 

gender, culture, or race (Griffin, 1997). As a model of relationships for robots, 

penetration theory assumes the presence of vast perceptual and behavioral competencies 

that would be difficult to develop. For example, recognizing disclosure would likely 

require affect recognition, topical understanding, contextual perception and 

understanding, and possibly much more. Moreover, the high level descriptions of social 

penetration theory developed for psychologists would be difficult to interpret and 

implement on a computer.    

 Uncertainty reduction theory focuses on the effect and usage of communication 

among humans in relationships as a means for reducing uncertainty in our social 

environment (Berger, 1987). An axiomatic approach, uncertainty reduction theory 

delineates the connection between uncertainty reduction and social psychological traits 

such as reciprocity and similarity. Supporters of uncertainty theory claim that the theory 

explains aspects of communication within human relationships not well addressed by 

other theories. Criticisms of uncertainty reduction theory often focus on its axioms, 

typically claiming one or several of them are invalid (Griffin, 1997). As a theory of 

interpersonal relations for robots, uncertainty reduction theory could potentially be used 

as a means for modeling newly developed relationships. This theory, however, is not 

adequate (nor was it meant to be) for modeling close relationships.     

 Interdependence theory, as will be shown, is adequate for modeling both superficial 

and intimate interpersonal relationships. It also models relationships computationally in a 

manner suitable for implementation on a robot. Interdependence theory is a social 

psychological theory developed by Kelley and Thibaut as a means for understanding and 
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analyzing interpersonal situations and interaction (Kelley & Thibaut, 1978). It began as a 

method for investigating group interaction processes and evolved over the authors’ 

lifetimes into a taxonomy of social situations categorizing interpersonal interactions 

(Kelley et al., 2003; Kelley & Thibaut, 1978). Moreover, interdependence theory is 

considered by some to be the most influential social psychological theory for this purpose 

(Sears, Peplau, & Taylor, 1991) and will thus form the theoretical framework for this 

dissertation. The term interdependence describes the effects interacting individuals have 

on one another. Interdependence theory is based on the claim that four variables dominate 

interaction: 1) reward, 2) cost, 3) outcome, and 4) comparison level. Reward refers to 

anything that is gained in an interaction. Cost, on the other hand, refers to the negative 

facets of the interaction. Outcome describes the value of the reward minus the cost. An 

individual will adjust its behavior based on its perception of a pattern of outcomes. 

Comparison level describes an individual’s tendency to compare the actual outcomes 

from a relationship with the individual’s expected outcomes. Two of interdependence 

theories four core variables (reward and cost) relate to terms long familiar to artificial 

intelligence researchers (Sutton & Barto, 1998).  

 Critics of interdependence theory often state that 1) it ignores the non-economic 

aspects of interpersonal interaction such as altruism and 2) that it assumes people are 

rational, outcome maximizers. Kelley responds to these criticisms directly, stating that 

the noneconomic aspects of interaction can also be included in a description of a person’s 

outcomes and that the theory does not presume either rationality or outcome 

maximization (Kelley, 1979). Rather, as will be explained shortly, individuals often 
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transform social situations to include the irrational aspects of socialization such as 

emotion or social bias.   
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Figure 2.3  The distribution to the left depicts a two dimensional cross-section of the interdependence 
space. Here some prototypical relationships are described in terms of their interdependence and 
correspondence. To the right, a three dimensional distribution adds the basis of control dimension. This 
cube depicts prototypical interpersonal situations such as the prisoner’s dilemma game (PDG) and trust 
game as squares within the cube. These prototypical situations often occur on planes within the cube 
(adapted from Kelley, 1979 and Kelley et al., 2003). 

 Interdependence theory serves as the conceptual skeleton for analyzing interactive or 

social situations. A social situation describes the social context surrounding an 

interaction between individuals (Rusbult &  Van Lange, 2003). Recently social 

psychologists have developed an atlas of canonical social situations (Kelley et al., 2003). 

Figure 2.3 depicts a variety of social situations in a space termed the interdependence 

space. All of the social situations described within interdependence theory are discrete 

events that map to a location within interdependence space. The prisoner’s dilemma 
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game and the trust game are examples of social situations that can be mapped to a portion 

of the interdependence space.   

 The interdependence space is a four dimensional space (Figure 2.3 right only depicts 

three of the four dimensions) that describes all social situations. These dimensions are 

interdependence, symmetry, correspondence, and basis of control. The interdependence 

dimension describes the extent that each partner’s outcomes are influenced by the other 

partner’s actions. The symmetry dimension describes the degree to which the partners are 

equally dependent on one another. The correspondence dimension describes the extent to 

which each partner’s outcomes are consistent with the others. The basis of control 

dimension describes the ways in which each partner affects the other’s outcomes. Table 

2.1 lists each dimension and describes the maximal and minimal values for each 

dimension. Dimensional values for situations within the space are derived from reward, 

cost and outcome values for each possible action in the social situation. These values are 

typically depicted in an outcome matrix such as the one in Figure 2.4. Outcome matrices 

are not typical linear algebraic matrices and are equivalent to the normal form game 

representation (Chadwick-Jones, 1976). This example matrix describes a social situation 

involving two individuals labeled one and two. In this example, both individuals interact 

by selecting one of two behaviors: 11a  and 1
2a  for individual one and 2

1a  and 2
2a  for 

individual two. Cells 1oxy  thru 2oxy  denote the outcome values for each combination of 

behaviors selected. Thus, 1
21o  describes the outcome value for individual one if 

individual one selects action 11a  and individual two selects action 22a . Likewise, 2
21o  

describes the outcome value for individual two resulting from the same action selection.   
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Table 2.1 The dimensions of interdependence space are listed with descriptions of the maximal and 
minimal values and examples at the extremes. 
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Figure 2.4  An example outcome matrix is depicted. The term 1oxy  denotes the first individual’s 

outcomes and the terms 2oxy  denote the second individual’s outcomes. Outcomes result from the selection 

of an action pair by each individual.   
 
 The left hand side of Figure 2.3 also shows the location within interdependence space 

of some typical relationships. One of interdependence theory’s core premises is that a 

relationship develops from a culmination of interaction and a dyad’s movement and 

decisions with respect to the social situations faced (Kelley, 1984; Kelley et al., 2003; 

Kelley & Thibaut, 1978). This is a very important point which is worth restating. 

Interdependence theory claims that human relationships accrete from continued 

interaction between two people. For humans and robots, this dissertation examines 

whether or not a robot can model and predict the behavior of its human partner, allowing 

Interdependence Space Dimensions 
Dimension Range Description at extremes 
Degree of 

interdependence 
Complete 

interdependence—Zero 
interdependence  

Outcomes entirely depend on the actions of the 
partner; Outcomes are independent of the partner’s 

actions  
Symmetry Symmetric dependence—

Unilateral dependence 
Both partners can equally effect the other; One partner 

has greater control over the outcomes of the other 
partner 

Correspondence Corresponding interests—
Conflicting interests 

Partners act for each other’s mutual interest; Partners 
act in the opposite of the partner’s interest. 

Basis of control Outcome exchange—
Outcome coordination  

Partners receive favorable outcome by exchanging one 
action for another; Partners receive favorable outcome 

by coordinating joint actions 
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it to characterize its relationship and alter its behavior accordingly. This dissertation does 

not explore the human psychology of relationship building with a robot. We leave that 

portion of this work for the future. It should also be noted that by controlling the social 

situation in which a human and a robot are immersed, we can guide the development of 

the relationship and the corresponding characterization of later relationships.  
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Figure 2.5  The transformation process (adapted from Rusbult &  Van Lange, 2003). This process model 
transforms a given or perceived situation into behavioral selection by a person. The given situation is 
influenced by cognitive factors such as relational motives and emotions. These factors transform the 
perceived situation into an effective situation that the individual uses for selecting social behavior. 

 Given that a human and a robot are immersed in a social situation, interdependence 

theory describes a process by which social perception is transformed into social behavior. 

Reminiscent of the sense-plan-act paradigm (Bonasso, Kortenkamp, & Murphy, 1998), 

Kelley and Thibaut developed a transformation process (Figure 2.5) in which sensory 
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perception is transformed into action after being influenced by the agent’s internal 

cognitive processes (Kelley & Thibaut, 1978). In this case, however, social situations are 

used as the quanta of perceptual input. In the vernacular of interdependence theory, the 

perceived situation is termed the given situation. The given situation is a perceived 

instance of one type of social situation. The given situation is perceived by the individual 

and then cognitively transformed, creating an effective situation on which action is based. 

Hence, the final product of this process is the effective situation. The effective situation 

represents outcomes that include many various aspects of the individual’s own internal 

predilections. Behaviors are directly selected from the resulting effective situation. This 

process is illustrated in Figure 2.5. Several factors influence how the transformation 

process actually converts outcomes from the given situation to the effective situation. 

Examples include the individual’s dispositions, motivations, and relational or social 

norms (Holmes & Rempel, 1989; Kelley, 1984; Kelley & Thibaut, 1978). Interpersonal 

dispositions are actor-specific response inclinations to particular situations across 

numerous partners (Rusbult &  Van Lange, 2003). Motives, on the other hand, are 

partner- and situation-specific response inclinations. Social norms are rule-like, “socially 

transmitted inclinations” governing the response to a particular situation in some 

specified manner (Knight, 2001; Rusbult &  Van Lange, 2003). Rusbult and Van Lange 

also describe a socially reactive mechanism by which children select behaviors based on 

the given situation without consideration of deliberative level social norms and motives 

of the transformation process (Rusbult &  Van Lange, 2003). The computational methods 

described in this dissertation could therefore include connections to developmental 

robotics.   
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 In addition to explaining how relationships evolve, interdependence theory can be 

used to describe the forces that govern whom an individual selects to engage in a 

relationship (Kelley & Thibaut, 1978). Simply put, interdependence theory posits that 

people are attracted to those that present the largest interactive outcomes. Researchers 

also describe attraction as a function of familiarity, competence, and proximity (Duck, 

1973). Relationships may be motivated by many different reasons including kinship, sex, 

or survival (Wright, 1999). Cooperative relationships describe connections between 

individuals that offer the possibility of advantage for individuals which would not be 

present without the relationship (Knight, 2001; Trivers, 1971). It is believed that 

interdependence theory, as described above, can address the challenge of human-robot 

social behavior.  

2.2.2 Relationship and social situation analysis 

In addition to providing a means for modeling relationships computationally, 

interdependence theory also provides the computational methods necessary for analyzing 

relationships and social situations. Relationship and situation analysis is critical for a 

robot operating in dynamic and/or complex social environments. A robot must recognize 

the social impacts of each of its behavioral options, in addition to the impact on its own 

outcomes.   

 Situation analysis begins with the given social situation described in the preceding 

section. The given situation contains raw or unanalyzed outcomes for the social situation 

it represents. Situation analysis breaks down the given situation into three constituent 

components: the Bilateral Actor Control matrix (BAC), the Mutual Partner Control 

(MPC) matrix, and the Mutual Joint Control (MJC) matrix. The BAC matrix depicts the 
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extent to which each individual controls his or her own outcome. The MPC matrix, on the 

other hand, describes the manner in which the partner controls each individual’s 

outcomes. Finally, the MJC matrix shows how each partner’s outcomes are affected by a 

combination of their action and their partner’s action. The result of this analysis is a 

description of the relationship or situation in interdependence space. Analysis also 

quantifies the extent to which each of the robot’s behaviors influences the robot, the 

partner, and the robot and partner jointly.  
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Figure 2.6  Example outcome matrices are depicted above. The original outcome matrix is on far left. 
These outcomes are converted into the BAC, MPC, and MJC by following the procedure listed at the top of 
the figure. The numbers for the raw outcomes are provided in the example parameters listed to the left. In 
this example the robot selects between rescue and cleanup actions. The procedure results in the matrix 
variance table listed towards the bottom of the figure.  

 The process of relationship and social situation analysis is described with an example 

and illustrated in Figure 2.6. If we consider the search and rescue domain, then both the 

human and the robot could select either an action to rescue a victim or to cleanup a 
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hazard. In this case, the actual numerical value for each outcome could be a function of 

the number of victims and hazards in the environment. Often the actual values within the 

cells of a matrix are less important than the relation of one cell to another cell. For 

example, it is typically more valuable to know which action in an outcome matrix 

provides maximal reward than it is to know the actual value of the reward. The first 

matrix depicts the raw outcome scores for each individual. Thus in this example, the 

robot rates its outcome for mutual rescue as 9 and the human rates its outcome for mutual 

rescue as 7 (the source of these ratings is discussed in the next chapter). Units represent 

some measure of satisfaction. From this matrix one can derive the Bilateral Actor Control 

(BAC) matrix, the Mutual Partner Control (MPC) matrix, and the Mutual Joint Control 

(MJC) matrix by adding the appropriate cells from the raw outcome matrix, dividing by 

two, and then subtracting the mean. The variance for each matrix is displayed at the 

bottom of the figure. Variance is calculated from the results in the matrices by measuring 

the difference in outcome from one behavioral option to the other. Once an analysis has 

been conducted a robot will have the necessary information to fully reason over the social 

impacts of the situation or relationship to determine the appropriate social action. 

Summed over many situations, these values would then describe the present state of the 

relationship between the robot and the human.  

2.2.3 Social learning 

Social learning encompasses many different types of learning, only some of which have 

been traditionally investigated by AI researchers. Our working definition for social 

learning will be improvement with respect to some performance measure on some class 

of tasks with experience derived from a social environment. A social environment is 
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defined as any environment with more than one social robots and/or humans (see 

Appendix A for glossary of terms). Social learning has come to include teaching (e.g. 

Angluin & Krikis, 2003; Jackson & Tomkins, 1992), learning by imitation (e.g. Billard, 

Epars, Calinon, Schaal, & Cheng, 2004; Schaal, 1999), learning by observation and 

practice (e.g. Bentivegna, Atkeson, & Cheng, 2004; Lin, 1992), learning about the social 

environment (e.g. Banerjee, Mukherjee, & Sen, 2000; Schillo & Funk, 1999; Schillo, 

Funk, & Rovatsos, 2000) and learning about one’s role in the social environment (e.g. 

Crandall & Goodrich, 2004). Similarly, social reinforcement learning combines a 

traditional reinforcement learning paradigm, which is defined by the types of problems 

solved (Sutton & Barto, 1998), with traditional social learning (Isbell, Shelton, Kearns, 

Singh, & Stone, 2001). Abeel and Ng explored the challenge of developing an agent that 

could learning another agent’s reward function via observation (Abbeel & Ng, 2004).  

 Rather than focusing on the computational aspects of learning, social psychologists 

have mainly focused on the social aspects of learning (Bandura, 1962; Sears, Peplau, & 

Taylor, 1991). Association learning is a general term for describing the learning of an 

association connecting the occurrence of one artifact to the occurrence of another and is 

well suited for the purpose of this research. Associations can be generated mapping the 

robot’s specific behavioral choice to the perceived state of the partner and their 

relationship. Associations are used as a general mechanism for modeling and predicting a 

partner’s interactive responses.  

 Credit assignment is another relevant concern when pursuing learning in a machine. 

Credit assignment is defined as “the problem of assigning credit or blame to the 

individual decisions that led to some overall result” (Cohen & Feigenbaum, 1982). 



 27 

Diagnostic situations, attribution-directed activity, and clarification are used in 

interpersonal relationships to mitigate the challenges of the credit assignment (Holmes & 

Rempel, 1989; Rusbult &  Van Lange, 2003). A diagnostic situation is a means by which 

an individual tests a credit assignment hypothesis to determine the proper assignment. 

Attribution-directed activity, on the other hand, allows an individual to attribute credit, 

temporarily, to some cause and then update this assignment later as additional evidence 

becomes available. Clarification simply motivates the individual to locate the credit-

deserving aspect of the environment and typically occurs in fledgling relationships.  

 Stereotype learning is another important type of learning found in humans (Sears, 

Peplau, & Taylor, 1991). Stereotypes can be described as a manifestation of an 

interpersonal schema relating perceptual features to distinctive clusters of traits (Sears, 

Peplau, & Taylor, 1991). Stereotypes offer distinct computational advantages in terms of 

processing time for new stimuli and reaction time for previously encountered stimuli 

(Rusbult &  Van Lange, 2003). Subgrouping is a stereotyping process by which 

information is organized into multiple clusters of individuals who are similar to one 

another in some way and different from others (Richards & Hewstone, 2001). 

Stereotyping is used in this research as a means for developing internal models for 

unknown partners. Stereotypes are used to bootstrap the process of partner model 

building allowing a robot make an educated guess about a new partner based on 

interactions with prior partners.  
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2.2.4 Connections to game theory 

Section 2.2.1 briefly mentioned the equivalence of the normal form game representation 

and the situation outcome matrix. This section will discuss the similarities and 

differences of interdependence theory and game theory.  

 Game theory “is a bag of analytical tools” to aid one’s understanding of strategic 

interaction (Osborne & Rubinstein, 1994). In game theory, an equilibrium is a set of 

strategies in which no individual can unilaterally improve the outcome they receive.  

Interdependence theory, on the other hand, focuses on the development of relationships 

and the social situations from which these relationships grow. Game theory and 

interdependence theory both use the outcome matrix to represent social situations and 

interaction (Chadwick-Jones, 1976). In game theory these situations are limited by 

several other assumptions, namely: both individuals are assumed to be outcome 

maximizing; to have complete knowledge of the game including the numbers and types 

of individuals and each individual’s payoffs; and each individual’s payoffs are assumed 

to be fixed throughout the game. Interdependence theory does not make those 

assumptions. Because it assumes that individuals are outcome maximizing, game theory 

can be used to determine which actions are optimal and will result in an equilibrium of 

outcome. An equilibrium in game theory is an action or series of actions which are do not 

depend on the actions of the opponent. Interdependence theory, because it makes no 

assumptions about how an individual will transform the given situation (i.e., maximize 

their own outcome, maximize their partner’s outcome, etc.) does not lend itself to 

analysis by equilibrium of outcomes. For this reason, situations are analyzed in terms of 

variance of outcome with respect to the actions selected by the dyad, as described in 
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section 2.2.2. This is a crucial difference between this dissertation work and previous 

investigations by other researchers using game theory to control the social behavior of an 

agent (e.g. Crandall & Goodrich, 2004).  

 This section has described many of the social psychological and hence biologically 

inspired underpinnings that serve as the theoretical basis for this research. In the next 

section the background and role of trust is reviewed in detail.   

2.3 Using Trust to Characterize Relationships 

Trust has been studied by a variety of researchers from several different fields (Rousseau, 

Sitkin, Burt, & Camerer, 1998). This section reviews the vast, variegated literature 

concerning trust. Our inquiry begins with the different definitions of trust. Next, the use 

of social situations in the evaluation of trust is examined. This section concludes by 

describing alternative methods for evaluating trust.  

2.3.1 Definitions of trust 

Early trust research focused on definitions and characterizations of the phenomenon. 

Morton Deutsch is widely recognized as one of the first researchers to study trust (Marsh, 

1994). Deutsch, a psychologist, describes trust as a facet of human personality (Deutsch, 

1962). He claims that trust is the result of a choice among behaviors in a specific 

situation. Deutsch’s definition of trust focused on the individual’s perception of the 

situation and the cost/benefit analysis that resulted. Hence, his definition bears close ties 

to interdependence theory. He also proposes the existence of different types of trust. Each 

type of trust is classified according to the situation in which it occurs. Trust as social 

conformity, for example, results from societal expectations of trust. Other types include 
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trust as despair, innocence, impulsiveness, virtue, masochism, faith, risk-taking, and 

confidence (Deutsch, 1973; see Marsh, 1994 for an overview).  

 Niklas Luhmann, another early trust researcher, provides a sociological perspective 

(Luhmann, 1979). Luhmann defines trust as a means for reducing the social complexity 

and risk of daily life. He argues that the complexity of the natural world is far too great 

for an individual to manage the many decisions it must make in order to survive. For 

Luhmann, trust is one method for reducing societal complexity. Because a trusting 

society has greater capacity for managing complexity, it can afford to be more flexible in 

terms of actions and experience. In addition to managing complexity, he claims that trust 

is a method for handling risk. Lewis and Weigert extend Luhmann’s conceptualization of 

trust, adding emotional and cognitive dimensions (Lewis & Weigert, 1985).  

 Bernard Barber, another sociologist, defines trust as an expectation or mental attitude 

an agent maintains regarding its social environment (Barber, 1983; see Marsh, 1994 for 

an overview). He claims that trust results from learning in a social system and is used by 

an individual to manage its expectations regarding its relationships and social 

environment. Hence, trust is an aspect of all social relationships and is used as a means of 

prediction for the individual. Here again trust is defined in terms of social relationships 

open to exploration via interdependence theory.  

Gambetta describes trust as a probability (Gambetta, 1990). Specifically, he claims 

that, “trust is a particular level of subjective probability with which an agent assesses that 

another agent or group of agents will perform a particular action, both before he can 

monitor such action and in a context in which it affects his own action” (Gambetta, 1990) 

pg216). Gambetta defines trust as a probabilistic assessment of another agent’s intent to 



 31 

perform an action on which the agent will rely. Because of its simplicity, this definition 

has not been without controversy (Castelfranchi & Falcone, 2000).  

 Rousseau et al. have examined the definitional differences of trust from a variety of 

sources (Rousseau, Sitkin, Burt, & Camerer, 1998) and concluded that trust researchers 

generally agree on the conditions necessary for trust, namely risk and interdependence. 

The work of Deutsch, Luhmann, Barber, and Gambetta has served as a starting point for 

many later investigations of trust.  

 Lee and See consider trust from the perspective of machine automation, providing an 

extremely insightful and thorough review of the trust literature (Lee & See, 2004). They 

review many definitions of trust and propose a definition that is a compilation of the 

many previous definitions. Namely, trust is the attitude that an agent will help achieve an 

individual’s goals in a situation characterized by uncertainty and vulnerability. We use 

the definition for trust presented by Lee and See to generate a more conceptually precise 

definition of trust. We define trust in terms of two individuals—a trustor and a trustee. 

The trustor is defined as the individual doing the trusting. The trustee represents the 

individual in which trust is placed.  

Trust is a belief, held by the trustor, that the trustee will 

act in a manner that mitigates the trustor’s risk in a 

situation in which the trustor has put its outcomes at risk.  

The preceding will be the working definition for trust used for the proposed dissertation. 

Methods for quantifying trust are discussed in the following section.     
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2.3.2 Using social situations to evaluate trust 

As detailed in the next section, many different researchers have generated many different 

computational models of trust. Our approach is to show that if a general, principled 

framework for social situations is used in conjunction with a well-defined definition for 

trust, then we are able to segregate those situations that require trust from situations that 

do not require trust naturally and without modification of our framework. In other words, 

as will be shown in chapter 8, our framework for situation-based interaction implicitly 

contains mechanisms for determining if and how much trust is necessary for a given 

social situation. We show that given the ability to recognize and gauge the trust required 

by a social situation, a robot can then use this information to characterize a relationship 

with a particular individual or a particular type of situation. Trust will be measured in 

terms of risk calculated using a loss function (Risk, 2007). In this manner, we 

demonstrate that many of the models proposed by other researchers are actually special 

cases of our method.  

 Before examining alternative approaches for evaluating trust, we will first detail 

methods that focused on the social situation itself. These methods are widespread both 

within neuroscience (Quervain et al., 2004; Sanfey, Rilling, Aronson, Nystrom, & Cohen, 

2003) and experimental economics (Berg, Dickhaut, & McCabe, 1995; McCabe, Houser, 

Ryan, Smith, & Trouard, 2001) and typically involve social situations “instantiated” in a 

variety of real world experiments with the aim of exploring the phenomena of trust. The 

method employed by King-Casas et al. used a situation in which two human players 

iteratively interact for ten rounds exchanging money as an investor and as a trustee. In 

each round the investor selects some proportion of money to invest (I ) with the trustee. 
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The money appreciates ( RI =3 ). Finally the trustee repays a proportion of the total 

amount (R ) back to the investor. King-Casas et al. found previous reciprocity to be the 

best predictor of changes in trust for both the investor and trustee ( 31.0;56.0 == ρρ  

respectively where ρ  is the correlation coefficient) (King-Casas et al., 2005). 

Reciprocity is defined here as the fractional change of money over a round by a player in 

response to a fractional change of money by the player’s partner. Formally, investor 

reciprocity on round j can be quantified as 1−∆−∆ jj RI , where jI∆  is the fractional 

change in investment from the previous round, 1−j , to the present round, j, and 1−∆ jR  is 

the fractional change in repayment ( 21 −− − jj RR ). Similarly, trustee reciprocity is 

quantified as 11 −− ∆−∆ jj IR . The change in trust T∆  was thus found to be best correlated 

to investor reciprocity, 1−∆−∆≈∆ jjR RIT , for trustees and trustee reciprocity, 

11 −− ∆−∆≈∆ jjI IRT , for investors. Hence, by measuring these quantities of reciprocity, 

trust is operationalized as monetary exchange in a way that allows for online analysis of 

the relationship from its inception. Put another way, trust can be measured in these 

situations as the amount of money exchanged by each player. 

The work by King-Casas et al. is important for this dissertation for several reasons 

(King-Casas et al., 2005). First, the research method meets the conditions for trust 

described in section 2.3.1. Namely, the trustor is at risk, the trustor expects that the 

trustee will act in a manner that mitigates his or her risk, and both parties benefit from 

mutual trust. Second, the research method allows for quantitative evaluation of trust in 

the presence of risk (loss of money) without the threat of harm to the subject. Using this 

method, trust is easily quantified as repayment by the trustee or investment by the 
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investor. King-Casas et al. intentionally minimized contextual and interactive effects by 

limiting interaction to remote play over a computer network (King-Casas et al., 2005). 

We, on the other hand, study these interactive effects by measuring responses when a 

human and a robot interact in situations similar to the investor-trustee game. Finally, the 

method originates from an interpersonal social situation and should naturally mesh with 

the transformation model of social interaction outlined within interdependence theory 

(Figure 2.5).  

 The King-Casas et al. research method is just one example of an entire research 

methodology that is largely unexplored for the purposes of human-robot interaction. 

Many other economic decision games exist; some requiring trust while others do not. 

Examples include the Ultimatum game where one player offers a division of a valuable 

commodity and the other player either accepts or rejects the offer for both players 

(e.g.Rilling, Sanfey, Aronson, Nystrom, & Cohen, 2004); the well-known prisoner’s 

dilemma game in which both players must choose to either to cooperate for a chance at 

maximal reward or not to cooperate and guarantee a non-minimal reward (Axelrod, 

1984). Generally, these games mesh well with interdependence theory because they share 

common underpinnings involving reward, cost, and outcome matrix representation. As 

discussed in the next chapter, this methodology will be used to explore human-robot 

relationship development and trust.    

2.3.3 Alternative methods for evaluating trust 

Most of the earliest trust research was the result of psychological and/or sociological 

experiments. In the past, these fields tended to rely heavily on questionnaires, 

observation, and interviews as a means of measuring trust (Lund, 1991; Tesch & Martin, 
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1983) and occasionally still do (Yamagishi, 2001). Recently, psychologists have shown 

an increasing willingness to use social situations, such as the prisoner’s dilemma1, as a 

means for controlling and measuring trust (e.g. Good, 1991; Rabbie, 1991). Sociologists 

have also been very active in trust research. Their work has tended to quantify trust by 

observing behavior within controlled laboratory experiments (e.g. Kollock, 1994; Kurban 

& Houser, 2005) or simulation experiments (Bainbridge et al., 1994 for a review). The 

work by Kollock, for example, investigated the effect of uncertainty on trust development 

among trading partners in a social exchange experiment (Kollock, 1994). Trust was 

measured in these experiments by observing the trading practices of 80 subjects and most 

importantly their risk-seeking and risk-adverse behaviors. Specifically he explored trust 

with respect to an individual’s commitment to another individual as measured by the 

equation, 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

222222

3t

TTTTTTTTTTTT
C imilimikilikimijilijikij

ti

−+−+−+−+−+−
=  

where ijT  represents the number of trades subject i completed with subject j and t 

represents the number of trading periods. The variable ( )tiC  signifies the commitment of 

individual i at time t. Overall, the equation sums the squared differences in number trades 

and normalizes this quantity with respect to time. Questionnaires asking each subject to 

rate their trust in all potential partners were also used to measure trust. He found that the 

degree to which the subject perceived the trading partner as trustworthy was quantifiably 

                                                 

 
 
1 The Prisoner’s dilemma is a well studied social situation from game theory. In the situation players decide 
either to cooperate or defect.The game generated a great deal of interest because rational self-interested 
decisions do not result in the maximal amount of reward.    
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related to both the risk encountered in the condition and the frequency of interaction with 

the partner. Kollock’s work serves as an example of a quantitative mechanism developed 

to measure trust, but because the equations and methods appear strongly tied to Kollock’s 

experimentation method they were not directly used in this dissertation.  

 Over the past decade, simulation experiments have been used as a means for trust 

research by both sociologists and computer scientists. Simulation offers the unique ability 

to control much of the external environment as well as the internal environment of the 

agents involved. Marsh used simulation experiments to test his early computational 

formulation for trust (Marsh, 1994). Marsh’s work defines trust in terms of utility for a 

rational agent. Further, Marsh recognizes the importance of the situation and includes this 

factor in his formulation of trust. He estimates trust as, ( ) ( ) ( ) ( )yTIUyT xxxx
ˆ, ××= ααα  

where ( )α,yTx  is x’s trust in y for situation α, ( )αxU  is the utility of α for x, ( )αxI  is the 

importance of α for x, and ( )yTx̂  is the general trust of x in y. Marsh notes many 

weaknesses, flaws, and inconsistencies in this formulation. For example, he states the 

value range he has chosen for trust, [ )1,1+− , presents problems when trust is zero. Even 

so, as an early computational formulation of trust, Marsh’s work is both unique and deep 

in its synthesis of the various psychological and sociological opinions regarding trust into 

a single equation. Although Marsh’s research serves as inspiration, our work does not 

directly use Marsh’s formulation.    

 Recently a trend in trust research has been to focus on the use of probability theory to 

measure and model trust. Gambetta, as mentioned in section 2.3.1, takes this approach to 

the extreme by equating trust to a person’s probabilistic assessment of their partner’s 

likelihood of acting in their favor (Gambetta, 1990). Josang and Lo Presti, on the other 
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hand, use probabilities to represent an agent’s assessment of risk (Josang & Presti, 2004). 

They describe an agent’s decision surface with respect to risk as ( ) SG
SC pGpF

λ

=,  where 

C is the agent’s total social capital2, [ ]1,0∈CF  is the fraction of the agent’s capital it is 

willing to invest in a single transaction with another agent, p is the probability that the 

transaction will end favorably, SG  is gain resulting from the transaction and [ ]∞∈ ,1λ  is 

a factor used to moderate the gain SG . Josang and Lo Presti define reliability trust as the 

value of p and decision trust as 
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 where Dp  is a cut-off 

probability. Josang and Pope later use this model of trust to propagate trust and reputation 

information for the purpose of developing a secure network cluster (Josang, 2002; Josang 

& Pope, 2005; Josang & Presti, 2004). The work by these authors is certainly a valuable 

contribution to network security research. Still, it is not significantly tied in any way to 

interpersonal trust and assumes that the sole purpose of interaction is to propagate one’s 

reputation. Beth et al. also use probability for the purpose of developing trust in network 

security claiming that the equation ( ) p
Z pv α−= 1  , where p is the number of positive 

experiences and α is chosen to be a value high enough to produce confident estimations 

should be used to measure trust (Beth, Borcherding, & Klein, 1994).   

                                                 

 
 
2 Social capital is concept from economics used to describe the value of the connections within a social 
network.   
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 Castelfranchi and Falcone have been strong critics of defining trust in terms of 

probability because they feel this description of trust is too simplistic (Castelfranchi & 

Falcone, 2000). Rather, they describe a cognitive model of trust that rests on an agent’s 

mental state. This mental state is in turn controlled by an agent’s beliefs with respect to 

the other agent and an agent’s own goals (Castelfranchi & Falcone, 2001; Falcone & 

Castelfranchi, 2001). Although Castelfranchi and Falcone’s consideration of trust is 

extensive, their work has not been evaluated on any computational platform and they 

present no experiments. Moreover, it is not clear how their calculus would be 

implemented on a robot or a simulated agent.   

 Researchers have also explored the role of trust in machine automation. Trust in 

automation researchers are primarily concerned with creating automation that will allow 

users to develop the proper level of trust in the system. Lee and See, in an excellent 

review of the work in this area, note that one fundamental difference between trust in 

automation research and intrapersonal trust research is that automation lacks 

intentionality (Lee & See, 2004). Another fundamental difference is that human-

automation relationships tend to be asymmetric with the human deciding how much to 

trust the automation but not vice versa. These fundamental differences also distinguish 

our work from the trust in automation research.    

 Many different methods for measuring and modeling trust have been explored. Trust 

measures have been derived from information withholding (deceit) (Prietula & Carley, 

2001), agent reliability (Schillo & Funk, 1999; Schillo, Funk, & Rovatsos, 2000), agent 

opinion based on deceitful actions (Josang & Pope, 2005), compliance with virtual social 

norms (Hung, Dennis, & Robert, 2004), and compliance with an a priori set of trusted 
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behaviors from a case study (Luna-Reyes, Cresswell, & Richardson, 2004). Models of 

trust range from beta probability distributions over agent reliability (Josang & Pope, 

2005), to knowledge-based formulas for trust (Luna-Reyes, Cresswell, & Richardson, 

2004), to perception-specific process models for trust (Hung, Dennis, & Robert, 2004).  

Table 2.2 A list of the various measures and models of trust used in previous research. The meaning of 
the symbols are presented within the text of this section. 

Models of Trust 
Author(s) Model/Measure 

(Kollock, 1994) 
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(Beth, 
Borcherding, & 

Klein, 1994) 

( ) p
Z pv α−= 1  

(King-Casas et al., 
2005) 1−∆−∆≈∆ jjR RIT  and 11 −− ∆−∆≈∆ jjI IRT  

Often these measures and models of trust are tailored to the researcher’s particular 

domain of investigation. Luna-Reyes et al., for example, derive their model from a 

longitudinal case study of an interorganizational information technology project in New 

York State (Luna-Reyes, Cresswell, & Richardson, 2004). This model is then tested to 

ensure that it behaves in a manner that intuitively reflects the phenomena of trust. A 

review of computational trust and reputation models by Sabater and Sierra state, “… 

current (trust and reputation) models are focused on specific scenarios with very 

delimited tasks to be performed by the agents” and “A plethora of computational trust 

and reputation models have appeared in the last years, each one with its own 

characteristics and using different technical solutions (Sabater & Sierra, 2005).” 
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 The alternative methods for evaluating trust discussed in this section highlight a 

diversity of approaches and domains the topic of trust touches on. Table 2.2 lists several 

methods of evaluating trust proposed by different authors. It is our belief that by relating 

these many models to a unifying framework for social situations we will lend insight and 

progress to this nascent field. Chapter 8 delineates our method for recognizing and acting 

in situations requiring trust. 

2.4 Summary 

To summarize, interdependence theory provides a theoretical basis for representing 

relationships and social situations in the proposed dissertation (Kelley, 1979; Kelley et 

al., 2003; Kelley & Thibaut, 1978; Rusbult &  Van Lange, 2003). It offers a basis for 

understanding the social actions of a human; it also provides a framework for 

determining the proper robotic responses to a given social situation; finally, 

interdependence theory forms a “conceptual skeleton”  used to describe social situations 

some of which involve trust (Kelley et al., 2003).  

Because interdependence theory provides a general means for representing social 

situations which is not tied to a particular environment or paradigm, it is possible to 

segregate those situations that demand trust from those that do not without altering the 

interdependence framework. We defined trust as a belief, held by the trustor, that the 

trustee will act in a manner that mitigates the trustor’s risk in a situation in which the 

trustor has put its outcomes at risk. This definition is derived from a definition offered 

by Lee and See.  

An experimental methodology involving economic decision games, similar to those 

used by King-Casas et al (King-Casas et al., 2005), has been detailed as a means for 
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investigating human-robot interaction. These games generally allow for iterative 

interactions, use the potential loss of a valued commodity as risk, and are capable of 

quantifying an individual’s actions in terms of trust. Moreover, these games have a long 

and established history as a means for exploring interaction.  

Several methods of social learning have also been discussed. These include learning 

of associations, the use of diagnostic situations for credit-assignment and stereotyping. 

Stereotyping is a process by which interpersonal schema relating perceptual features to 

distinctive clusters of traits are used to bootstrap understanding of a novel partner.  

 This chapter has reviewed literature covering several general areas of research 

relevant to this dissertation. The goal has been to highlight the connection of these areas 

to the principal and subsidiary research questions in a clear and coherent manner. The 

next chapter introduces our methodology for investigating these topics.  
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CHAPTER 3 

A METHODOLOGY FOR INVESTIGATING THE THEORY 

UNDERLYING HUMAN-ROBOT INTERACTION 

 

This chapter presents a methodology for investigating the theory that underlies human-

robot interaction. The aim is to introduce the reader to several new methods of human-

robot interaction research developed for this dissertation. As will be shown, these 

methods are particularly applicable to the creation of a general, principled framework for 

human-robot interaction. As detailed in section 2.1, current human-robot interaction 

experimental methods often focus on feasibility studies, usability studies, and in-field 

experiments (Fong, Nourbakhsh, & Dautenhahn, 2003). Several researchers note that 

these methods are generally inadequate for theory research because the terms used are not 

defined, reproducibility is rarely possible, and theories are either absent or not falsifiable 

(Bethel & Murphy, 2008; Feil-Seifer, 2008; Heckel & Smart, 2008).  

3.1 A Method for HRI Theory Research 

Theories are developed in order to explain or better understand a natural phenomenon. 

According to Philip Kitcher, scientific theory should 1) “open(s) up new areas of 

research”, 2) “consist of just one problem-solving strategy, or a small family of problem-

solving strategies, that can be applied to a wide range of problems", 3) be “testable 

independently of the particular problem” and 4) must be falsifiable (Kitcher, 1982).   

 This dissertation studies uses a robot to study the natural phenomena of social 

interaction. It is common to think of social interaction as existing outside the realm of 
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robotics. We do not believe that this is the case. Rather, we prescribe to the belief that 

social interaction is a critical component of intelligence in general (Humphrey, 1976). 

Roboticists have long sought to make robots more intelligent (e.g. Brooks, 1991; 

MacFarland & Bosser, 1993). Hence, at the highest level, we explore social interaction as 

a means to make robots more intelligent. In a practical sense, the use of a robot allows us 

to explore social interaction in a manner never before attempted. Rather than using 

indirect mechanisms to infer a human’s psychological representation of its interactive 

partner and social situation, the use of a robot allows us to directly examine this 

representation. In the end, the results we obtain should produce both better social control 

algorithms for the robot and, possibly, a stronger connection of psychological theory to 

its perceptual and behavioral underpinnings. Still, this dissertation does not directly 

investigate human psychology. Rather, we focus on how changes in the social 

environment produce representational and behavioral changes in a robot. Our metrics 

therefore measure changes with respect to the robot, not the human. As detailed in the 

next section, this means that human behavior is a controlled variable.      

 Our overarching theory is that  

social interaction results in outcomes for each individual, 

that these outcomes must be represented in order to reason 

about future interactions including the development of a 

relationship, and that the representation of these outcomes 

affords a robot the ability to reason about other social 

phenomena, such as trust.  
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This statement paraphrases the research questions posed in chapter one. Referring back to 

Kitchner’s criteria for a scientific theory, our theory does open new areas of investigation 

specifically by developing novel algorithms that should allow a robot to interact in a 

wider variety of environments; our theory presents a small family of problem solving 

techniques, centering of the use of the outcome matrix, that are applicable to a large body 

of problems; our theory is general, not tied to a specific problem or environment; and 

finally, by showing that outcome matrices cannot be produced from perceptual 

information or that these matrices do not result in improved social behavior by the robot, 

our theory is falsifiable.   

 Our method for studying this theory is to follow a precise series of steps. First, we 

define all terms for the particular phenomena being studied (social interaction, trust, or 

relationships for example). These definitions may or may not result in particular 

assumptions on which our results will rest. If so, then these assumptions are explicitly 

stated. Next, given the definitions, we systematically develop representations, algorithms, 

and/or corollaries to our original theory. Finally, these representations, algorithms and 

corollaries are tested using a particular experimental paradigm. It is important to note that 

the experimental results will not “prove” our original theory. Rather they simply lend 

support to our original argument. Proof of a theory can only be gained by independent 

confirmation from other researchers (Popper, 1963). 

 Social interaction is governed by three variables: 1) the first interacting individual; 2) 

the second interacting individual; and 3) the environment (Rusbult &  Van Lange, 2003). 

In human-robot interaction either the first or the second individual is a robot and the 

remaining individual is a human. As mentioned, the purpose this dissertation is to study 
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and develop techniques that will allow a robot to interact. If we are to be successful, then 

it is useful to control the remaining two variables related to interaction. Namely, we 

should attempt to control for the behavior of the human and for the environment. In the 

sections that follow, we present several methods that allow us to this. 

3.2 Controlling Human Behavior—Actor scripts 

It is helpful, when evaluating a robot’s ability interact, if the behavior of the robot’s 

human partner is controlled for. As experimenters, control of the human’s behavior 

allows us to focus our investigation on a single dependent variable—the resulting actions 

of the robot—rather then having to infer the reasons for the robot’s behavior. This strict 

control is helpful during the early stages of experimentation and theory development 

because it allows us to quickly rule incorrect theories or faulty algorithms. Later in the 

experimental cycle, we can loosen our control to over the human’s behavior to allow for 

more realistic pseudo-random behavior on the part of the human. In a sense, stress testing 

our algorithms and theories before introduction in to real world environments.     

 Laboratory experiments involving controlled human behavior are standard in many 

psychology experiments (e.g. Milgram, 1974). These experiments typically require that 

the experimenter’s confederate follow a predefined script often acting the part of a fellow 

subject. This script explains how the actor should behave in all of the situations he or she 

will face. In much the same way, our evaluation of the robot’s interactive behavior 

requires that the human partner act in a scripted manner. We use the term actor script to 

describe a predefined set of interactive instructions that the human will follow when 

interacting with the robot. Actor scripts are used in several of the experiments conducted 

as part of this dissertation.  
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 Actor scripts are methodological in nature and are a contribution of this dissertation. 

An actor script is created by first delineating the situations that the human-robot dyad will 

encounter. Once the situations have been determined, the human’s actions can be dictated 

in several different ways. For example, one could develop scripts related to the actions 

and preferences of a firefighter in a search and rescue environment. These scripts could 

be generated by observing real firefighters in search and rescue environments or, 

possibly, by constructing the script from data and information related to search and 

rescue. Another possibility is to assign the human a broad social character (see Appendix 

C for examples) and to then select actions in accordance with the assigned character. For 

example, if the human is assigned the social character of egoist then the human will select 

the outcome matrix action that most favors his or her own outcomes. To complete the 

actor script, actions are determined for each interaction, possibly being contingent on the 

robot’s prior behavior, and a list or flowchart is created that the human follows when 

interacting with the robot.    

3.3 Controlling the Environment—Social Situations 

The use of games and predefined social situations as a method for exploring human 

interactive behavior was discussed in section 2.2.4. To briefly review, social 

psychologists and neuroscientists have begun using games such as the Investor-trustee 

game and Ultimatum game to investigate how and why humans interact (Sanfey, 2007). 

These simplistic games place interacting individuals in controlled social situations which 

allow researchers to tease apart the impact of different factors on interactive behavior. 

The Ultimatum game, for example, forces one individual to offer a division of a valuable 

commodity and the other individual either accepts or rejects the offer for both players 
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(e.g.Rilling, Sanfey, Aronson, Nystrom, & Cohen, 2004). Ethnographic results show that 

humans will routinely reject proposals in which they receive less than 20% (Henrich et 

al., 2003). It is speculated that humans consider and value the fairness of a proposal and 

that this preference for fairness often supersedes the money that would have been 

received by accepting an unfair proposal.  

 The Ultimatum game is not merely an academic exercise. Rather, the characteristics 

of this social situation occur daily in many routine social interactions. For example, the 

Ultimatum game is often manifest in simple negotiations, such as determining how much 

work an individual will do for a predetermined pay. Because the characteristics of this 

game, and many others, are normal components of everyday human social interaction, it 

is important that robots recognize and master situations such as these.    

 Hence, one potential method for studying the theory underlying human-robot 

interaction is to place robots in controlled social situations such as the Ultimatum game. 

These situations afford control over the external environmental factors which could 

influence the robot’s decision making and model construction processes.  

 Randomly generated social situations can also be used to test the generality of a 

theory. Social situations are randomly generated if the outcome values that comprise the 

situation are randomly created and nominal actions are assigned. Randomly generated 

situations may originate from any location in the interdependence space (Figure 2.3). 

Thus, by testing the robot’s response to many randomly generated social situations, one 

can garner evidence supporting a theory with respect to all possible social situations, 

rather than one social situation in particular. We use the term numerical simulation to 

describe experiments which employ a large number of randomly generated social 
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situations. For example, given a theory of trust, we could use the investor-trustee game to 

test whether or not the robot has recognized that trust will effect its partner’s decision in 

the laboratory. Once our theory of trust has been validated in a social situation commonly 

agreed to involve trust we then use randomly generated social situations to test our model 

over the entire interdependence space.      

 This dissertation employs both of these research methods, occasionally validating 

theories with particular social situations and later using randomly generated social 

situations to expand these original results. The sections that follow describe the methods 

of evaluation particular to this dissertation. 

3.4 Evaluative Methods 

As mentioned in section 1.1, all experiments involve interaction between a single robot 

and a single human. Some experiments require that each individual select an interactive 

action simultaneously while others demand a series of actions being selected. The actions 

available depend on the experimental condition, environment, and so on. After selecting 

an action, both the robot and the human perform the action. Once the action had been 

performed, the human tells the robot the value of the outcome that he or she had received 

as a result of both actions being selected. The robot and the human continue taking turns 

until the experiment is complete.  

3.4.1 Numerical simulation experiments 

We conduct two broad types of simulation experiments as part of this dissertation: 

numerical simulations and simulations within a simulation environment. Numerical 

simulations of interaction focus on the quantitative results of the algorithms and 
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processes under examination and attempt to simulate aspects of the robot, the human, or 

the environment. As such, this technique offers advantages and disadvantages as a means 

for discovery. One advantage of a numerical simulation experiment is that a proposed 

algorithm can be tested on thousands of outcome matrices representing thousands of 

social situations. One disadvantage of a numerical simulation is that, because it is not tied 

to a particular robot, robot’s actions, human, human’s actions, or environment, the 

results, while extremely general, have not been shown to be true for any existing social 

situation, robot, or human.  

 Our numerical simulations of interaction typically simulated both the decisions and 

action selection of the human and the robot. Actions in these types of simulations are 

nominal and do not represent actual actions performed in the environment. These 

nominal actions are grounded by the rewards and costs the robot receives when selecting 

them, regardless of the mechanics of the actions performance. Moreover, numerical 

simulations do not utilize an interactive environment outside of the outcome matrix itself. 

Hence, the domain, task, and physics of the world are abstracted away in these types of 

simulations. 

 To understand the role and value that such simulations can play in the science and 

exploration of human-robot interaction, consider the following question, “what 

percentage of situations warrant deception?” This question is important, because if the 

percentage of situations warranting deception is very small, then, perhaps, the study of 

deception itself is unjustified. Still, a systematic examination of all possible grounded 

social situations within a given scenario and environment seems infeasible. We can, 

however, create outcome matrices representing random situations that the robot could 
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encounter, then allow the simulated robot and a simulated human partner to select 

actions, and record the outcomes that result. This type of experiment allows one to 

rapidly explore the space of social situations to better understand aspects of interaction 

such as deception or trust.      

3.4.2 Simulation experiments within a simulation environment 

Many of the simulation experiments conducted for this dissertation utilize USARSim, a 

collection of robot models, tools, and environments for developing and testing search and 

rescue algorithms in high-fidelity simulations (Carpin, Wang, Lewis, Birk, & Jacoff, 

2005). USARSim’s robot models have been shown to realistically simulate actual robots 

in the same environment (Wang, Lewis, Hughes, Koes, & Carpin, 2005). Moreover, 

USARSim provides support for sensor and camera models that allow a user to simulate 

perceptual information in a realistic manner. USARSim is freely available online.  

 USARSim is built on Epic’s Unreal Tournament (UT) game engine. A license for the 

game engine costs approximately five dollars. Unreal Tournament is a popular 3D first 

person shooter game. Unreal Tournament’s game engine produces a high-quality 

graphical simulation environment that includes the kinematics and dynamics of the 

environment. Numerous tools for the creation of new environments, objects, and 

characters are included with the game. These tools can be used to rapidly prototype novel 

environments at minimal cost. Moreover, several complete environments and decorative 

objects are freely available online.  
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Figure 3.1 Screenshots from the simulation environment are depicted above. The top left shows a 
household environment. The top right depicts a museum environment. The bottom left illustrates the 
assistive environment. The bottom right illustrates the prison environment.  

Table 3.1 List of colored objects in each environment. 

Colored Objects 
Object Color Environment 

Biohazard green Search and rescue 
Fire red Search and rescue/Museum 

Victim yellow Search and rescue 
Patient light blue Assistive 

Medicine light blue Household 
Homeowner green Household 

Intruder dark blue Household/Museum 
Prisoner purple Prison 
Visitor light blue Prison 

 Figure 3.1 depicts examples of environments we created for this dissertation using 

Unreal Tournament tools. The household environment modeled a small studio apartment 

and contains couches, a bed, a television, etc. (Figure 3.1 top left). The museum 

environment models a small art and sculpture gallery and contains paintings, statues, and 

exhibits (Figure 3.1 top right). The assistive environment models a small hospital or 

physical therapy area and contains equipment for physical, art, music and occupational 

therapy (Figure 3.1 bottom left). The prison environment models a small prison and 

contains weapons, visiting areas, and a guard station (Figure 3.1 bottom right). Finally, 

the search and rescue environment models a disaster area and contains debris fields, small 
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fires, victims, and a triage area (Figure 3.2 and Figure 3.4). Some objects in these 

environments were colored to aid the robot’s recognition of these items. Table 3.1 lists 

objects that were artificially colored.  

 
Figure 3.2 The interface used by the human to move and interact in the simulated environment. The 
environment shown is the search and rescue environment. 

 We developed a software interface that allows a human to interact with the robot in 

the simulation environment (Figure 3.2). This interface was developed from an existing 

USARSim tool (Zaratti, Fratarcangeli, & Iocchi, 2006). Using the interface the human 



 53 

can move and look around the environment. The human can also speak to the robot using 

a predefined grammar of commands and can hear the robot’s responses.  

 The simulation environment employs three computers running in concert (Figure 3.3). 

The simulation server runs the USARSim simulation engine and serves video and 

position data to clients. The robot and the human connect to the simulation server as 

clients. The robot client controls the robot’s behavior within the simulation. The human 

control interface allows the human to move, look, and perform actions within the 

simulation environment. The human control interface also acts as a speech server 

translating speech into strings for the robot client and strings into synthesized speech for 

the human. 

 
Simulation 

Server 
Robot Client Human Control 

Interface 

position data, 
video data 

position data, 
video data 

movement 
commands 

movement 
commands 

string representing spoken commands  

string to be synthesized to speech  

String to 
speech 

conversion 

Speech to 
string 

conversion 

 
Figure 3.3 Depiction of the network and control setup used to perform simulation experiments. The 
human interacts through the Human Control Interface. The simulation server runs the simulation 
environment and feeds information to both the Human Control Interface and the Robot Client.  
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Figure 3.4 The figure depicts a split screen view of the search and rescue environment. The human sees 
only the top half of the figure. The bottom half shows the robot situated in the environment. 

3.4.3 Laboratory experiments  

In contrast to the experiments conducted in simulation, several experiments were 

conducted in the mobile robot lab and used a real robot. The experimental area in the lab 

was modeled after a search and rescue or maze style environment (Figure 3.5). The 

environment included mock victims and hazard signs.   

 
Figure 3.5 An overview of the maze environment used as a mockup of a simple search and rescue 
environment. One corner of the maze had two dolls representing children (center photo) and the other 
corner had a simulated fire and biohazard (right photo).  
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3.4.4 Evaluation platforms  

Two types of robots were used in the experiments. We used a Pioneer DX with a front 

mounted camera for the experiments involving partner modeling and stereotypes 

(Chapter 5). Figure 3.4 depicts the robot operating in a simulated search and rescue 

environment and Figure 3.6 shows the real robot platform in the laboratory. This robot is 

a wheeled robot with mobility over smooth flat surfaces. The robot’s environment 

supports independent locomotion over short distances, approximately 15 meters, which 

was far enough for all experiments.  

 
Figure 3.6 A photo of the Pioneer DX used to perform the laboratory experiments.  

 The robot’s camera is a 320 by 240 pixel video camera mounted on the front of its 

flat deck. The effective frame rate of this video camera is approximately 10 frames per 

second. The computational platform used for control, perceptual processing, and the test 

algorithms was a standard Toshiba Satellite laptop. An internal wireless LAN card was 

used to transmit and receive information from the robot. 
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 WowWee’s Rovio robot was used in our experiments exploring the robot’s ability to 

select the most trusted partner (Chapter 8). This robot is also a wheeled robot with 

mobility over smooth flat surfaces. The robot’s camera is a 640 by 480 pixel webcam 

mounted on the top of the robot’s extendable neck. Communication with the robot is 

accomplished via the robot’s wireless network card. The Rovio comes with a docking 

station and infrared beacon easing the robot’s navigation task back to the docking station.  

 
Figure 3.7 A photo of the Rovio mobile robot. The robot’s neck is point towards the bottom of the image 
and is in the unextended position. The webcam is at the end of the neck.   

3.4.5 Interactive communication  

The human and the robot used speech to communicate. The robot used speech synthesis 

to communicate questions and information to the human partner. Speech recognition 

translated the spoken information provided by the human. Microsoft’s Speech SDK 

provided the speech synthesis and recognition capabilities (Microsoft Speech SDK 5.1 

information page, 2006; Open Mind Speech, 2006). 
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3.4.6 Human partners  

Interaction involved a single robot and a single human. The robot’s human partner was 

assigned a predetermined list of perceptual features that were used by the robot for 

identification or as evidence of the partner’s type. The human’s perceptual features were 

spoken to the robot. Table 3.2 lists all partner features.  

Table 3.2  A list of partner features is presented above. Several of the features were devised because of 
their notional significance. 

Partner Features 
Feature Name Values 

Gender <man, woman> 
Height <tall, medium, short> 
Age <young, middling, old> 

Weight <heavy, average, thin> 
Hair color <blonde, black, brown, red> 
Eye color <blue, green, brown> 

Tool 1 <axe, gun, stethoscope, baseball-cap> 
Tool 2 <oxygen-mask, badge, medical-kit, backpack> 

 The human’s actions were scripted. In other words, the human selected from a 

predefined series of actions that were contingent on the robot’s prior actions and the 

experimental condition. Section 3.2 has already discussed the use of controlled human 

behavior in the experiments. Because the experiments controlled for the human’s features 

and actions, all experiments could be conducted by a single human partner. Still, three 

different operators were used (a 20 year old American woman, a 20 year old Indian-

American woman, and a 33 year old American male) to rule out any possibility of 

experimenter bias. When interacting in the same environment with each different 

operator the outcome matrices created by the robot were identical.   
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3.4.7 Perceptual underpinnings  

We used a combination of computer vision and speech recognition for much of this work, 

including the recognition of interactive partners, navigation, and object detection and 

recognition.  

Partner Recognition  

The recognition of interactive partners is critical for this work. The robot queries the 

human for the human’s perceptual features and then matches these features to a 

preexisting model of the partner. Features were spoken. These features were used both to 

retrieve models of known partners and to construct identities for unknown partners. Table 

3.3 summarizes the perceptual infrastructure used.   

Object Recognition and Navigation 

Some experiments required that the robot search for and locate objects. The objects were 

not occluded and adequately lit. Searching for objects requires rudimentary navigation. 

All of the experimental environments were passable by the robot. To aid navigation, in 

simulation the robot received accurate feedback of its location. Color blobs were used to 

denote objects. Objects were color coded for recognition purposes (Table 3.1). 

Laboratory experiments used visual landmarks to provide location feedback (Figure 3.8).  

Table 3.3 A summary of the perceptual requirements, the software package used, and their usage. 

Perceptual Infrastructure Summary 
Necessity Software Package Usage 

Partner Recognition Microsoft Speech SDK Used to communicate partner features and 
outcome values received by human partner.  

Object Recognition OpenCV Used to recognize specific objects in the 
environment, determine environment type.  

Navigation/Localization OpenCV Used to aid the robot in navigating over short 
distances in an indoor environment. 
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Figure 3.8  In laboratory experiments the robot uses landmark detection to aid navigation.  

3.4.8 Robot behaviors  

Many of the robot’s actions were related either to the performance of relatively simple 

search and navigation tasks or to interactive communication. Table 3.4 summarizes the 

requisite behaviors and their purpose.  

Capture Behaviors  

Capture behaviors were used to determine the type of environment, partner, or the result 

of an interaction. The CaptureEnvironmentFeatures behavior uses the robot’s 

camera to gather information about the robot’s operational environment. The 

CapturePartnerFeatures behavior asks the human to state their features which are 

then saved by the robot. The CaptureInteraction behavior asks the human to state 

the outcome they received after performing an action in the environment.  
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Table 3.4 The table provides a summary of the behaviors used. 

Functional Behaviors  

Functional behaviors allowed the robot to do or say things within the simulated or real 

environment. Functional behaviors require additional knowledge in the form of a phrase, 

environment location, or object type. In all experiments the robot was given the 

knowledge of stock phrases, the location of objects, or available objects in an 

environment. For example, the SearchFor behavior takes as a parameter an object such 

as fire. The robot has been programmed with information that fire is red. The robot will 

then search for a red object in the environment. When it finds the object it relays the 

position of the located object to the human.  

3.5 Example Interaction 

For clarity, we will briefly overview the process that occurs during a typical interaction 

with a human partner. When the robot is powered up, it first uses the 

CaptureEnvironmentFeatures to determine the type of environment. In simulation, 

it uses its camera to take an image of the environment and compares the image to images 

of different environment types. It selects the environment type which most closely 

Behavior Purpose  
CaptureEnvironmentFeatures The robot uses its camera to determine the type of 

environment.  
CapturePartnerFeatures The robot asks the human to state their features 

CaptureInteraction The robot asks the human to state the value of outcome they 
received. 

Speak-X The robot states X 
SearchFor-X The robot navigates from waypoint to waypoint scanning its 

camera in search of object X. 
GuideTo-X The robot requests that the human follows and then navigates 

to position X. 
Observe-X The robot moves to position X, positions its camera and 

remains. 
Light-X The robot moves to position X and turns on its light. 
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matches the camera image. Once it knows the environment type, it determines which of 

its actions are appropriate for the environment (this will be discussed in greater detail in 

chapter 5). Next it uses the CapturePartnerFeatures behavior to gather information 

about its interactive partner. Once it has the partner’s features, it constructs an outcome 

matrix (detailed in chapter 5), uses the matrix to select an action, and performs the action. 

After the action has been performed the robot returns to a predetermined location to 

interact again. 

 This chapter has presented a methodology for investigating the theory that underlies 

human-robot interaction. We contribute several methods novel to human-robot 

interaction research. These methods allow one to control for the behavior of the 

interacting human and to control the social situation. We have also described a simulation 

environment capable of high-fidelity simulations in naturalistic environments using a 

variety of robot models. Coming back to our principal research question, we believe these 

methods will allow for a systematic investigation of the our overarching theory—that 

interaction results in outcome, that these outcomes must be represented in order to 

develop a relationship, and that the representation of these outcomes affords a robot the 

ability to reason about trust. The chapter that follows presents our framework for 

representing and reasoning about human-robot interactions.   
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CHAPTER 4 

A FRAMEWORK FOR REPRESENTING AND REASONING 

ABOUT HUMAN ROBOT SOCIAL INTERACTION 

 

This chapter presents a framework by which a robot can represent and reason about its 

interactions. Our framework draws heavily from interdependence theory, a social 

psychological theory of human relationship development (Kelley & Thibaut, 1978). The 

previous chapter presented a methodology for human-robot interaction research. In this 

chapter we begin to put this methodology to use by defining the terms and concepts that 

will form the core of our framework. The chapter begins with social interaction, arguably 

the most fundamental concept in human-robot interaction.  

4.1 Defining the term Social Interaction for Robots 

The term social interaction is often used by human-robot interaction researchers (Rogers 

& Murphy, 2001). But what do we mean by social interaction? The first subsidiary 

question posed in chapter one proposes an exploration of this question. We begin with an 

established definition from psychology. 

 Social interaction has been defined as influence—verbal, physical, or emotional—by 

one individual on another (Sears, Peplau, & Taylor, 1991). This definition is a broad one, 

potentially encompassing phenomena such as gossip, online interaction, and reputation. 

A more narrow definition of social interaction is proffered by Goffman, who, on the other 

hand, defines it as face-to-face behavior occurring within a defined social situation 

(Goffman, 1959). Because the definition by Sears, Peplau, and Taylor covers a broader 

spectrum of phenomena, we have chosen it as our running definition for the term social 

interaction. Namely,  
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social interaction is influence—verbal, physical or 

emotional—by one individual on another. (Sears, Peplau, 

& Taylor, 1991). 

For the remainder of this dissertation a specific social interaction is termed an interaction.  

 We use the definition to reason about the type of information that should be presented 

in a representation of interaction. The definition centers on the influence individuals have 

on one another. This influence can be represented as a real number. Thus real numbers 

representing each individual’s influence on the other individual should be present in our 

representation. The definition also implies that during social interaction individuals 

actively deliberate over and select actions, which in turn influence their interactive 

partner. Hence, our representation must also include information about the actions each 

individual is considering. Moreover, for each pair of actions we must represent the 

influence that a selection of the action would have on each individual. Finally, our 

representation must include information about who is interacting.  

 Outcome matrices contain all of this information. An outcome matrix not only 

identifies the individuals interacting but also contains information about the actions 

available to both individuals and the influence that results from the selection of each pair 

of actions. The layout of an outcome matrix is depicted in Figure 2.4. As has been 

mentioned, the outcome matrix has a long history as a representation for interaction in a 

variety of different fields (Chadwick-Jones, 1976).  

 Finally, we note that in this context the term action is used to describe any mechanism 

by which one individual influences their environment, including other individuals within 

that environment. Much in the same way that action is defined in reinforcement learning, 

an action here can be a low-level control or a high-level behavior (Sutton & Barto, 1998). 

Hence an action could be a spoken phrase, a performed behavior, or even a collection of 

behaviors. 
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4.1.1 Social situations and interaction 

Outcome matrices are also used to represent social situations. The term situation has 

several definitions. The most apropos for this work is “a particular set of circumstances 

existing in a particular place or at a particular time (Situation, 2007).” A working 

definition for social situation, then, is a situation involving more than one individual 

where an individual is defined as either a human or a social robot. Put another way, a 

social situation characterizes the environmental factors, outside of the individuals 

themselves and their actions, which influence interactive behavior. In other words, a 

social situation describes the social context surrounding an interaction between 

individuals (Rusbult &  Van Lange, 2003).  

 A social situation is abstract, detailing the general environment of the interaction. An 

interaction, on the other hand, is concrete with respect to the two or more individuals and 

the social actions available to each individual. For example, the prisoner’s dilemma 

describes a particular type of social situation. As such, it can, and has been, instantiated 

in numerous different particular social environments ranging from bank robberies to the 

front lines of World War I (Axelrod, 1984). Hence, the term interaction describes a 

discrete event in which two or more individuals select particular interactive behaviors as 

part of a social situation or social environment. 
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Figure 4.1 This figure depicts the difference between an interaction and a social situation. Both outcome 
matrices above depict the Prisoner’s dilemma. The left most matrix depicts the prisoner’s dilemma as an 
interaction between two specific people selecting between specific actions. The right most matrix depicts 
the prisoner’s dilemma as an abstract social situation, without specific actions or individuals.  

 A social situation may or may not proffer interaction. Interdependence theorists state 

that interaction is a function of the individuals interacting and of the social situation 

(Rusbult &  Van Lange, 2003). Technically, social situations marked by no 

interdependence on the part of either individual afford no interaction because the 

individuals do not influence one another. Although a social situation may not afford 

interaction, all interactions occur within some social situation. Figure 4.1 graphically 

depicts the difference between a social situation and an interaction. Interdependence 

theory represents social situations involving interpersonal interaction as outcome 

matrices. 

4.1.2 A formal notation for describing human-robot interaction  

In this section, we use the definitions from the previous section to create formal notation 

for describing human-robot interaction. This notation builds from our use of the outcome 

matrix as a means for representing interaction and social situations.  



 66 

 As a representation, interdependence theory’s outcome matrices are equivalent to 

game theory’s normal form game (Figure 2.4 and Figure 4.1). The normal form 

representation of a game consists of 1) a finite set N of players; 2) for each player Ni ∈  a 

nonempty set iA  of actions; 3) the payoff obtained by each player for each combination 

of actions that could have been selected (Gibbons, 1992). Let  ii
j Aa ∈  be an arbitrary 

action j from player i’s set of actions. Let ( )N
kj aa ,,1

K  denote a combination of actions, 

one for each player, and let iu  denote player i’s payoff function: ( ) ℜ→N
kj

i aau ,,1
K  is 

the payoff received by player i if the player’s choose the actions ( )N
kj aa ,,1

K .  

 The terminology employed when discussing the outcome matrices that describe a 

social situation occasionally differs from some of the terms of game theory. Game theory 

considers the actions of players whereas interdependence theory considers the actions of 

actors or individuals. As stated in chapter one, we use the term individual to denote either 

a human or a social robot. The reward obtained when players select actions is a payoff in 

game theory and an outcome in interdependence theory. Payoff functions determine the 

value of these payoffs in game theory whereas utility functions determine the value of 

outcomes. For the most part, the differences in terms are simply different names for the 

same thing. One difference in representation, however, is game theory’s use of strategies. 

A strategy in game theory describes a complete plan of action that a player will take. 

Because game theory assumes that all players are rational, each player is bound to its 

strategy and the normal form game can be defined in terms of strategies rather than 

actions. Interdependence theory does not assume rationality and hence does not describe 

the outcome matrix with respect to strategies. Throughout this dissertation the 

interdependence theory terminology will be used. 
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 Returning to our notation, subscripts denote order and superscripts denote ownership. 

Individual 1 will always be used to describe the individual listed above the outcome 

matrix, when the outcome matrix is depicted graphically (Figure 4.1). Without loss of 

generality, the robot will always be depicted as individual 1. Individual 2 is always the 

robot’s human partner and the individual listed to the left of a graphically depicted matrix 

(Figure 4.1). Thus, action 12a  denotes individual 1’s second action, and action 2
1a  denotes 

individual 2’s first action. The term o denotes an outcome value within the matrix. The 

superscripts and subscripts for all outcome values are depicted in Figure 2.4. The left 

hand subscripts can be used to reflect the actions selected by each individual, with 

individual 1’s action first. Right hand subscripts denote order, for example 1
2

1
1 oo >  

indicates that individual 1’s outcome has increased. Again, right hand superscripts denote 

the individual. Game theory also uses the superscript i and -i to abstractly represent an 

individual and their interactive partner. Hence, individual 1’s first action can also be 

represented as ia1 . The first action of individual 1’s partner is also expressed as ia−
1 . The 

term O is used to denote an outcome matrix. A particular outcome within a matrix can 

also be expressed as a function of an outcome matrix and an action pair, thus 

( ) 1
12

2
1

1
2

1 , oaaO =  and ( ) 2
12

2
1

1
2

2 , oaaO = . Here the variable o denotes an outcome value. The 

term 2
12o  denotes that it is the second individual’s outcome from the first row and 

second column of the matrix. The temporal order of action selection is expressed as 

ii −⇒  if individual i acts before individual -i and ii −⇔  if both individuals act at the 

same time. For example, individual 1 acting before individual 2 is expressed as 21⇒ .  

 Figure 4.2 demonstrates the use of this notation in an actual HRI experiment from 

German Research Center for Artificial Intelligence (Zender, Mozos, & Jensfelt, 2007). In 
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this experiment, an exploring robot asks a human assistant for information about the 

environment. It asks the human whether or not a door is present. The human states “no”, 

but the robot fails to recognize the response. The human repeats “no” ten times finally 

stating “there is no f###ing door here.” The robot recognizes this final response and 

proceeds. 

4.2 Partner Modeling 

Several researchers have explored how humans develop mental models of robots (e.g. 

Powers & Kiesler, 2006). A mental model is a term used to describe a person’s concept 

of how something in the world works (Norman, 1983). We use the term partner model 

(denoted im− ) to describe a robot’s mental model of its interactive human partner. We 

use the term self model (denoted im ) to describe the robot’s mental model of itself. 

Again, the superscript -i is used to express individual i 's partner (Osborne & Rubinstein, 

1994).   
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Demonstration of outcome matrix notation used to describe an HRI 
Experiment   

 
Figure 4.2 The figure above demonstrates the use of our outcome matrix notation in a human-robot 
interaction experiment conducted by German Research Center for Artificial Intelligence (Zender, Mozos, & 
Jensfelt, 2007). The robot (pictured in the top right photo) asks the human whether or not a door is present. 
The human says no 10 times before the robot responds. Notation is provided for the robot and the human. 
The human’s outcomes decrease every time he must repeat the command. Finally, when the robot responds, 
the human’s outcomes are increase dramatically.   

 An exploration of how a robot should model its human partner should begin by 

considering what information will be collected in this model. Our partner model contains 

three types of information: 1) a set of partner features; 2) an action model; and 3) a utility 

function. Partner features are used for partner recognition. This set of features allows the 
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robot to recognize the partner in subsequent interactions. The partner’s action model 

contains a list of actions available to that individual. Finally, the partner’s utility function 

includes information about the outcomes obtained by the partner when the robot and the 

partner select a pair of actions. Likewise, the self model also contains an action model 

and a utility function. The action model contains a list of actions available to the robot. 

Similarly the robot’s utility function includes information about the robot’s outcomes. 

The information encompassed within our partner models does not represent the final 

word on what types of information that should be included in such models. In fact, 

information about the partner’s beliefs, knowledge, mood, personality, etc. could 

conceivably be included in these models. We use the dot (. ) to denote the sets and 

functions within a model. Hence, iAim .  denotes an action model contained within a 

partner model for individual i (see Figure 4.2 for an example). 

 Partner models contain information relating to Theory of Mind (Scassellati, 2002). 

Theory of mind describes the ability of an individual to attribute particular mental states 

to other individuals. The creation and maintenance of a partner model requires the ability 

to determine the reward and cost values for another individual as well as the actions 

available to the individual in a particular social situation. Thus, the creation of a partner 

model and the use of the partner model to populate an outcome matrix highlight the role 

Theory of Mind plays during social interaction. 

 The preceding discussion raises an important question: how do we measure partner 

model accuracy? For example, given a human partner with action set iAim −− .  and 

utility function iuim −− . , how close is the robot’s partner model im−  to the actual model 

im−∗  where the * symbol is used to represent a target model. We address this problem by 
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viewing action models and utility functions as sets. The action model is a set of actions,  

ii
j Aa ∈ , and a utility function, iu , is a set of triplets, ( )ℜ− ,, i

k
i
j aa , that contains the action 

of each individual and a utility value. We can then do set comparisons to determine the 

accuracy of the robot’s partner model im− . Figure 4.3 presents a concrete example.  

 Measuring Partner Model Accuracy  
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Figure 4.3 The figure above provides an example measurement of partner model accuracy. The robot 
currently has an action model for partner consisting of two actions, one of which is not correct. The same is 
true of the robot’s utility function for the partner. Calculations are provided in the lower half of the 
diagram. The resulting distance from the true model is d=0.5. A distance of zero means that the models are 
the same. A distance of one means that the model is completely dissimilar to the target model.  
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 Two types of error are possible. Type I error (false positive) occurs if an action or 

utility is added to the robot’s partner model (im− ) which is not in the actual model 

( im−∗ ). Consider as a running example interaction with an emergency medical technician 

(EMT) in a search and rescue situation. A type I error occurs when the robot believes that 

the EMT can do some action, such as observing a fire (Figure 4.3), which, perhaps 

because of the situation, it cannot. Type II error (false negative) occurs if an action or 

utility in the actual model ( im−∗ ) is not included in robot’s partner model (im− ). A type II 

error occurs when the robot does not know that the EMT can perform an action, such as 

starting an IV (Figure 4.3). Both types of error must be included in a measure of action 

model or utility function accuracy. Moreover, a utility function value was not considered 

present in the actual model if the value differed from the actual value by an arbitrary 

amount (we chose a value of one).  

 To determine Type I error we calculate the number of actions or utilities in im−  

which are not in im−∗  as a percent of im− . Thus, 
i

ii

m

mm
−

−− −*

, is the number of actions in 

the robot’s model that are not in the actual model divided by the number of actions in the 

robot’s model.  

 Type II error can be calculated as the number of actions or utilities in both im−  and 

im−∗  as a percent of im−∗ . Thus 
i

ii

m

mm
−∗

−−∗ ∩
 is the number of actions in both models 

divided by the number of actions in the actual model. As the number of actions in both 



 73 

models increases, the accuracy increases. Hence, since we seek an measure of distance 

(inaccuracy), the term 
i

ii

m

mm
−∗

−−∗ ∩
−1  is used. 

 Finally, the two types of errors are averaged in the equation,  
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to create d, an overall measure of model accuracy and distance from the true model for 

either an action model (ad ) or a utility function ( ud ). To determine overall model 

accuracy we average the error from both components of the partner model,  

     
2

ua
i dd

d
+=− .    (2) 

The value of d represents the distance of the robot’s partner model from the actual model. 

When d equals zero the robot’s partner model is equal to the true partner model. When d 

is equal to one then the robot’s partner model is completely dissimilar (the intersection is 

empty) to the true partner model. To calculate the model accuracy we follow the steps in 

Figure 4.3. The first six steps from Figure 4.3 perform a series of set operations on the 

action model and utility function. The seventh step inserts the values obtained by the set 

operations into equation (1). In the final step, equation (2) is used to combine errors from 

both models.    

 Equation (2) weighs action model and utility function accuracy equally. We could 

have chosen to weigh the accuracy of either the action model or the utility function as 

more important in deciding overall partner model accuracy. As shown in the next chapter, 
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action model accuracy and utility function accuracy effect action selection differently. In 

the end, we chose to weigh action model accuracy equally to utility accuracy.  

 This section has introduced partner models and a method for measuring the difference 

between models. Partner models are critical when creating outcome matrices. The 

following section details a process by which outcome matrices are used to select actions.   

4.3 The Transformation Process 

Interdependence theory is based on the claim that people adjust their interactive behavior 

in response to their perception of a social situation’s pattern of rewards and costs. Kelley 

noted that individuals often transform their interactions to include irrational aspects of 

socialization such as emotion and their internal predilections or dispositions (Kelley, 

1979). Moreover, these internal transformations govern socialization and ensure that 

people are not simply rational outcome maximizers. Section 2.2.1 described a general 

architecture for social deliberation designed by interdependence theorists (Kelley & 

Thibaut, 1978; Rusbult &  Van Lange, 2003). In this section we flesh out the details of 

this design, creating an architecture for social deliberation suitable for implementation on 

a robot.   

 As discussed briefly in section 2.2.1, interdependence theory presents a process by 

which the given situation is first perceived by the individual and then cognitively 

transformed, creating an effective situation on which action is based (Figure 2.5). Recall 

that the given situation is a perceived instance of one type of social situation. The 

effective situation, on the other hand, represents outcomes that include many various 

aspects of the individual’s own internal predilections, such as his or her disposition. 

Behaviors are directly selected from the resulting effective situation. Between the given 
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situation and the effective situation a transformation process exists that alters the given 

situation to create the effective situation.  

 In this section, we detail a method for transforming an outcome matrix into a matrix 

that includes the robot’s own internal disposition. Disposition is defined here as a stable, 

social character manifested in an individual (section 7.1 describes disposition in more 

detail).  

 Framework for Social Action Selection 

Given 
Situation 

Transformation type 

Interactive 
Behavior 

Socially Deliberative Pathway 

Socially Reactive 
Pathway 

max_own 
Effective 
Situation 

Transform the outcome 
matrix 

Select transformation 

Transformation Process 

Situation, partner features 

Given 
Situation 

Matrix creation 
procedure  

(Chapter 5) 

 
Figure 4.4 The figure above depicts our framework for social action selection. Situation features are used 
to generate the given situation (described in section 5.3). The given situation is transformed to include the 
robot’s disposition producing the effective situation. Finally, an action is selected from the effective 
situation. 

 Figure 4.4 depicts a framework for social action selection. This framework is similar 

to the general process delineated by interdependence theory (Figure 2.5). The process 

begins with the given situation. Our method for creating the given situation will be 

described in chapter 5. The given situation is represented with an outcome matrix that 

reflects a situation at a ‘gut’ or perceptual level without internal transforms. Once the 

individual has generated an outcome matrix representing the given situation this matrix 

can be used in one of two pathways. The socially reactive pathway is a developmental 
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pathway some researchers claim reflects the lack of social deliberation by children 

(Rusbult &  Van Lange, 2003). In this pathway, the individual acts egotistically simply 

selecting the action that maximizes the individual’s own outcome without consideration 

of the other individual. The second pathway we term the socially deliberative pathway. 

This pathway transforms the given situation into an effective situation on which the 

individual will act. This dissertation will focus on the second pathway. Before describing 

the remainder of the diagram, we will first describe how outcome matrices are 

transformed.  

4.3.1 Transforming an outcome matrix 

An outcome matrix, as a representation, affords many simple strategies for selecting an 

action from the matrix. The simplest of all strategies is to select the action that results in  

the greatest potential outcome for oneself. We term this strategy max_own because it 

serves to maximize the deciding individual’s outcome without consideration of the 

partner.   

 Table 4.1 lists several other simple strategies. Each of the strategies listed in this table 

uses a simple computational process to alter the original matrix into a new matrix. For 

example, the max_joint transformation can be computationally described as, 

211ˆ ooo xyxyxy +=   where x, y are constant and ô  represents the transformed outcome 

value. This transformation replaces outcomes with the sum of the robot’s and its partner’s 

outcome. Moreover, each transformation has a particular social character that reflects the 

individual that chooses the transformation. For instance, an individual that often chooses 

to maximize its partner’s outcome (max_other) is typically considered to be acting 
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altruistically. In other words, the continued selection of a single transformation reflects an 

individual’s disposition.    

Table 4.1 The table provides a list of some example transformations. The table provides the name of the 
transformation, a description, the computational arrangement of the transformation, and the character 
displayed by an individual that often selects the type of transformation. A more complete list is provided in 
Appendix C. 

Example Transformations 
Transformation 

name 
Transformation 

description 
Computational mechanism Social character 

max_own No change No change Egoism—the individual 
selects the action that 
most favors their own 

outcomes 

max_other Swap partner’s 
outcomes with one’s 

own 

21ˆ oo xyxy =  Altruism —the 
individual selects the 

action that most favors 
their partner 

max_joint Replace outcomes 
with the sum of the 
individual and the 
partner’s outcome 

211ˆ ooo xyxyxy +=  
 

Cooperation—the 
individual selects the 

action that most favors 
both their own and their 

partner’s outcome 

min_diff Maximize the value 
of the action that has 

the minimal 
difference to that of 

the partner. 

)max(ˆ 211 ooo xyxyxy −=  

21 oo xyxy −−  

Fairness—the individual 
selects the action that 

results in the least 
disparity 

 Returning to our framework, the outcome matrix representing the given situation is 

transformed using one of the transformations listed in Appendix C to create the effective 

situation. This occurs as a two-step process. The first step is to select a transformation. 

Once a transformation is selected the outcome matrix is transformed according to the 

rules of the transformation. Formally,   

     ( )θ,GE OfO = ,     (3) 

where is EO  the effective outcome matrix, GO  is the given outcome matrix,  θ  is the 

transformation, and the function f transforms the matrix. Once the matrix has been 
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transformed, the action that maximizes the individual’s outcome is selected, completing 

the social deliberative pathway.  

 Consider, for example, a robot and a human foraging for two types of objects in a 

household environment. The human searches for only blue objects, while the robot 

searches for either blue or red objects but prefers red objects. The given situation for the 

robot is created by counting the number of colored objects in each room. If the robot uses 

the max_own strategy then it will select the room with the bluest objects. We can, 

however, transform the matrix to make the actions of the robot more helpful for the 

human. If we use a max_joint transformation, then the robot will select the room with the 

most red and blue objects to forage in. If, on the other hand, we use a max_other then the 

robot will select the room with the reddest objects to forage in.  

 As will be shown, this transformation process is a simple yet powerful way for a 

robot to not only reason about its own social actions but to also reason about the actions 

of its human partner.   

 This chapter has presented the conceptual underpinnings for our framework for 

human robot social interaction. We have presented a method of representing interactions 

computationally, for modeling the robot’s interactive partner, and for selecting social 

actions. The chapter offers the groundwork for addressing this dissertation’s research 

questions. The chapters that follow will build on this framework, presenting methods for 

using these concepts and results showing that the concepts work.   
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CHAPTER 5 

FROM PERCEPTION TO OUTCOME MATRIX 

 

As a theoretical tool a representation may be of value simply because it lends insight into 

the computational problem itself (Hutchins, 1995). Yet, to be useful to the field of 

robotics, it must also be possible to create instances of the representation from the noisy, 

uncertain perceptual input available to a robot. Because the challenge of creating 

outcome matrices from social interaction in general is vast, this chapter does not mark the 

final word on the subject. Rather, the chapter presents preliminary algorithms and insight 

into this problem and only attempts to show that it is possible to create our representation 

of social interaction from perceptual information. The bulk of this dissertation will then 

focus on using the outcome matrix to characterize trust and social relationships.  

 This chapter presents a series of algorithms for creating outcome matrices from 

perceptual information. The first algorithm assumes accurate knowledge of the partner 

and the environment, but serves as a profitable place to begin developing a general 

purpose algorithm for generating outcome matrices. We use this algorithm to explore the 

sensitivity of the outcome matrix to different types of error. The next two algorithms 

make fewer assumptions and demonstrate that it is possible to create outcome matrices. 

The chapter concludes with a discussion of the open problems and future challenges 

related to the creation of outcome matrices.    

5.1 Developing an Algorithm for Outcome Matrix Creation 

Experts note that a representation of knowledge acts as a surrogate for a naturally 

occurring phenomena (Davis, Shrobe, & Szolovits, 1993). As a surrogate, a 

representation maintains specific types of information about the phenomena and omits 
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other types of information. When developing an algorithm for the creation of a 

representation, it is therefore natural to ask what types of information are present in the 

representation.  

 Recall that an outcome matrix is our representation for social interaction. The 

previous chapters detailed our reasons for choosing the outcome matrix as a 

representation for social interaction. The information represented in an outcome matrix 

centers on three questions: 1) who is interacting? 2) What actions are available to each 

individual? And 3) how will the selection of a pair of actions influence each individual? 

Moreover, these questions must be answered in order because, for example, the identity 

of the robot’s partner could influence which actions are available to a partner. 

 
Box 5.1  The algorithm above creates an outcome matrix from the input partner and self models. The 
algorithm operates by successively filling in the elements of the matrix. The function x is a mapping from 
partner features to ID.  

 We have thus sketched the outline of an algorithm for creating outcome matrices. Box 

5.1 depicts the general form of the algorithm. The algorithm takes as input the self model 

and the partner model and produces an outcome matrix as output. The self model is a 

mental model the robot maintains of itself. It contains the robot’s action model and a 

General Matrix Creation Algorithm 
 

Input : Self model im  and partner model im− . 

Output : Outcome matrix O. 
 

1.  Create empty outcome matrix O   

2. Set O.partner = ( .img − features )  //Use perceptual features to retrieve partner name  

3. Set O.self = “robot” //Assign robot as name of self 

4. Set O.columns = ii Am .   //Use model of self to set actions for self  

5. Set O.rows = ii Am −− .  //Use model of partner to set actions for self 

6. For each action pair ( )i
k

i
j aa −,  in iA , iA−   

7.  ( ) ( )i
k

i
j

iii
k

i
j

i aaumaaO −− ← ,.,  //Use utility function to assign outcome values  

8.  ( ) ( )i
k

i
j

iii
k

i
j

i aaumaaO −−−−− ← ,.,  //Use partner utility function to assign partner’s  

9. End  //outcome values 
10. Return O 
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utility function. The action model consists of a list of actions available to the robot. 

Similarly the robot’s utility function includes information about the robot’s outcomes. 

The first step of the algorithm creates an empty outcome matrix. Next the algorithm sets 

the partner’s ID and both the robot’s and the partner’s actions. This step uses the function 

g to map perceptual features to a unique label or ID. ID creation provides a means of 

attaching the perception of an individual to what is learned from interacting with that 

individual. In theory, any method that provides a unique ID from perceptual features 

should work in this algorithm. We have not, however, explored this claim experimentally. 

Finally, for each pair of actions in the action models, we use each individual’s utility 

function ( iu  and iu− ) to assign an outcome for the pair of actions. 

 Consider, as a running example, a firefighter in a search and rescue situation. The 

firefighter’s action model contains action for performing CPR, fighting fires, rescuing 

people, etc. The firefighter’s utility function indicates the he ranks actions which save 

people (such as performing CPR) as more valuable then actions which reduce property 

damage (such as fighting a fire). Perceptual features such as having an axe, an oxygen 

tank, and a helmet, indicate that the person is a firefighter. Other features such as height 

and hair color identify the firefighter as a particular individual. Figure 5.1 demonstrates 

the use of the Outcome Matrix Creation algorithm for creating an outcome matrix for the 

firefighter and an assisting robot in a search and rescue environment. 
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 Example: Outcome Matrix Creation 
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Figure 5.1 An example of the Outcome Matrix Creation algorithm in a search and rescue environment 
with a firefighter. Step 1 begins with an empty matrix which is filled with information related to the 
interaction. The result is the final matrix labeled Steps 6-8. 

 It should be apparent that the Outcome Matrix Creation algorithm simply fills in the 

matrix with missing information. Moreover, the accuracy of the outcome matrices created 

by the algorithm depends entirely on the accuracy of the information contained in the self 

and partner models. The question of creating outcome matrices then becomes a question 

of how do we create accurate partner models. Stated another way, if accurate partner 

models could be created then we could use the Outcome Matrix Creation algorithm to 

create accurate outcome matrices. For this reason, sections 5.3 and 5.4  present 

algorithms for creating and refining partner models. Before exploring these algorithms, 

however, we will use the Outcome Matrix Creation algorithm to examine the sensitivity 
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of the outcome matrix as a representation of social interaction to different types of error. 

This will, in turn, influence the design of our later algorithms.  

5.2 Outcome Matrix Error Sensitivity 

Chapters 2 and 4 discussed the outcome matrix from a historical perspective and from the 

perspective of related work. In these chapters we argued that the outcome matrix is a 

feasible representation of interaction because it has been used as such in other disciplines 

for decades. In this section we present empirical results supporting our assertion that the 

outcome matrix is an excellent representation for interaction on a robot. These results will 

focus on the representation’s sensitivity to different types of error. We define sensitivity 

here with respect to action selection because it is a robot’s ability to select and perform 

actions that will likely have the largest repercussions on its human partner. Embodiment 

and reliance on potentially noisy sensors makes an examination of a representation’s 

sensitivity to error an important consideration if the representation is to be used on a 

robot for two reasons. First, if the outcome matrix representation is sensitive to several 

types of errors then perhaps the representation is not suitable for implementation on 

robots. Second, different types of errors could affect the usefulness of outcome matrix in 

different ways and thus impact our outcome matrix generation algorithm.    

 The purpose of this section is to examine how the introduction of errors into the 

outcome matrix impacts a simulated robot’s ability to select actions. Ideally, for every 

error introduced into our representation, less than one action selection error will occur. 

We use the term error to denote any difference in the information contained within a 

representation from the target model. Hence, errors can include incorrect values or 

missing information. We consider the outcome matrix to be sensitive to a specific type of 

error if the action selection error increases linearly or greater with respect to the error 

introduced. 



 84 

 We conducted simulation experiments to explore the sensitivity of the outcome 

matrix to different types of error. We explored four different types of errors: errors in 

outcome value magnitude, errors in single outcome values, action insertion errors, and 

action deletion errors. Errors in outcome value magnitude occur when all of the outcome 

values for a partner are multiplied by some value ℜ∈k . For example, if all of the 

partner’s outcome values are changed to be half of the true value. Errors in single 

outcome values occur when one or many particular outcome values differ from their true 

value. This error occurs, for example, when the robot incorrectly values a particular 

action human-robot action pair. Action insertion errors occur if the partner’s action model 

includes actions which could not be used in the current social situation. Using the 

firefighter example from the previous section, if the robot believes that the firefighter is 

capable of performing actions such as administering an IV when, in fact, the firefighter 

cannot. Action deletion errors, on the other hand, occur when actions that could have 

been used in the current social situation are deleted from the partner’s current action 

model. For example, not recognizing that a firefighter can fight fires would result from an 

action deletion error. 

Table 5.1 Environment types, partner types, and robot types for the outcome matrix error sensitivity 
experiment. 

Environment Type Partner Type Robot Type 

assistive police officer police officer assistant 

household firefighter firefighter assistant 

museum accident victim medical assistant 

prison hospital patient  

search and rescue citizen  

 medical staff  

 The same general experimental procedure was used to investigate all four different 

types of error in four different experiments. The USARSim simulation environment, 

robot models, and tools described in section 3.4.1 were used. To ensure generality with 

respect to the type of environment, the experiments were conducted in all five simulation 
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environments (Table 5.1). Similarly, to ensure generality with respect to the partner and 

self models, we created three different types of robots and six different types of human 

partners (Table 5.1). Each partner and self model had a different set of actions capable of 

being performed in a particular environment. For example, in the search and rescue 

environment the police assistant robot produced an auditory alarm if it found a victim, 

whereas in the household environment the police assistant robot searched the household 

for burglars. Overall 90 ( 563 ×× ) different combinations of robot type (3), partner type 

(6), and environment (5) were created. Each unique combination affected the action 

model and utility function for the robot and its partner. These 90 models served as target 

models for each of the four experiments. 

Table 5.2 Example actions for different types of individuals. 

Partner 
Type Example actions Robot type Example actions 

police 
officer 

perform-CPR, arrest-person, search-
home 

police assistant alert-guards, alert-security, observe-exhibit 

firefighter 
perform-CPR, fight-fire, rescue-

person 
firefighter 
assistant 

guide-to-fire, guide-to-victim 

accident 
victim 

crawl, limp, moan 
medical 
assistant 

guide-to-victim, guide-to-triage, light-
victim, light-triage 

hospital 
patient 

get-food, do-art-therapy, watch-TV   

citizen watch-scene, talk, run-away   

medical 
staff 

stabilize-person, treat-illness, assess-
person 

  

 The USARSim model of the Pioneer DX robot was used in all experiments (Figure 

3.4). The robot had both a camera and a laser range finder. The medical assistant robot 

type had a light for communicating the location of victims, the police assistant robot type 

had an auditory alarm, and the fire assistant robot type had neither a light nor an alarm. 

Feedback from the simulation environment provided localization information. The robot 

used speech synthesis to communicate questions and information to the human partner. 

Speech recognition translated the spoken information provided by the human. 

Microsoft’s Speech SDK provided the speech synthesis and recognition capabilities. 
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Table 5.2 lists example actions available to each type of robot. Note that the suitability of 

an action depends on the type of environment. The mapping from action to environment 

was created by reasoning about the types of actions that could performed by this robot in 

a particular environment. 

  The robot’s human partner used the interface depicted in Figure 3.2 to interact with 

the robot. This interface was developed from an existing USARSim tool (Zaratti, 

Fratarcangeli, & Iocchi, 2006). The interface allows the human to move around and view 

the environment. The human interacted with the robot by speaking a predefined list of 

commands. Table 5.2 lists example actions available to the human. The action set for the 

human was derived by reasoning about the types of actions that would be available to a 

police officer, firefighter, victim, citizen, medical staff, and hospital patient in each of the 

environments.  

 Utility functions for both the human and the robot were created by producing an 

arbitrary ordering of the individual’s actions in an environment in a list format. Next, 

each action in the list received a utility equal to its position in the list (beginning at zero). 

Finally, a value equal to the half of the size of the list was subtracted from each of the 

utilities on the list. The purpose of subtracting this value was to ensure that roughly half 

of the actions had negative utility. For example, if the robot’s action list was (guide-to-

victim, guide-to-triage, light-victim, light-triage) the resulting utilities for each action 

would be (-2,-1,0,1). Action pairs received a utility equal to the sum of utility for each 

individual action.  
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 Like the robot, the human’s utility function was created by producing an arbitrary 

ordering of the actions in an environment and setting the action in the middle of the 

ordering to zero utility. 

 The following general procedure was used for each of the four different experiments:  

Table 5.3 Experimental procedure for the outcome matrix error sensitivity experiments. 

Experimental Procedure 

1) Create 90 target models reflecting the different combinations of robot type, 
partner type, and environment. 

2) For each target model create noisy models by injecting the model with 
random Gaussian error. The amount of error introduced to the model is the 
independent variable. The type of error depended on the experiment. 

3) The robot gathers information about its type, the environment, and the 
partner. Specifically, the human operator informs the robot of its robot type 
(police assistant, firefighter assistant, medical assistant), the robot uses 
OpenCV to detect the presence or absence of objects to determine the type of 
environment, and the robot uses speech synthesis and recognition to query the 
partner for their type. 

4) Having obtained the robot type, partner type and environment type, the robot 
retrieves from memory a (possibly error laden) partner and a self model. 

5) The General Matrix Creation algorithm (Box 5.1) is used to create an 
outcome matrix. 

6) The robot uses a max_own action selection strategy (see section 4.3.1 for 
more details on action selection strategies) selecting the action that maximizes 
its own outcome without regard to the partner.  

7) The action is performed in the environment. The robot’s action selection and 
resulting outcome values are recorded. The robot queries the human for 
his/her action selection and records the response. 

8) Steps 3-7 are repeated for each of the 90 combinations of robot type, partner 
type, and environment. 

9) After each combination of robot type, partner type, and environment has been 
tested, the error introduced into the models is increased by 5 percent and steps 
3-8 are repeated. 

10) Continue until the model is 90 percent error. 

In each of the experiments, the percentage of error introduced to the robot’s target models 

is the independent variable. The percentage of incorrect actions selected by the robot is 



 88 

the dependent variable. An incorrect action is an action which differs from the action that 

would have been selected had the error free target model been used instead of the error-

laden model. The hypothesis tested for each experiment depended on the type of error 

investigated. In all experiments, analysis was performed by comparing the action 

selection error rate averaged over all environments to a linearly increasing rate. Figure 

5.2 summarizes the model creation process for all four experiments.      

 

For every partner type and environment, create partner model. Each partner model contains 
environment and individual specific actions (see Table 5.2 for examples) and arbitrary utility 

functions. 

Error in Outcome 
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Partner model creation procedure in the Outcome Matrix Error 
Sensitivity Experiments 

 
Figure 5.2 Diagram depicting the process used to create the partner models for the four error sensitivity 
experiments presented in the following four subsections.    

5.2.1 Errors in outcome value magnitude 

A common concern about the outcome matrix as a representation for interaction is that 

the outcome values are likely to be inaccurate. The following experiment explores this 
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concern by investigating the action selection resulting from errors in outcome value 

magnitude. Table 5.4 provides a summary of the experiment.  

 Errors in outcome value magnitude occur when the robot either uniformly inflates or 

deflates the rewards or costs associated with all action pairs within a matrix. These types 

of errors are common in human psychology (Sears, Peplau, & Taylor, 1991).  

 As mentioned above, an error of magnitude occurs when all of the outcome values for 

a model are altered by some value ℜ∈k . Consider the example matrix from Figure 5.3. 

Using a max_own action selection strategy the robot would select the alert-fire action 

because the action pair (alert-fire, fight-fire) results in the largest outcome for the 

robot. Even if a utility function error results in an increase of all outcomes by a factor of 

10, the robot will still select the same action. Moreover, the same is true of many types of 

systematic error (dividing by a positive value, multiplying by a positive number, etc.) that 

alters the magnitude of all values but does not alter their overall rank order in terms of 

outcome. We hypothesized that these types of errors would not affect the ability of the 

robot to select the correct action. 

Table 5.4 Experiment summary for the errors in outcome value magnitude experiment. 

Experiment Summary 
Errors in Outcome Value Magnitude 

Purpose 
Investigate outcome matrix sensitivity to increases and decreases in 
magnitude of all outcome values.  

Experiment Type USARSim simulation 

Hypothesis  
Percentage of action selection errors is zero regardless of the magnitude of 
outcome value errors  

Procedure 
1) Figure 5.2, Errors in Outcome Value Magnitude, used to create error 

models. 
2) Procedure from Table 5.3 was used to perform experiment.   

Independent variable 
Magnitude of outcome value change. Multiplication factors were 10, 2, 0.5, 
and 0.1. 

Dependent variable Percentage of incorrect actions selected 

Method of Analysis Target model comparison 

Conclusion 
Hypothesis is supported. Errors are zero regardless of magnitude of error 
introduced. 
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Figure 5.3 An example outcome matrix from the error sensitivity experiments. The robot’s use of a 
max_own strategy would result in selection of the alert-fire action.  

 To test this hypothesis, we used the procedure from Figure 5.2 to create models with 

errors of four different magnitudes: 10, 2, 0.5, and 0.1. Next the procedure from Table 5.3 

was used to perform experiment. The independent variable in this experiment was the 

magnitude of error, either 10, 2, 0.5, and 0.1. The dependent variable was the percentage 

of incorrect actions selected. We found the error rate to be zero regardless of the 

magnitude of change. This result is not surprising and simply reflects the fact that utility 

values form a preference relation with respect to the action possibilities being decided. 

We can conclude that outcome matrices are not sensitive to errors which impact the 

magnitude of all outcome values equally.    

5.2.2 Errors in individual outcome values 

Errors in magnitude affect all outcome values. What about errors that do not affect all 

outcome values?  In contrast to an error in magnitude, errors with respect to individual 

outcome values may result in a new preference relation over actions. These errors occur 

when the robot’s utility function generates inaccurate values with respect to particular 

action pairs. Because of the noise associated robotic perception, action pair valuation 

uncertainty, and a lack of knowledge related to the partner, this type of error is expected 
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to commonly occur and therefore demands examination. Table 5.5 provides a summary 

of the experiment. 

Table 5.5  Experiment summary for the errors in individual outcome values experiment. 

Experiment Summary 
Errors in Individual Outcome Values 

Purpose Investigate outcome matrix sensitivity to errors in individual outcome values.  

Experiment Type USARSim simulation 

Hypothesis  
The number of action selection errors is less than one per error in outcome 
value. 

Procedure 
1) Figure 5.2, Errors in individual Outcome Value, used to create error 

models. 
2) Procedure from Table 5.3 was used to perform experiment. 

Independent variable Percentage of outcome values replaced with error value. 

Dependent variable Percentage of incorrect actions selected. 

Method of Analysis Target model comparison 

Conclusion 
Hypothesis is supported. The rate of action selection errors per outcome 
values replaced is less than one. 

 Coming back to our firefighter example in Figure 5.3, the robot’s outcome value for 

the action pair (alert-fire, fight-fire) is 15. For our purposes an error occurs 

whenever the robot believes the value for this action pair to be less than or equal to 14 or 

greater or equal to 16. Also notice that the action pair (alert-fire, fight-fire) 

results in the greatest potential outcome for the robot. A robot using the max_own 

strategy would thus select the alert-fire action. For this example matrix, an action 

selection error only occurs if the robot selects the guide-to-victim action. A robot 

using the max_own strategy would only select the guide-to-victim action under one of 

two conditions: 1) the outcome value of the action pair (alert-fire, fight-fire)=15 

was less than the value of the action pair (guide-to-victim, fight-fire)=12 or 2) the 

outcome value of either the action pair (guide-to-victim, perform-CPR)=9 or 

(guide-to-victim, fight-fire)=12 was greater then the outcome value of (alert-

fire, fight-fire)=15. Notice that of the possible perturbations of the outcome value 
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for the action pair (alert-fire, fight-fire) few would result in action selection 

errors. We therefore hypothesized that less than one action selection error results from an 

error in outcome value.  

 To test this hypothesis, we used the procedure from Figure 5.2 for the Errors in 

Individual Outcome Values Experiment to create partner models with different amounts 

of error added. Error was added by first using a Gaussian distribution to randomly select 

an outcome value within the partner model’s utility function. Next, a Gaussian 

distribution was used to select a random value within the range of [ ]20,20− . If the new 

value differed from the original value, then the original value was replaced, creating an 

error. The process was continued until the desired amount of error had been introduced 

into the utility function. We created 18 sets of partner models with 5 percent increments 

of error added to the models ranging from 0 percent error to 90 percent error. Next the 

procedure from Table 5.3 was used to perform experiment. The independent variable in 

this experiment was the percent of error added. The dependent variable was the 

percentage of incorrect actions selected.  

 Figure 5.4 shows the results for this experiment. The bold black line in Figure 5.4 

depicts the average result over all five environments. Thinner lines depict the results for 

individual environments. The bold white line provides a baseline by depicting an error 

rate of one error in action selection per error in outcome value. The experiment supports 

our hypothesis if the bold black line is below the bold white line. The results presented in 

Figure 5.4 indeed depict the bold black below the bold white line. The graph shows that 

the percent of error in outcome value increases from 0 to 90 percent, the rate of increase 
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in action selection error is less than linear (the bold white line). Thus, the experiment 

supports our hypothesis.  
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Figure 5.4 The graph depicts the percent of incorrect actions selected as a function of errors in outcome 
values. A y-axis value of 1.00 represents total selection of incorrect actions. The bold black line depicts the 
average incorrect actions selected for all environments. The individual colored lines represent changes in 
accuracy for each different environment. The bold white line is a baseline for comparison, depicting a 
linear decrease in accuracy. The fact that the bold black line is below the bold white line indicates that 
errors in outcome value result in less than linear action selection error.    

 In conclusion, this experiment demonstrates that outcome value inaccuracy has a less 

than linear effect on the robot’s ability to select actions. This is an important result. It 

indicates that our representation of interaction can be partially inaccurate (in terms of 

outcome values) and yet the robot will still select the correct action. To be more precise, 

even if we replace half of the outcome values within a matrix with incorrect values, the 

robot will still select the correct action 65% of the time. It also indicates that, in order to 

produce say 81% correct action selection, we should strive to have between 60-70% 

correct outcome values. Notice also that the bold black line in Figure 5.4 is not linear. 
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Rather, at 70% outcome value error the curve increases superlinearly, indicating a 

threshold after which the accuracy of the representation does not degrade gracefully. 

Overall, these results support our assertion that the outcome matrix is indeed a good 

representation for human-robot interaction.   

5.2.3 Action deletion errors 

We now consider errors related to the action model. In addition to errors involving 

outcome values, the action models from which the outcome matrix is constructed can be 

flawed. In this case, valid actions may have been left out or omitted from the matrix. 

Table 5.6 provides a summary of the experiment. 

Table 5.6 Experiment summary for the action deletion experiment. 

Experiment Summary 
Action Deletion Errors 

Purpose 
Investigate outcome matrix sensitivity to action model inaccuracy in the form 
of action omissions.  

Experiment Type USARSim simulation 

Hypothesis  
The number of action selection errors is approximately one per action 
deletion error.   

Procedure 
1) Figure 5.2, Action Deletion Errors, used to create error models. 
2) Procedure from Table 5.3 was used to perform experiment.   

Independent variable Percentage of actions deleted. 

Dependent variable Percentage of incorrect actions selected. 

Method of Analysis Target model comparison 

Conclusion 
Hypothesis is true. The rate of action selection errors per actions deleted is 
approximately one. 

 An action deletion error occurs when an action, suitable for the robot’s environment, 

has been left out of the matrix. This type of error can occur whenever the robot lacks a 

good model of its own actions. Even more likely, the matrix may contain omissions with 

respect to the actions of the robot’s partner. The effect of action deletion errors with 

respect to the partner depends on the action selection strategy. The deletion of any one 

action only affects the matrix’s accuracy when the action that would have otherwise been 
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selected is deleted. Returning again to the example in Figure 5.3, the robot chooses 

between two actions, alert-fire and guide-to-victim. If the robot is using a 

max_own strategy then omission of the guide-to-victim action is irrelevant as it would 

not have been chosen anyway. Only a deletion of the alert-fire action affects the 

robot’s action selection accuracy. Thus, for example, if 10 percent of the robot’s actions 

are deleted from the action model, then there is a 10 percent probability that the most 

favorable action has been deleted. The same is true if 30, 40, or 50 percent of the robot’s 

actions are deleted from the action model. In each of these cases, the probability that the 

most favorable action has been deleted is equal to the percentage of actions deleted. We 

therefore hypothesis that the action selection error rate will be equal to the action deletion 

rate.   

 To test this hypothesis, we used the procedure from Figure 5.2 for the Action 

Deletion Errors Experiment to create partner models with differing action deletion error 

rates. Error was added by first using a Gaussian distribution to randomly select an action 

within the robot’s action model. The selected action was then deleted. The process was 

continued until the desired amount of error had been introduced into the action model. 

We created 18 sets of self models with 5 percent increments of error added to the models 

ranging from 0 percent error to 90 percent error. Next the procedure from Table 5.3 was 

used to perform experiment. The independent variable in this experiment was the percent 

of error added. The dependent variable was the percentage of incorrect actions selected.  

 Figure 5.5 presents the results for this experiment. The bold black line in Figure 5.5 

again indicates the average result over all five environments. Thinner lines portray the 

results for individual environments. The bold white line provides a baseline by depicting 
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an error rate of one error in action selection per error in action deletion. The experiment 

supports our hypothesis if the bold black line is approximately equal to the bold white 

line. The results presented in Figure 5.5 indeed confirm that bold black line is 

approximately equal to the bold white line. The graph shows that the percent of action 

deletion errors increasing from 0 to 90 percent, the rate of increase in action selection 

error is approximately linear (the bold white line). Thus, the experiment supports our 

hypothesis. 
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Figure 5.5 The graph depicts the percent of incorrect actions selected as a function of increasing random 
action deletion. The bold black line depicts the average incorrect actions selected for all environments. The 
individual colored lines represent changes in accuracy for each different environment. The bold white line 
is a baseline for comparison, depicting a linear decrease in accuracy. Note that the black line approximates 
the white line. Hence, in contrast to the two previous experiments this type of error increases approximately 
linearly.  

 In conclusion, this experiment demonstrates that action deletion inaccuracy has 

approximately a linear effect on the robot’s ability to select actions. Unlike the two 

previous experiments, each action deletion error results in approximately one action 

selection error. The impact of action deletion errors on action selection accuracy is thus 
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greater than the impact of either errors in magnitude or errors in individual outcome 

values. This fact will help to shape our creation of an algorithm for creating outcome 

matrices.  

5.2.4 Action insertion errors 

An outcome matrix can also contain actions that are not possible given the type of 

environment. Moreover, because each invalid action results in several invalid outcome 

values, these types of errors have the potential to flood the outcome matrix with improper 

outcome values. Table 5.7 provides a summary of the experiment. 

Table 5.7  Experiment summary for the action insertion errors experiment. 

Experiment Summary 
Action Insertion Errors 

Purpose 
Investigate outcome matrix sensitivity to action model inaccuracy in the form 
of action insertion errors.  

Experiment Type USARSim simulation 

Hypothesis  
The number of action selection errors is less than one per action insertion 
error.   

Procedure 
1) Figure 5.2, Action Insertion Errors, used to create error models. 
2) Procedure from Table 5.3 was used to perform experiment. 

Independent variable Percentage of invalid actions inserted into the action model. 

Dependent variable Percentage of incorrect actions selected. 

Method of Analysis Target model comparison 

Conclusion 
Hypothesis is true. The rate of action selection errors per actions inserted is 
less than one. 

 Assuming a max_own action selection strategy, an action insertion error results in the 

incorrect selection of an action only if the new action adds a new maximum value to the 

matrix. Referring back to Table 5.2, watch-TV is an action used by human hospital 

patients. For a robot in a search and rescue environment, an error occurs if the action is 

added to the robot’s action model. This action insertion error would add another column 

to the matrix along with outcome values for each action pair. Because an incorrectly 

added action may not result in a new maximum value for the matrix, we hypothesized 
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that the percentage of incorrect actions selected by the robot would be less than the rate 

errors inserted.    

 To test this hypothesis, we used the procedure from Figure 5.2 for the Action 

Insertion Errors Experiment to create partner models with differing action insertion error 

rates. Error was added by first using a Gaussian distribution to randomly select an action 

from a global pool of actions used by both the robot and the human. If the action was not 

capable of being performed in the environment, then the selected action inserted into the 

robot’s action model resulting in an error. The process was continued until the desired 

amount of error had been introduced into the action model. We created 18 sets of self 

models with 5 percent increments of error added to the models ranging from 0 percent 

error to 90 percent error. Next the procedure from Table 5.3 was used to perform 

experiment. The independent variable in this experiment was again the percent of error 

added. The dependent variable was the percentage of incorrect actions selected.  

 Figure 5.6 presents the results for this experiment. The bold black line in Figure 5.6 

again indicates the average result over all five environments. The bold white line 

provides a baseline by depicting an error rate of one error in action selection per error in 

action insertion. The experiment supports our hypothesis if the bold black line is below 

the bold white line. The results presented in Figure 5.6 indeed confirm that the bold black 

line is below the bold white line. The graph shows that as the percent of actions 

incorrectly inserted into the outcome matrix increases from 0 to 90 percent of the total 

actions within the matrix, the rate of increase in action selection error is less than linear 

(the bold white line). Thus, the experiment supports our hypothesis.  
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Outcome Matrix Sensitivity to Actions Inserted
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Figure 5.6 The graph depicts the percent of incorrect actions selected as a function of increasing random 
action insertion. As in the other graphs the bold black line depicts the average incorrect actions selected for 
all environments, the colored lines represent the changes in accuracy for each different environment, and 
the bold white line is a baseline for comparison, depicting a linear decrease in accuracy.    

 In conclusion, this experiment demonstrates that action insertion errors have a less 

than linear effects on the robot’s ability to select actions. To be more precise, only 22 

percent action selection error results when 90 percent of actions within the robot’s action 

model are invalid. Thus, action deletion errors will result in greater action selection error 

than action insertion errors. These results further support our assertion that the outcome 

matrix is indeed a good representation for human-robot interaction. 

5.2.5 Error sensitivity conclusions  

This section has explored the sensitivity of the outcome matrix to different types of 

errors. Our purpose was to determine 1) if the outcome matrix representation is sensitive 

to several types of errors and 2) if different types of errors affect the usefulness of 

outcome matrix. The results are important in that they will impact the development our 
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algorithm for matrix creation which we present in the two remaining sections of this 

chapter. Moreover, the results demonstrate that as errors in outcome value magnitude, 

specific outcome values, and action insertion errors accumulate within an outcome 

matrix, action selection errors increase at a lesser rate. Had we instead found outcome 

matrices to be sensitive to these types of errors, because of the uncertainty inherent in a 

robot’s perceptual abilities and in interaction, it might have been necessary to abandon 

this approach to human-robot interaction. We did, however, determine that outcome 

matrices are sensitive to action deletion errors. We will use this information to avoid 

action deletions when crafting our algorithm for outcome matrix creation.  

5.3 The Interact and Update Algorithm 

Section 5.1 presented the Outcome Matrix Creation algorithm as a means of creating 

outcome matrices from partner models. It should be apparent that the Outcome Matrix 

Creation algorithm simply fills in the matrix with missing information. Moreover, the 

accuracy of the outcome matrices created by the algorithm depends entirely on the 

accuracy of the information contained in the self and partner models. This begs the 

question, where does the information for the models come from? The interact-and-update 

algorithm serves this purpose.  

 The interact-and-update algorithm uses information learned during an interaction to 

revise its partner and robot models. Norman notes that humans continually revise their 

mental models with additional interaction (Norman, 1983). Our algorithm employs a 

similar strategy, updating its representation of its human partner with each additional 

interaction. The algorithm works by first predicting the action the partner will select and 
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the outcomes the robot and the partner will obtain. Then, in the update phase, the 

algorithm adjusts the partner model.  

 
Box 5.2 Algorithm for using partner and self models to create outcome matrices. The algorithm 
successively updates the partner models achieving greater outcome matrix creation accuracy. The function 
x maps partner features to a partner ID, y maps situation features to the robot’s self model, and z maps 
partner features to a partner model. 

 Box 5.2 depicts the algorithm. For clarity, the algorithm is divided into three phases: 

pre-interaction, interact, and update. During the pre-interaction phase the robot selects 

models for itself and the partner, calls the Outcome Matrix Creation algorithm 

constructing the matrix, selects an action and sets its predictions for the interaction. 

During the interact phase the robot performs the action. Finally, in the update phase, the 
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robot adjusts its partner model to account for the actual outcome obtained and actions 

performed.  

 

Pre-Interaction Phase: 

Interact-and-update Algorithm Example 
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Interact  Phase: 

Step 1: (yim = axe, oxygen_mask, male )  where im  is the robot model of a firefighter 

assistant with action model (=iAim . guide-to-victim, alert-fire )  and utility function 

(=iuim . (guide-to-victim,guide-to-victim,-3), (alert-fire,guide-to-victim,-

7), (guide-to-victim,alert-fire,2), (alert-fire,alert-fire,1) )  

Step 2: Use partner features to retrieve model of partner im− . If no partner models exist, then assign 

imim =− . Thus, (=−− iAim .  guide-to-victim, alert-fire )  and utility function 

(=−− iuim . (guide-to-victim,guide-to-victim,-3), (alert-fire,guide-to-

victim,-7), (guide-to-victim,alert-fire,2), (alert-fire, alert-fire,1) )  

Step 3: Use models 




 − imim , to create matrix. Result is: 

Step 4, 5:  Set =ia guide-to-victim; Set =io -3; 

 =− ia*
guide-to-victim; =− io* -3 

 
 
 
Step 6: Perform guide-to-victim action 
 
 

Step 7: Perceive values =− ia perform-CPR; =− io 4; =io 9 

Steps 8, 9: Add action perform-CPR to iAim −− . ; outcome value (perform-CPR, guide-to-

victim, 4) to iuim −− .  

Step 12: Add outcome value (guide-to-victim , perform-CPR, 9) to iuim . . 
 

Step 13, 14: ( ) kiap >−  for all ia−  assuming 1.0=k  

 
Step 15: Goto step 3. 

Update Phase: 

 
Figure 5.7 This figure presents an example run through the interact-and-update algorithm. The partner 
and situation features are presented as inputs to the algorithm. In steps 1 and 2 these features are used to 
retrieve the partner and self models. In step 3, the models are used to create the pictured matrix. Steps 4 and 
predict actions and outcomes based on the models. Step 6 performs the action and steps 7 through 12 
update the models. Steps 13 and 14 delete unused actions, if necessary and Step 15 goes back to Step 3.  
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 The interact-and-update algorithm (Box 5.2) takes as input the partner features and 

situation features. Partner features are used to recognize and/or characterize the robot’s 

interactive partner. Similarly, situation features are perceptual features used to 

characterize the environment. The algorithm begins by using the situation features to 

retrieve a self model. The function y maps situation features to subsets of the robot’s 

action set and utility values. Thus the robot’s model of itself depends on the type of 

environment in which it is interacting. In the example in Figure 5.7 the features of a 

search and rescue environment self model of a firefighter assistant.  

 The partner’s features are used to retrieve a model of the partner. The function z 

selects the partner model from a database of partner models with the greatest number of 

equivalent features. During initialization, the partner model database is seeded with a 

model of the robot. Thus the database always contains at least one model. In Figure 5.7 

this results in the partner model being set to the robot model. The pre-interaction phase 

also constructs the outcome matrix representing the given situation, selects the action that 

the robot will perform, and predicts the action that the human will perform, ia−* , the 

outcome value that the robot will receive, io* , and the outcome value that the human 

partner will receive, io−* . 

 During the interaction phase the robot performs the action. In the example presented 

in Figure 5.7 this is the guide-to-victim action.    

 During the update phase of the algorithm, the robot first perceives the action 

performed by its partner and the outcome both it and the partner obtain (line 7 from Box 

5.2). Next, if the partner action does not match the prediction, then the action is added to 

the model if it did not exist and the outcome for the action pair is updated (line 8). In 
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Figure 5.7 this is the case as the robot predicted that the partner would perform the 

guide-to-victim action when in fact they performed the perform-CPR. If, on the other 

hand, the robot predicted the correct action but did not predict the correct outcome then 

the outcome is updated in the partner model (line 10). Next, if the outcome the robot 

obtained differed from the robot’s prediction then the robot updates its own model to 

reflect the received outcome (line 12). Finally actions and associated outcome values 

which have less than k probability of usage based on previous experience are removed. 

This prevents the model from becoming filled with rarely used actions. The partner 

model can be successively updated by looping to line 3. 

 In section 5.2 we saw that outcome matrices are more sensitive to action deletion 

errors than to action insertion errors. The constant k provides a means of balancing the 

likelihood of each type of error. A value of 5.0=k  deletes actions if they do not have a 

50 percent probability of being selected by the partner. This large value of k results in 

smaller matrices but also result in increased likelihood of action deletion errors. We can 

reduce action deletion errors by reducing the value of k.  

 Line 9 updates the outcome value to match the perceived outcome value when an 

unexpected action is encountered. If the action is unknown, then the robot does not yet 

have information about the outcome values of all of the action pairs. In this case it must 

make an assumption as to their value. As currently presented, the algorithm assigns a 

single outcome value to all action pairs irrespective of the robot’s action. This assignment 

results in what we call an action independence assumption. The robot is assuming that, 

for the unknown action pairs, the partner receives the same outcome regardless of the 

robot’s choice of action. Alternatively, we could have assumed that for unknown action 
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pairs the human receives the same outcome as the robot. Either of these assumptions is 

equally valid as the values simply serve as placeholders and allude to the robot’s current 

ignorance of the human’s action preference.  

 We contend that this is neither the only algorithm for matrix creation, nor, perhaps, 

even the best algorithm for creating and updating outcome matrices. Rather the algorithm 

is only meant to serve as a starting place for more advanced outcome matrix creation 

algorithms. Moreover it shows that outcome matrices can be created from perceptual 

information and demonstrates the connection between a robot’s model of its interactive 

partner and its ability to represent an interaction. Intuitively, the algorithm directly 

updates the outcome values and actions. Hence the algorithm is susceptible to sensor 

noise. Machine learning algorithms could be used to reduce this susceptibility. Ng, for 

example, describes inverse reinforcement learning as the problem of learning a task’s 

reward function. He has also developed techniques for learning from a teacher (Abbeel & 

Ng, 2004). Numerous game theoretic methods, such as Bayesian games, also exist for 

handling uncertainty (Osborne & Rubinstein, 1994). The problem of how to best manage 

uncertainty and noise when constructing outcome matrices for use in human-robot 

interaction is a challenging question. At this point it is not clear what the nature of the 

uncertainty will be. For example, are Gaussian noise models appropriate? Will the noise 

be non-linear? Should game-theoretic or machine learning techniques or both be used to 

manage noise and uncertainty? This dissertation does not exhaustively probe these 

questions. Section 5.4, however, does begin to explore the use of clustering methods to 

aid in partner model learning.    
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5.3.1 Creating accurate partner models  

The purpose of the interact-and-update algorithm is to create outcome matrices. But how 

accurate are the outcome matrices produced by the algorithm? Accuracy here is defined 

and measured with respect to a target model. As discussed in section 5.1, the accuracy of  

Table 5.8  General experimental information common to all of the experiments performed to investigate 
the use of the interact-and-update algorithm for the creation of accurate partner models. 

General Experiment Summary 
Creating Accurate Partner Models 

Purpose 
Determine the ability of the interact-and-update algorithm to create accurate 
outcome matrices.  

Experiment Type USARSim simulation and laboratory experiments. 

Hypothesis  
As the number of interactions increases, the accuracy of the robot’s partner 
model will increase.   

Procedure 
Both procedures are listed within this section: 

1) Follow partner model creation procedure from Table 5.12.  
2) Follow the experimental procedure from Table 5.13.      

Independent variable Number of interactions with the partner. 

Dependent variable Percent similarity to a target partner model. 

Method of Analysis Target model comparison. 

the outcome matrix produced by the General Matrix Creation algorithm depends 

primarily on the accuracy of the robot’s partner and self models. Recall that in section 5.1 

we showed that if the robot’s partner model and self model are accurate, then the 

algorithm can be used to create an accurate matrix. We can therefore gauge the ability of 

interact-and-update algorithm to accurately create outcome matrices by measuring the 

accuracy of the models created by the algorithm. If the algorithm produces accurate 

models, then these models can be input into the General Matrix Creation algorithm to 

produce accurate outcome matrices. Section 4.2 has already presented a method and 

equations for comparing partner models. To briefly revisit this topic, we examined 

mechanisms for determining the difference between a robot’s model of its partner ( im− ) 

and the partner’s actual model ( im−∗ ). We noted that our distance measure must include 
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both the model’s components and Type I and II error. Representing the action model as a 

set of actions,  ii
j Aa ∈ , and the utility function, iu ,  as a set of triplets, ( )ℜ− ,, i

k
i
j aa , we 

derived equation (2) from section 4.2 as a measure of partner model distance. In short, we 

have derived a measure of partner model distance that will now be used to gauge the 

ability of the interact-and-update algorithm to accurate outcome matrices.    

 As described in section 5.3, the interact-and-update algorithm operates by 

successively revising the robot’s partner and self model information. We therefore 

hypothesized that continued interaction with a partner would result in improved partner 

model accuracy—both accuracy of the partner’s action model and of the partner’s utility 

function. Figure 5.7 presents an example interaction between the robot and a firefighter in 

a simulated search and rescue environment. Continued interaction here means that the 

robot interacted successively with the same human partner in a single environment.  

Table 5.9 Summary of the creating accurate partner models experiment conducted in simulation with a 
single partner type and in multiple environments. 

Experiment Summary 
Creating Accurate Partner Models:  

Simulation, Single Partner Type, Multi-Environment  

Purpose 
Determine the ability of the interact-and-update algorithm to create accurate 
outcome matrices.  

Experiment Type 
USARSim simulation involving a single partner type and multiple 
environment types. 

Hypothesis  
As the number of interactions increases, the accuracy of the robot’s partner 
model will increase irrespective of the type of environment.   

Procedure 
Both procedures are listed within this section: 

1) Follow partner model creation procedure from Table 5.12. 
2) Follow the experimental procedure from Table 5.13. 

Independent variable 
Number of interactions with the partner, the type of environment (assistive, 
museum, household, search and rescue, prison). 

Dependent variable Percent similarity to a target partner model 

Method of Analysis Target model comparison 

Conclusion 
Hypothesis is supported. Accuracy found to increase with additional 
interactions irrespective of type of environment. 
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 To test this hypothesis we used USARSim to conduct two simulation experiments. 

The first experiment examined interaction with a single type of partner (an emergency 

medical technician or EMT) in each of the five different environments (see section 3.4.1 

for environment types). The second simulation experiment explored interaction in a 

single environment (search and rescue) with four different types of partners: police 

officer, firefighter, EMT, and citizen. Our motivation in conducting these two simulation 

experiments was to show that the results are not limited to a particular type of 

environment or type of partner.  

Table 5.10 List of actions available to the robot for each different type of environment. 
Robot actions for each different type of Environment 

Environment Actions 
Search and rescue SearchFor-victim, Observe-victim, Light-victim, GuideTo-

victim, SearchFor-victim, Observe-fire, GuideTo-fire, 
SearchFor-fire 

Assistive SearchFor-patient, Observe-patient, GuideTo-patient 

Household SearchFor-medicine, GuideTo-medicine, SearchFor-homeowner, 
GuideTo-homeowner, SearchFor-intruder, Observe-intruder, 

Light-intruder, GuideTo-intruder, 
Prison SearchFor-prisoner, Observe-prisoner, Light-prisoner, 

GuideTo-prisoner, SearchFor-visitor, Observe-visitor, Light-
visitor, GuideTo-visitor 

Museum SearchFor-fire, Observe-fire, GuideTo-fire, SearchFor-
intruder, Observe-intruder, Light-intruder, GuideTo-intruder 

Table 5.11 A list of actions for each type of partner. 
Partner Type Actions 
Police Officer limit-access, direct-traffic, search-for-victim 

Firefighter remove-toxic-material, fight-fire, rescue-victim, move-
debris 

EMT startIV, intubate, peformCPR 
Citizen run, cry, scream 
Random Any of the above non-robot actions.  

 The first simulation varies the type of environment in which interaction occurred. The 

robot’s action models were again environment specific. Thus, each different environment 

resulted in a different action model and utility function for the robot. In the search and 

rescue environment, for example, the robot used actions such as SearchFor-victim to 

help locate trapped victims. In the museum environment, on the other hand, the robot 
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used actions such as SearchFor-intruder in its role as a security guard patrolling the 

museum. Table 5.10 presents the actions available to the robot in each environment. An 

arbitrary utility function was also created for each environment.  

 The robot’s interactive partner in the first simulation experiment was an EMT. It was 

therefore necessary to create a partner model for an EMT. Table 5.11 presents the action 

model for the EMT type. An arbitrary utility function was also created for EMT partner 

type. The following procedure was followed for creating a partner model. 

Table 5.12 Procedure for creating partner models. 

Partner Model Creation Procedure 

Procedure for creating an individual partner model given the partner type: 

1) Using a Gaussian distribution, randomly select values for the partner’s features 
with the exception of the Tool-1 and Tool-2 feature which are type specific.  

2) Use Table 5.11 to set the action model for the partner type 

3) Create arbitrary utility values for the individual.  

 The simulation experiment involved 20 interactions with the partner in each of the 

five different environments. An interaction consisted of the performance of an action 

within the environment by both the robot and the robot’s partner and the observation by 

the robot of its partner’s action and outcome. The following general procedure was used 

for the experiment: 

Table 5.13 Experimental procedure used for each of the experiments in this section.   

Experimental Procedure 

1) The robot uses OpenCV to detect objects in the environments and creates 
situation features based on these objects. 

2) The robot uses synthesized speech and speech recognition to query the partner 
for their features. 

3) The robot now has the information necessary to run the interact-and-update 
algorithm. As detailed in Box 5.2 and Figure 5.7, the robot uses the situation 
and partner features to retrieve its self and partner models, constructs a matrix, 
performs an action from Table 5.10, observes its outcome and its partner’s 
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action and outcome, and updates its self and partner models. The value for the 
parameter k is set to 0.10. 

4) The robot’s observation of the partner’s action and outcome was accomplished 
by asking the partner to state the action they performed and outcome that they 
receive. 

5) The robot’s model of its partner is recorded after each interaction. Equation (1) 
from section 4.2 is used to calculate the accuracy with respect to the individual 
components of the partner model. Equation (2) is used to calculate the overall 
accuracy of the partner model. 

 Figure 5.8 depicts the results for the first simulation experiment. The graph shows 

that with continued interaction the accuracy of the action model, utility function, and 

partner model increase, eventually matching the target model. After the eleventh 

interaction, the accuracy of all models increases dramatically. This is because the 

algorithm purges the action model and utility function of seldom used actions and utilities 

reducing Type I error (mentioned in section 4.2).  

Model accuracy in different environments for a 
single partner type
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Figure 5.8 The graph depicts the results from the first simulation experiment involving different 
environments. The results show that model accuracy increases with continued interaction, eventually 
matching the target model.  
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 Recall that if a situation is independent then the robot and the human receive their 

respective outcome regardless of the action selected by the other. The action 

independence assumption holds when the situation is independent—as in the experiment 

presented above. But what happens when this assumption does not hold? To test this, we 

reran the above experiment using a dependent situation. In a dependent situation, the 

outcome received by the robot and the human depends entirely on the action selected by 

the other. Hence, the use of a dependent situation consistently violates the action 

independence assumption and should result in poorer performance by the algorithm. We 

indeed found this to be the case. Figure 5.8 also shows the results when a dependent 

situation is used. Here we see that accuracy of the utility values only reaches 64% after 

20 interactions. This is because the dependent situation violates the action independence 

assumption discussed in section 5.3. Although less accurate, the partner model in this 

case still contained all of the information experienced during interaction with the partner. 

Moreover, because the action independence assumption was violated for every action pair 

in the matrix, this represents a worst case result. 

Creating Accurate Partner Models: Multiple Partner Types, Single Environment 

The preceding experiment was limited to a single type of partner. It is important to 

generalize the results to not just multiple environments, but also to multiple types of 

partners. In order for the interact-and-update algorithm to be of value, it must work 

regardless of the information contained within either the self-model (as examined in the 

previous experiment) or the partner model. Table 5.11 summarizes the experiment. 

 We again hypothesized that continued interaction with a partner would result in 

improved partner model accuracy. In this case, however, rather than placing the robot in 
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different environments, the robot interacted with different types of partners in a single 

environment. The search and rescue environment was used for this experiment.  

Table 5.14 Summary of the creating accurate partner models experiment conducted in simulation with 
multiple partners and in a single environment. 

Experiment Summary 
Creating Accurate Partner Models:  

Simulation, Multiple Partner Types, Single Environment  

Purpose 
Determine the ability of the interact-and-update algorithm to create accurate 
outcome matrices.  

Experiment Type 
USARSim simulation involving a multiple partner types and a single type of 
environment. 

Hypothesis  
As the number of interactions increases, the accuracy of the robot’s partner 
model will increase irrespective of the type of partner.   

Procedure 
Both procedures are listed within this section: 

1) Follow partner model creation procedure from Table 5.12.  
2) Follow the experimental procedure from Table 5.13.      

Independent variable 
Number of interactions with the partner, the type of partner (EMT, firefighter, 
citizen, police officer, random). 

Dependent variable Percent similarity to a target partner model 

Method of Analysis Target model comparison 

Conclusion 
Hypothesis is supported. Accuracy found to increase with additional 
interactions irrespective of type of partner. 

 For this experiment, the robot again interacted with an individual twenty times. The 

partner’s features depended, in part, on the partner’s type. For example, a police officer 

could be male or female, tall or short, but, unlike the other partner types, always had a 

gun and a badge. Hence, two police officers would both have had guns and badges, but 

one could be a tall male and the other a short female. Table 3.2 provides a list of all 

partner features. The features named Tool-1 and Tool-2 were again type specific.  

 Action models were also type specific. Thus, a police officer and a firefighter were 

both capable of a different set of actions. A police officer, for example, could limit-access 

to an area, direct traffic, or search for victims. Alternatively, a firefighter could fight a 

fire, rescue a victim, and move debris.  
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 The utility functions for each individual were unique and arbitrary. Hence, whereas 

one police officer might prefer to direct traffic over all other actions another could prefer 

to search for victims.   

 The target model consisted of predefined sets of actions and outcome values for a 

specific partner type. For example, a citizen partner was produced by 1) randomly 

selecting the values for the partner features (except tools which are set to baseball-cap 

and backpack for this type) 2) setting the action model to that from Table 5.11 for citizen 

and 3) creating arbitrary utility values for the utility function. This procedure was 

repeated for each individual partner. A procedure for creating partner models has already 

been detailed above.    

 Again simulation experiments involved 20 interactions with a particular individual. 

The experimental procedure listed above was followed. The robot’s model of its partner 

was again recorded after each interaction. 
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Model accuracy for different partner types in single 
environment
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Figure 5.9 The graph depicts the results from the second simulation experiment involving different 
partner types. The results again show that model accuracy increases with continued interaction, eventually 
matching the target model. 

 Figure 5.9 depicts the results for the second simulation. Again the graph shows that 

the accuracy of all models increases with continued interaction, eventually matching the 

target model. Violating the action independence assumption again results in decreased 

utility accuracy (63 percent). A random partner type is also included for comparison. The 

random partner selected any action available to any partner type at random. The graph 

only depicts action model accuracy for the random partner type. An accuracy of 68 

percent is achieved for the random partner type. 

Creating Accurate Partner Models: Laboratory Experiment 

A follow-up laboratory experiment was conducting on a Pioneer DX in a mock search 

and rescue environment. In this experiment the robot was tasked with assisting a 

firefighter to either rescue victims or to observe the fire. As with the other experiments, 
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we hypothesized that continued interaction would result in improved model of the 

partner.  

Table 5.15 Summary of the creating accurate partner models experiment conducted in simulation with 
multiple partners and in a single environment. 

Experiment Summary 
Creating Accurate Partner Models:  

Laboratory Experiment  

Purpose 
Determine the ability of the interact-and-update algorithm to create accurate 
outcome matrices.  

Experiment Type 
Laboratory experiment conducted in mock search and rescue environment 
with a Pioneer DX. 

Hypothesis  
As the number of interactions increases, the amount of outcome obtained by 
the robot increases.   

Procedure Follow the experimental procedure from Table 5.13. 

Independent variable Number of interactions with the partner. 

Dependent variable Outcome obtained. 

Conclusion 
Hypothesis is supported. The amount of outcome obtained by the robot 
increases. 

 In this experiment, the robot’s action model consisted of two actions: 1) moving to 

and observing a victim and 2) moving to and observing a hazard. The robot received 

more outcome if the victims survived. The victims survived only if the robot and the 

firefighter work together observing and containing the hazard or rescuing the victims 

(Figure 5.10 image 4 shows the victims and hazards). Hence, for the robot, task 

performance depended on the accuracy of its model of the partner. 

 The robot’s partner also choose among two potential actions: 1) containing the hazard 

or 2) rescuing the victims. The firefighter arbitrarily preferred to contain hazards. Hence, 

the human’s utility function showed a preference for containing the hazard.   

 Both the robot and the human select the actions concurrently. The same experimental 

procedure used in the two preceding experiments (presented in Table 5.13) was again 

used for this experiment.    
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 The experiment consisted of five interactions. Initially the robot has no knowledge of 

the action model or utility functions of its partner. The robot therefore sets its partner 

model to the robot’s self model. In other words the robot assumes that its unknown 

partner has the same actions and preferences that it does. During the first interaction the 

robot moves to observe the victims falsely believing that the firefighter will also move to 

rescue the victims. After the interaction, the robot receives feedback indicating that the 

firefighter moved to contain the hazards. It updates its partner model accordingly and 

during the next interaction it correctly moves to observe the hazard. Figure 5.10 images 

1-3 show the robot moving to observe the victim in the first interaction and the hazard in 

the second interaction. Figure 5.10 image 5 depicts the video sent by the robot to the 

human. 

 
Figure 5.10 Photos from the robot experiment. The robot initially moves to observe the victim. After 
learning the model of its partner the robot moves to observe the hazard. Photos 1-4 depict the robot as it 
moves through the maze and selects actions. Photo 5 depicts video that the robot sends to its human 
partner.  

 Because the robot does not initially coordinate its behavior with the firefighter, it 

obtains an outcome of zero. Afterward and for the remaining interactions, the robot 

obtains an outcome of two (because two victims are saved). A net increase of two victims 

per interaction eight total victims’ results from the robot’s modeling of the partner.   
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 This experiment is merely meant to demonstrate the potential feasibility of this 

approach on a robotic platform. As a pilot study, the results show that algorithm operates 

on a robotic platform in a laboratory environment, and as such, should allow for more 

extensive testing in more realistic environments.   

5.3.2 Interact and Update algorithm conclusions  

This section has introduced an algorithm that, when combined with the General Matrix 

Creation algorithm, produces outcome matrices which represent a robot’s interaction with 

its human partner. The algorithm, however, assumes perceptual competencies which are 

difficult to achieve given the current state of the art. It assumes that the robot can 

perceive 1) the partner’s action, 2) the partner’s outcome value, and 3) the outcome 

obtained by the robot itself. These assumptions may limit the current applicability of the 

algorithm. Nonetheless, as demonstrated by experiments, the perceptual limitations of 

this algorithm can be circumvented. Moreover, activity recognition and affect detection 

are current areas of active research (Philipose et al., 2004; Picard, 2000). Finally, it is 

important that the HRI community recognize the importance of activity recognition and 

state detection. This research provides a theoretical motivation for these research topics. 

It may well be that the challenge of recognizing how a robot’s behavior has impacted the 

humans interacting with the robot is a critical question facing the HRI community.  

 We have also assumed that the robot knows what actions are available to it. We 

believe that this is a reasonable assumption. We have not assumed that the robot has 

accurate knowledge of the outcomes values resulting from the selection of an action pair. 

We have simply assigned arbitrary initial values for the outcomes and then the robot 

learns the true values through interactive experience with the partner.   
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 Although our results show that interactive experience creates increasingly accurate 

partner models, the actions and utilities of the robot’s partner were static and contained 

no noise. Because the models were static they could be modeled. Alternatively, as 

demonstrated in the random partner type, the partner could have continually selected 

random actions or received random utilities. Clearly in this case less can be learned about 

the partner. In a sense, the robot cannot know what to expect next from its partner. In 

normal interpersonal interaction there are times when humans randomize their interactive 

actions, such as in some competitive games. This algorithm will have limited success in 

these situations. Noise in the form of inaccurate perception of the human’s outcome 

values and actions is another potential challenge. Fortunately, game theory provides 

numerous tools for managing outcome uncertainty (Osborne & Rubinstein, 1994). 

Moreover, the results presented in section 5.2 have demonstrated that outcome matrices 

degrade gracefully with increased error (Wagner, 2008). Future work may employ 

machine learning and/or game-theoretic techniques to reduce overfitting.      

 Near-term practical applications of this work would likely focus on environments 

where the outcomes of the robot’s partner are readily available. In assistive therapy 

environments, for example, the robot could ask the patient if an exercise was causing 

pain. An entertainment robot, on the other hand, might gauge user outcome in terms of 

amount of time spent interacting with the robot. Applications in areas such as autism are 

more difficult because the nature of the disease may limit the human’s outcome 

expression capabilities.   

 Neuroscientists have shown that humans actively model their interactive partners 

(Rilling, Sanfey, Aronson, Nystrom, & Cohen, 2004). Certainly the interpersonal mental 
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models maintained by humans are more complex and rich than the models used here. Our 

purpose is not to claim that the partner models discussed here are the same as those 

formulated by humans, but rather to explore what minimal modeling of its interactive 

partner a robot must perform in order to interact successfully with the partner and to 

present a method for achieving this modeling. The section that follows introduces a 

method by which the robot can learn and generalize from collections of partner models, 

reducing the number of interactions needed to model its partner.       

5.4 The Stereotype Matching Algorithm 

Psychologists note that humans regularly use categories to simplify and speed the process 

of person perception (Macrae & Bodenhausen, 2000). Macrae and Bodenhausen suggest 

that categorical thinking influences a human’s evaluations, impressions, and recollections 

of the target. The influence of categorical thinking on interpersonal expectations is 

commonly referred to as a stereotype. For better or for worse, stereotypes have a 

profound impact on interpersonal interaction (Bargh, Chen, & Burrows, 1996; Biernat & 

Kobrynowicz, 1997). Information processing models of human cognition suggest that the 

formation and use of stereotypes may be critical for quick assessment of new interactive 

partners (Bodenhausen, Macrae, & Garst, 1998). From the perspective of a roboticist the 

question then becomes, can the use of stereotypes similarly speedup the process of 

partner modeling for a robot?  

 This question is potentially critical for robots operating in complex, dynamic social 

environments, such as search and rescue. In environments such as these the robot may not 

have time to learn a model of their interactive partner through successive interactions. 
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Rather, the robot will likely need to bootstrap its modeling of the partner with 

information from prior, similar partners. Stereotypes serve this purpose.   

 Before detailing our algorithm for stereotype learning and use, we must first define 

our terms. Sears, Peplau and Taylor define a stereotype as an interpersonal schema 

relating perceptual features to distinctive clusters of traits (Sears, Peplau, & Taylor, 

1991). With respect to our framework, then, a stereotype is a type of generalized partner 

model used to represent a collection or category of individual partner models. Thus, the 

creation of stereotypes requires the creation of these generalized partner models. 

Moreover, to be useful, stereotypes must be matched to the partner’s perceptual features. 

Stereotype building will therefore be a two phase process. First, we cluster partner 

models with the centriods of the clusters becoming the partner model stereotype. Next, 

we learn a mapping from partner features to the stereotypes. Our implementation utilizes 

agglomerative clustering and C4.5 decision trees (Quinlan, 1994). We conjecture that the 

algorithm will work for any type of clustering algorithm and machine learning algorithm, 

but do not offer evidence to support this statement. Box 5.3 details stereotype creation 

and Box 5.4 describes how to use a stereotype.  
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Box 5.3 Our algorithm for stereotype creation. The algorithm takes a new partner model as input. It 
then creates clusters of all of the stored models. The cluster centroids will serve as the robot’s partner 
stereotypes. In the function learning phase, the robot learns a mapping from partner’s features to the 
stereotypes. This mapping can now be used to retrieve a stereotype given the partner’s perceptual features.   

 
Box 5.4 The stereotype matching algorithm uses the partner’s features to retrieve a stereotyped partner 
model. 
 As depicted above, the building stereotype algorithm takes as input a new partner 

model. This input is optional. The stereotype building algorithm can also be run on the 

robot’s existing history of partner models (termed the model space). The interact-and-

update algorithm is used to create the models that occupy the model space. The first step 

Stereotype Matching Algorithm: Building Stereotypes 
 

Input : Partner Model im−  

Output : Classifier ψ  mapping im− .features to a stereotype. 

 
Cluster phase    //the cluster phase clusters models to build stereotypes  

1. Add im−  to partner model space //the partner model space is a set of partner models 
2. for all models in model space 
3.  make a cluster   

4. while centroid_distance ( ) kcc kj <,   

5.  merge_clusters ( )kj cc ,    

Function learning phase   //this phase maps stereotypes to partner features 
6. for all models in model space  

7.  set data[i] � make_pair( im− .features, cluster centroid) 
8. ψ  � build_classifier( data ) 

9. return  ψ    //return a classifier mapping features to stereotypes 

Stereotype Matching Algorithm: Using Stereotypes  
 

Input : Partner features i
n

i ff −− ,,1 K  

Output : Partner model im− . 
 

1. If  classifier == null    //if we have not built the classifier then return 
2. return  null 

3. convert i
n

i ff −− ,,1 K  to instance of classifier data 

4. result � ψ .classify( instance ) //use the features as input to the classifier 

5. im−  � stereotypeList ( result ) //once the stereotype is known, return the 

6. return  im−     // partner model for that stereotype 
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of the algorithm adds the new model to the model space. Next each model in the space is 

assigned to a unique cluster. The third and fourth steps perform agglomerative clustering, 

iterating through each cluster and, if the clusters meet a predetermined distance threshold, 

merging them. Equations (1) and (2) for partner model distance, which were first 

presented in section 4.2 and briefly reviewed in section 5.3, are used to determine if the 

clusters are meet the predetermined distance threshold for merging. The cluster centroids 

that remain after step four are the stereotypes, denoted nss ,,1 K . A list of stereotype 

models is kept by the robot.  

 In the next phase we use clustering to create a function, ψ , mapping the partner’s 

perceptual features to the stereotype. Line 7 from Box 5.3 creates data for the machine 

learning algorithm by pairing each model’s perceptual features to a stereotype. In the 

final steps, this data is used to train a classifier mapping partner features to the 

stereotyped model. Figure 5.11 presents an example. 
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 Stereotype Matching Algorithm Example 

Input:  
Model M1:  Partner features: <axe, oxygen_mask, male>;  
 Action Model: <guide-to-victim, alert-fire >;  

Utility Function: (guide-to-victim,guide-to-victim,-3), (alert-
fire,guide-to-victim,-7),(guide-to-victim,alert-
fire,2),(alert-fire,alert-fire,1) 

 
Model M2:  Partner features: <axe, oxygen_mask, male>;  
 Action Model: <guide-to-victim, alert-fire >;  

Utility Function:  (guide-to-victim,guide-to-victim,0), (alert-
fire,guide-to-victim,-7),(guide-to-victim,alert-
fire,2),(alert-fire,alert-fire,1) 

 
Model M3:  Partner features: <badge, gun, male>;  
 Action Model: <limit-access, direct-traffic>;  

Utility Function:  (limit-access,limit-access,-3), (direct-
traffic,limit-access,-7),(limit-access, direct-
traffic,2),(direct-traffic,direct-traffic,1) 

 
 
Step 4: Use equation (1) and (2) to determine distance from Model M1 to M2: 

  0=ad , 25.0=ud  and the resulting distance is kd =<= 25.0125.0 .  
Step 5: M12 � Merge (M1, M2) 
The resulting merged model is: 

Model M12: Action Model: <guide-to-victim, alert-fire >;  
Utility Function:  (guide-to-victim,guide-to-victim,-1.5), (alert-
fire,guide-to-victim,-7),(guide-to-victim,alert-
fire,2),(alert-fire,alert-fire,1) 

 
Step 4: Use equation (1) and (2) to determine distance from Model M3 to M12: 

 1=ad , 1=ud  and the resulting distance is kd =>= 25.01 . No merge. 
 
 
Step 7: Data �[Pair(<axe, oxygen_mask, male>,M12),(Pair(<badge, gun, male>,M3)]; 
Step 8: Build mapping, result is: If <axe, oxygen_mask, male>  return M12 
   else     return M3 
 

Cluster Phase: 

Function Learning Phase: 

 
Figure 5.11 An example run of the stereotype building algorithm. Three partner models serve as input to 
algorithm. In the cluster phase, the algorithm first merges models M1 and M2 creating model M12. The 
distance between model M3 and M12 is greater than 0.25 so the model is not merged into the stereotype. In 
the function learning phase the stereotype clusters are paired with the partner features. A classifier is 
constructed from the resulting data. The example skips some of the most easily understood steps, such as 
the for loops. 

 The stereotype building algorithm makes two important assumptions. First, it assumes 

the existence of a distance function, ( )i
j

i
i mmd −− , , capable of measuring the difference 

between two partner models. We have already described our method for measuring 

partner model distance (see section 4.2). If, however, additional information (such as the 
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partner’s beliefs, motivations, goals, etc.) is added to the partner model, then creating a 

distance function may become difficult because this information may not naturally have a 

measure for determining distance. Second, the stereotype building algorithm assumes that 

partner models can be merged to create new partner models. In order to merge a partner 

model one must merge the components of the partner model. For this work that meant 

merging the action models and utility functions. Action models were merged by adding 

an individual action only if the action was included in half of the data that composed the 

merged model. For example, if the merged model was created from ten individual partner 

models and an action existed in four of the models then it was not included in the merged 

model. If, however, the action existed five of the models then it was included in the 

merged model. Similarly, merged utility values were derived from the average utility 

value of the composition utility functions. Again this is not the last word in either 

gauging the distance between partner models or in merging models. This work, however, 

does represent, to the best of out knowledge, the first time that a robot has used 

stereotypes to guide its interactive behavior.   

 To use a stereotype the robot simply converts the partner’s features into an instance of 

data for the classifier and then uses the classifier to select the correct model (Box 5.4).  

 One important question is how the algorithm reacts to partners that conflict with its 

stereotypes. For example, a new partner with features resembling a police officer would 

cause the algorithm to retrieve a stereotype created from the merged models of all other 

police officers encountered by the robot. This retrieved model allows the robot to predict 

a particular action model and utility function. If, while interacting with the partner, the 

robot finds that its action model and/or utility function are inaccurate (i.e. if it predicts 
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incorrect actions or utilities) then the interact-and-update algorithm alters the current 

partner model to reflect the differences. Finally the new model is added to the model 

space and when the build stereotype algorithm is run again this model is included in the 

stereotype generation process. The end result is that the robot’s stereotype of police 

officer becomes more general and less specific with regard to the stereotype’s actions and 

utilities.  

5.4.1 Examining the use of stereotypes  

As mentioned in the previous section, psychologists claim that human use of stereotypes 

allows for quicker assessment of new interactive partners (Macrae & Bodenhausen, 

2000). We hypothesized that the use of stereotypes by a robot would require fewer 

interactions to obtain equal partner model accuracy when compared to the interact-and- 

Table 5.16 Summary of the use of stereotypes experiment conducted in simulation with multiple partners 
and in a single environment. 

Experiment Summary 
Examining the use of stereotypes:  

Simulation Experiment  

Purpose 
Investigate the possibility of learning and using clustered partner models, 
stereotypes, to speedup the process of partner modeling. 

Experiment Type USARSim simulation.  

Hypothesis  
The use of stereotypes requires fewer interactions to obtain equal partner 
model accuracy when compared to the interact-and-update algorithm alone.   

Procedure 
Both procedures are listed within this section: 

1) Follow partner model creation procedure from Table 5.12. 
2) Follow the experimental procedure from Table 5.17. 

Independent variable Number of interactions with a partner; Number of partners.  

Dependent variable Percent similarity to a target partner model 

Method of Analysis 
Ablation experiment consisting of comparison to interact-and-update 
algorithm without use of stereotypes. Target model comparison. 

Conclusion 
Hypothesis is supported. Fewer interactions are required to obtain equal 
partner model accuracy when using the stereotype matching algorithm. 

update algorithm alone. The experiment we conducted is an ablation experiment 

comparing the performance of the interact-and-update algorithm with and without the use 
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of stereotypes. The stereotype matching algorithm allows the robot to learn, generalize, 

and store information about the partners with which it has interacted. Hence, we believe 

the algorithm will bootstrap the process of creating an accurate partner model. We 

reasoned that the stereotypes, even if not perfectly accurate, would still provide useful 

information that could later be refined by the interact-and-update algorithm. If our 

hypothesis is correct, then we expect that when the robot encounters a new partner the 

use of stereotypes will aid in its modeling of this partner and hence result in greater 

partner model accuracy in early interactions. Table 5.16 provides a summary of the 

experiment.  

 To test this hypothesis, we again conducted both simulation experiments and real 

robot experiments. The simulation experiment had two conditions: using the stereotype 

matching algorithm (experimental condition) and not using the stereotype matching 

algorithm (control condition). In both conditions the robot interacted twenty times with 

twenty different partners. Hence a total of 400 interactions occurred. The partner features, 

action models and utility functions were identical in both conditions. Moreover, the robot 

encountered the partners in the same predetermined order in both conditions (see Table 

5.18 for order).   

 In the control condition the robot used the interact-and-update algorithm to gradually 

build models of each of the partners. Figure 5.7 presents an example run of the interact-

and-update algorithm.     

 In the experimental condition, the stereotype matching algorithm (Box 5.3 and Box 

5.4) were used to create stereotypes and to match each partner to an existing stereotype, if 

one existed. The stereotype matching algorithm can be run in conjunction with the 
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interact-and-update algorithm or separately. As the interact-and-update algorithm creates 

each new partner model, the model is used as input to the stereotype matching algorithm. 

The robot was not given any a priori information related to the stereotypes, such as how 

many stereotypes to construct.     

 Four different partner types were again created: a police officer type, a firefighter 

type, an EMT type, and a citizen type. Each of the robot’s different interactive partners 

was randomly generated from one of the four different types. For example, as depicted in 

Table 5.18, the robot first interacts with a firefighter for twenty interactions, then an EMT 

for twenty interactions, a police officer, and so on. The target model consisted of 

predefined sets of actions and outcome values for a specific partner type. As in the 

previous experiment, partner feature vectors consisted of values for gender, height, age, 

weight, hair color, eye color and two objects the individual possessed. Table 5.11 lists the 

actions available to each type of partner. For this experiment, however, we generated an 

equal number of each type of partner, randomized the order in which the robot interacted 

with the different partners, and introduced random differences to the models. In order to 

ensure that the firefighter partner model, for example, did not always contain the same 

actions and utilities, randomized differences were introduced to the models. These 

changes assured that the robot did not interact with individuals that always perfectly 

reflected the stereotype. The procedure from Table 5.12 was used to create the partner 

models. 

 The simulation experiment was conducted in the search and rescue environment 

(Figure 3.4). Table 5.11 lists the robot’s action model. The robot was given an arbitrary 

utility function.   
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 The following experimental procedure was followed:  

Table 5.17 Experimental procedure used in the examining the use of stereotypes simulation experiment. 
The experiment compares an experimental condition to a control condition. Steps 2 and 4, therefore, only 
occur in the experimental condition. 

Experimental Procedure 

1) Procedure from Table 5.12 used to construct a target model.  

2) Experimental condition: For each new partner, the using stereotypes 
algorithm is used to bootstrap the partner modeling process (Box 5.4). 

3) The procedure from Table 5.13 for the interact-and-update algorithm is 
followed resulting in partner model im− . The robot interacts with each partner 
twenty times.  

4) Experimental condition: After twenty interactions, the partner model im−  is 
used as input to the stereotype building algorithm (Box 5.3).   

5) The robot’s model of its partner is recorded after every interaction. Accuracy 
was again determined by comparing the percentage of actions and utilities that 
were in both the robot’s partner model and the target model for the partner (see 
section 4.2 for details).  

The independent variable in this experiment was the use or lack of use of the stereotype 

matching algorithm. The dependent variable consisted of partner model accuracy.  

 Figure 5.12 shows the results for the experiment. The x-axis depicts the interaction 

number and partner number (P0-P19) throughout the experiment. The solid red (dark 

gray) lines depict a running average of the control condition. As expected, the accuracy 

of the robot’s partner model is consistently poor when interacting with a new partner and 

results in the regular wave like pattern (red/dark gray). Because the robot does not learn 

across partners, it must rebuild its partner model with each new partner. Hence, with each 

new partner the robot’s model is inaccurate until it gradually learns about the partner 

through interaction.  
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Accuracy of partner model as a function of interactions with 
different partners
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Figure 5.12 Results from the use of stereotypes simulation experiment are depicted above. The bold red 
(darker gray) line indicates is a moving average for the no stereotyping condition. The bold yellow (light 
gray) line is a moving average for the stereotyping condition. Stereotyping requires fewer interacts to 
obtain an accurate partner model once the stereotypes have been constructed. Prior to stereotype 
construction, however, both methods perform the same. Note that the accuracy of the yellow (light gray) 
line does not decrease as much as the red line for later partners (P7-P19).    

 In the experimental condition (yellow/light gray line), however, we see that learning 

and using stereotypes eventually aids the robot’s performance. Initially the robot has no 

stereotype information. Hence its performance is equal to the no stereotype condition 

during P0, P1, P2, and P4. It must learn this information from its interactions with the 

different partners. The first several partners (specifically P0, P1, P2, P4, and P6) result in 

continued refinement of the robot’s stereotype models. This occurs as the robot 

constructs clusters that reflect the different partner types and a decision tree mapping the 

partner’s perceptual features to these clusters (Table 5.18). After the seventh partner the 

robot has interacted with enough different partners to have stereotype models for each 

partner type. In this case, the stereotype model has 80 percent of the same values (actions 

and utilities) as the partner model. For the remaining partners (P8-P19) the stereotype 

models only need slight changes (missing action or inaccurate utility value) in order to 

reflect the partner’s actual model. This fact is shown by the relatively high level of 
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performance depicted by the yellow (light gray) line in the later interactions. Using 80 

percent accuracy as a threshold, the control condition requires an average of 10.2 

interactions to reach this threshold. The experimental condition using stereotypes, on the 

other hand, required only 4.45 interactions on average. This result is significant 

( )01.0<p . 

Table 5.18 This table depicts the change in number of clusters and decision tree structure as the robot 
progressively interacted with different partners during the experiment. We see that by the seventh partner 
the robot as created clusters for each type. Moreover, after interacting with this seventh partner the robot’s 
decision tree accurately assigns a stereotype model based on the partner’s perceptual features (Figure 5.12).   

Cluster and Classifier Progression with each Partner   

Partner 
Number 

Partner type Number of 
Clusters 

Decision Tree After Interaction 

P0 Firefighter 0 fire  
P1 Police Officer 1 fire 
P2 EMT 2 fire 
P3 Firefighter 3 if (hair=blonde)����police; else fire 
P4 Police Officer 3 if (tool1=axe) ����fire; else if (too1=gun)����police 

else if (tool1= stethoscope)����doctor; else fire 
P5 Firefighter 3 if (tool1=axe) �fire; else if (too1=gun)�police 

else if (tool1= stethoscope)�doctor; else fire 
P6 Citizen 4 if (tool1=axe) �fire; else if (too1=gun)�police 

else if (tool1= stethoscope)�doctor; else citizen 
P7 Firefighter 4 “  
P8 Police Officer 4 “  
P9 EMT 4 “  
P10 Citizen 4 “  
P11 Citizen 4 “  
P12 EMT 4 “  
P13 EMT 4 “  
P14 Police Officer 4 “  
P15 Citizen 4 “  
P16 Firefighter 4 “  
P17 Police Officer 4 “  
P18 Citizen 4 “  
P19 EMT 4 “ 

 Table 5.18 details the ordering of the partner types that the robot interacted with. As 

the robot interacts with each different type it adds clusters. Moreover, as shown in Figure 

5.13, the robot’s mapping from perceptual features to stereotype model becomes more 
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accurate with additional training data (partners). Figure 5.13 graphs the accuracy of the 

classifier with respect to additional partners for the preceding experiment. The graph 

shows that additional training data in the form of interactive partners increases classifier 

accuracy. The classification accuracy goes to 100 percent because the partner’s features 

were spoken and no artificial noise was added. In fielded systems the accuracy of the 

classifier will certainly decrease. The fact that the classifier accuracy goes to 100 percent 

indicates that the classifier correctly selects a stereotype model when given perceptual 

features. It does not mean that the model accurately reflects the partner.  

Classifier Accuracy as a function of Partner Number
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Figure 5.13 The graph depicts the accuracy of the classifier mapping a partner’s perceptual features to a 
stereotype model. As the robot interacts with additional partners the classifier has additional training data 
and its accuracy increases. The fact that the classifier accuracy goes to one indicates that the classifier 
correctly selects a stereotype model when given perceptual features. This does not mean that the model 
accurately reflects the partner.   

 As a side note, the classifier that emerges from interaction with several different 

partners (see Table 5.18) only uses a single perceptual feature (from eight possible 

features) to select a stereotype for the partner. The classifier could potentially be used as 

a feature selection function, eliminating partner features which do not have any bearing 

on the partner model. For example, when interacting with five different firefighters the 
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classifier encounters partner features for both male and female firefighters. Hence, the 

classifier learns that the gender feature does not reliably map to the firefighter stereotype. 

Creating Accurate Partner Models: Laboratory Experiment 

A follow-up laboratory experiment was conducting on a Pioneer DX in a mock search 

and rescue environment. In this experiment the robot was again tasked with assisting a 

firefighter to either rescue victims or to observe the fire. Here we hypothesized that use of 

the stereotype matching algorithm would result in additional outcome (task performance) 

on the part of the robot.   

Table 5.19 Experimental summary for the laboratory experiment relating to the use of stereotypes. 

Experiment Summary 
Examining the use of stereotypes:  

Laboratory Experiment  

Purpose 
Investigate the possibility of using clustered partner models, or stereotypes, to 
select the improve task performance. 

Experiment Type 
Laboratory experiment conducted in mock search and rescue environment 
with a Pioneer DX. 

Hypothesis  
The use of stereotype matching algorithm results greater outcome obtainment 
(task performance) than not using the stereotype matching algorithm.  

Procedure Follow the experimental procedure from Table 5.13. 

Independent variable Control or experimental condition.  

Dependent variable Number of victims saved. 

Method of Analysis Statistical significance (t-test) of number of victims saved. 

Conclusion Results were not statistically significant.   

 In this experiment, in contrast to the simulation experiments, the robot did not learn 

the stereotypes because learning of the stereotypes required approximately 20 interactions 

whereas the robot’s battery life was well below 20 interactions. Rather, the robot was 

provided with two stereotypes (a firefighter and an EMT) and used perceptual 

information about the partner to select the correct model and perform the correct action. 

These stereotypes accurately reflected the partner model for each type, including the 

correct actions available and utility functions.  
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 If the robot’s partner was of type firefighter then the partner’s action model consisted 

of either containing the hazard or rescuing the victims. If, on the other hand, they were of 

type EMT their action model consisted of either starting an IV or performing CPR. The 

firefighter arbitrarily preferred to contain hazards and the EMT arbitrarily preferred to 

perform CPR.    

 The robot’s action model consisted of either moving to and observing a victim or 

moving to and observing a hazard. The robot received more outcome if the victims 

survived. The victims survived only if the robot and the firefighter work together 

observing and containing the hazard or rescuing the victims (Figure 5.14 image 4 shows 

the victims and hazards). Hence, for the robot, task performance depended on the 

accuracy of its model of the partner. 

 
Figure 5.14 The photos above depict the robot using stereotypes to select the correct partner model and 
then performed an action in a notional search and rescue environment. The first three photos depict the 
robot performing the action. The next two depict the targets and the robot’s view of the targets. When 
interacting with a person with the perceptual features of an EMT the robot retrieves the EMT stereotype 
model from memory.  It uses this model to determine which of its actions the EMT would prefer and then 
does that action. The same is true for the firefighter.     

 Both the robot and the human select the actions concurrently. The same experimental 

procedure used in the interact-and-update experiments (presented in Table 5.13) was 
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again used for this experiment with the modification that the robot used the algorithm in 

Box 5.4 to retrieve a stereotype model for the partner.     

 The experiment consisted of six interactions both with and without the use of 

stereotypes. In the experimental condition (use of stereotypes) the robot uses the partner 

features to retrieve the correct stereotype model. If the model is that of the firefighter, 

then the robot uses the information within the partner model to construct an outcome 

matrix indicating that the partner’s preferred action is to contain the hazard. The robot 

therefore selects the observe-hazard action to obtain maximal outcome (Figure 5.14 

firefighter sequence). If, on the other hand, the stereotype of the EMT is retrieved, then 

the robot constructs and outcome matrix indicating the EMT’s preference to perform 

CPR and recognizes that it can best help by selecting the observe-victim action 

(Figure 5.14 EMT sequence). A Gaussian distribution was used to randomly determine 

whether the robot would interact with an EMT or a firefighter. In the control condition, 

the robot uses a Gaussian distribution to randomly select its action.  

 All experimental trials resulted in retrieval of the correct stereotype. A total of twelve 

victims were rescued over all six experimental trials. A total of eight victims were saved 

over all six control conditions. This result was not significant ( )145.0≈p .   

 Overall, this experiment demonstrates the use of the stereotype matching algorithm 

(Box 5.4) on real robots in a laboratory environment. The lack of significance is a 

reflection of the small number of trials conducted.  

5.4.2 Stereotype matching conclusions  

This section has demonstrated that the use of stereotyped partner models can bootstrap 

the process of learning a model of the robot’s interactive partner. The algorithm we have 
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presented clusters individual partner model information to create generic or stereotyped 

partner models that the robot can then use during its initial interactions with a new 

partner. We presented experiments showing that use of these stereotyped models aids 

during early interaction with a new partner. Overall, the use of stereotypes may be a 

natural and important method for the robot to use when it encounters unfamiliar 

individuals and social situations. Clearly further experimentation is necessary in 

naturalistic environments with differing partners in order to verify the value of these 

methods.  

 The stereotype algorithm has assumed that actual, learnable patterns of partner 

characteristics exist in the social environment. Psychological literature indicates that this 

is the case and that humans regularly use this information to categorize and make 

predictions about their own interactions (Bargh, Chen, & Burrows, 1996; Biernat & 

Kobrynowicz, 1997). Again, questions of sensor noise in feature and action detection can 

be raised. Neither of our experiments purposefully injected artificial noise into the system 

to examine fault tolerance. Moreover, our use of speech recognition for partner feature 

detection and action and outcome perception resulted in no perceptual noise. Hence the 

scalability of these methods when faced with significant error and noise is still an open 

question.  

 There may be ethical concerns as to whether or not a robot should be empowered 

with the ability to create and use stereotypes. Our position on this topic is that 

stereotypes, whether warranted or not, is just another form of human social learning and 

that in order to best understand this phenomena we must use all of the tools available to 

explore it. Hence, imbuing robots with the ability to stereotype their human partner, may 
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allow us to better understand the psychology of stereotypes by offering plausible 

computational methods by which the phenomena could possibly be realized in the brain.   

5.5 Creating Outcome Matrices: Conclusions 

This chapter has begun to tackle the difficult question of how to create outcome matrices 

from a robot’s perceptual information. We began by presenting the General Matrix 

Creation algorithm. This algorithm simply populated the outcome matrix with 

information, but, importantly, demonstrated that the question of how to create an 

outcome matrix can be restated as a question of how to create accurate partner models. 

The interact-and-update algorithm, therefore, was created as a method for both generating 

outcome matrices and refining the robot’s model of its partner simultaneously. The 

interact-and-update algorithm uses a robot’s interactive experience to continuously refine 

its model of its interactive partner. It, however, did not include methods for learning and 

generalizing across partners. Hence, we presented the stereotype matching algorithm for 

this purpose. The stereotype matching algorithm clusters the partner models the robot has 

learned and uses the cluster centroids as a generalized partner model representing a class 

of interactive individuals.  

 Admittedly, we have only begun to address the use these algorithms in real world 

environments with normal people as the users. Detailed examinations of the type and 

nature of the noise and uncertainty faced by robots in these situations will be necessary 

before any definitive judgment can be made as to their efficacy. For the purpose of this 

dissertation, we have merely attempted to show that it is possible to create our 

representation of interaction. With respect to the research questions posed in the first 

chapter, we have shown that a robot can represent interaction and that this representation 



 137 

can be created from perceptual information obtained by the robot. In the sections that 

remain, we will show that this representation can have an important impact on a robot’s 

ability to select social actions, represent its relationships, and reason about trust.  
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CHAPTER 6 

SITUATION ANALYSIS 

 

Sociologists and social psychologists have long recognized the importance of the 

situation as a determining factor of interpersonal interaction (Kelley et al., 2003; Kelley 

& Thibaut, 1978; Rusbult &  Van Lange, 2003). Solomon Asch, a renowned 

psychologist, stated that, “most social acts have to be understood in their setting and lose 

meaning if isolated.” (Kelley & Thibaut, 1978). If a goal of artificial intelligence is to 

understand, imitate, and interact with humans then researchers must develop theoretical 

frameworks that will allow an artificial system to, (1) understand the situation-specific 

reasons for a human’s social behavior, and (2) consider the situation’s influence on the 

robot’s social behavior. Understanding human interactive behavior is critical as it implies 

that the robot will then be capable of predicting and planning for future interactions and 

their consequences. Recognition of the situational impacts on a robot’s own interactive 

behavior is similarly necessary if robots will be expected to operate in the presence of 

humans in social settings such as the home or the workplace.  

 This chapter contributes an algorithm for extracting situation-specific information 

and uses this information to guide interactive behavior. For our purposes, a social 

situation describes the environmental factors, outside of the individuals themselves, 

which influence interactive behavior. The objectives of this chapter are to 1) present a 

novel algorithm for situation analysis developed by the author from interdependence 

theory that provides a robot with information about its social environment; and 2) 

demonstrate that the algorithm provides information that can be profitably used to guide a 
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robot’s interactive behavior in certain circumstances. Simulation experiments accomplish 

these objectives. These simulations first demonstrate that the algorithm is applicable to 

robotics problems involving collaborations among humans and robots and then examine 

the algorithm’s effectiveness across a wide expanse of social situations.  

 Consider, as a running example, an industrial accident involving a toxic spill and 

injured victims. A teleoperated robot is assigned to rescue victims and an autonomous 

robot operates simultaneously to cleanup the spill. During the cleanup, both the human 

and the robot will select behaviors directed towards the effort. Perhaps, due to the 

properties of the spilled material, the victims need to be cleaned before being rescued. In 

this case, the success of the cleanup depends entirely on both robots working together. 

Alternative chemical spills will allow the robot and the human to operate in an 

independent manner, with victims being rescued separately from the cleanup. In either 

case, the situation should influence the autonomous robot’s decision to coordinate its 

cleanup behavior with the human or to operate independently. Moreover, the 

effectiveness of the cleanup will depend on the robot’s ability to characterize the situation 

and to use this characterization to select the appropriate behaviors.  

 The remainder of this chapter begins by first summarizing related research. Next, our 

algorithm is described, followed by a set of experiments used to examine the algorithm. 

This chapter concludes with a discussion of these results and directions for future 

research.  

6.1 Situation-based Human-Robot Social Interaction 

Interdependence theory underlies our framework for situation-based human-robot 

interaction. The following section briefly reviews the aspects of interdependence theory 
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that are used in this chapter. Next, an algorithm, which uses aspects of interdependence 

theory to produce information about social situations, is detailed. Afterwards, we develop 

a complete computational process by which a robot can use perceptual information to 

guide interactive behavior. 

6.1.1 Interdependence theory 

Recall that interdependence theory is based on the claim that people adjust their 

interactive behavior in response to their perception of a social situation’s pattern of 

rewards and costs and represents social situations computationally as an outcome matrix 

(Figure 6.1). Figure 6.1 shows the outcome matrix for our toxic spill cleanup example. 

The preceding chapter presented methods for creating outcome matrices from perceptual 

information such as strings of speech. In this chapter we assume that outcome matrices 

representing a social situation can be created, and begin to look at the advantages of using 

outcome matrices as a representation of social interaction.    

 Kelley and Thibaut conducted a vast analysis of both theoretical and experimental 

social situations and were able to generate a space that mapped particular social situations 

to the dimensional characteristics of the situation (Kelley & Thibaut, 1978). Recall that 

the interdependence space (Figure 6.2 depicts three of the four dimensions) is a four 

dimensional space consisting of: (1) an interdependence dimension, (2) a correspondence 

dimension, (3) a control dimension, and (4) a symmetry dimension. The interdependence 

dimension measures the extent to which each individual’s outcomes are influenced by the 

other individual’s actions in a situation. In a low interdependence situation, for example, 

each individual’s outcomes are relatively independent of the other individual’s choice of 

interactive behavior (left side of Figure 6.1 for example). A high interdependence 
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situation, on the other hand, is a situation in which each individual’s outcomes largely 

depend on the action of the other individual (right side of Figure 6.1 for example). 

Correspondence describes the extent to which the outcomes of one individual in a 

situation are consistent with the outcomes of the other individual. If outcomes correspond 

then individuals tend to select interactive behaviors resulting in mutually rewarding 

outcomes, such as teammates in a game. If outcomes conflict then individuals tend to 

select interactive behaviors resulting in mutually costly outcomes, such as opponents in a 

game.  
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Figure 6.1 This figure depicts two example outcome matrices for the cleanup of a toxic spill and the 
rescue of victims by a human and a robot. During any one interaction, both individuals choose to either 
rescue a victim or clean up a hazard. The outcomes resulting from each pair of choices are depicted in the 
cells of the matrix. The human’s outcomes are listed below the robot’s outcomes. In the leftmost matrix, 
the outcomes for the human and the robot are independent of the other’s action selection. In the rightmost 
matrix, the outcomes of the human and the robot largely depend on the other’s action selection.  
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Figure 6.2. Three dimensions of interdependence space are depicted above (Kelley et al., 2003). 
Interdependence theory represents social situations computationally as an outcome matrix within this 
interdependence space.  The dimensions depicted above are interdependence, correspondence, and basis of 
control. Planes within this space denote the location of some well-known social situations, including the 
prisoner’s dilemma game, the trust game, and the hero game. A matrix’s location allows one to predict 
possible results of interaction within the situation. 

 A matrix’s location in interdependence space provides important information relating 

to the situation. For example, in a situation of low interdependence the robot should 

generally select the behavior that maximizes its own outcome, because its choice of 

action will not have a large impact on the outcome of its partner. We term the process of 

deconstructing a matrix into its interdependence space dimensions situation analysis. As 

will be demonstrated, the information provided by situation analysis can be used to 

profitably guide interactive behavior selection by a robot.  

6.1.2 The situation analysis algorithm  

Situation analysis is a general technique we developed from interdependence theory to 

provide a robot with information about its social situation. As an algorithm, it can be used 
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in an on-line or an off-line manner to provide information about any social situation 

represented by an outcome matrix. Thus, in theory, a robot could use situation analysis as 

a tool to investigate potential social situations it might encounter or situations that have 

occurred in the past among others. The input to the algorithm is an outcome matrix 

representing the social situation. The algorithm outputs a tuple, δγβα ,,, , indicating 

the situation’s location in the four dimensional interdependence space. Situation analysis 

involves 1) deconstructing the outcome matrix into values representing the variances in 

outcome and 2) the generation of the dimensional values for the interdependence space. 

Box 6.1 describes situation analysis algorithmically.  

 
Box 6.1 An algorithm for the analysis of a social situation.  

The Situation Analysis Algorithm 

 
Input :  Outcome Matrix O 

Output : Interdependence space tuple  δχβα ,,,  

 
1. Use procedure from Figure 6.3 to deconstruct the 
outcome matrix. 

2. Use the equations from Table 6.1 to calculate the 
dimensional values for the interdependence space tuple. 

3. Return the tuple. 
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Figure 6.3. The procedure (Kelley & Thibaut, 1978) for deconstructing a social situation is presented 
above. This procedure is an analysis of variance of the outcome matrix that deconstructs the raw outcome 
matrix into three new matrices (the BAC, MPC, and MJC) representing different forms of control over the 
situation’s outcomes. The outcome values for each of these three matrices are produced from the raw 
outcome matrix by iteratively 1) adding the noted cells, 2) dividing by the number of actions, and 3) 
subtracting the individual’s mean outcome value. The variances of each matrix type are generated by 
calculating the outcome range for each choice of behavior and each individual. Because this example is of 
an independent situation, the MPC and MJC matrices do not vary. 

 The first step is matrix deconstruction. This procedure iteratively separates the values 

in the input or raw outcome matrix into three separate matrices (Figure 6.3 depicts an 

example) (Kelley & Thibaut, 1978). The Bilateral Actor Control (BAC) matrix represents 

the variance in outcome resulting from the robot’s own interactive decisions. This matrix 

thus quantifies the robot’s control over its own outcomes. The Mutual Partner Control 

(MPC) matrix, on the other hand, represents the variance in outcome resulting from a 

partner’s interactive decisions and thus quantifies a partner’s control over the robot’s 

outcomes. Finally, the Mutual Joint Control (MJC) matrix represents the variance in 

outcome resulting from both the robot’s and its partner’s joint interactive decisions. In 

other words, the MJC matrix describes how each individual is affected by his, her, or its 

joint actions. As depicted in Figure 6.3, all outcome variance occurs in the BAC matrix 

when deconstructing an independent situation. This procedure results in values for 
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variables BC, PC, JC individually representing the variance of both the robot’s and the 

human’s outcomes in the situation. The subscripts in this figure denote the variance of the 

outcome for the robot (R) and the human (H) respectively.    

Table 6.1 Calculation of the interdependence space dimensions given the variances from Figure 6.3. 
Equations (4) and (5) are from (Kelley & Thibaut, 1978), (6) and (7) were developed by the author. 

Dimension Computation 
Interdependence  

( )HR αα ,  
( )

( )222

22

RJCRPCRBC

RJCRPC
R

++

+
=α  

Calculate separately for each individual. Range is from 0 for independent 
situations to +1 for dependent situations. 

(4) 

Correspondence  

( )β  
( )

( )222222

2

HJCHPCHBCRJCRPCRBC

HJCRJCRPCHBCHPCRBC

+++++

++
=β  

Calculate once for both individuals. Range is from -1 for a situation in which the 
dyad’s outcomes conflict to +1 for a situation in which the dyad’s outcomes 

correspond. 

(5) 

Basis of Control  

( )γ  
( )

( )( )2

4
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νσ
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( ) ( )
( ) ( ) ( ) ( )2222

22
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−+−++++=
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ν

σ
 

Calculate once for both individuals. Range is from -1 for a situation controlled by 
exchange and to +1 for a situation controlled by coordination. Sum( sit ) is a cell 
by cell sum of the matrix. 

(6) 

Symmetry  

( )δ  
( ) ( )
( )222222

222222

HJCHPCHBCRJCRPCRBC

HJCRPCHBCRJCHPCRBC

+++++

++−++
=δ  

Calculate once for both individuals. Range is from -1 for an asymmetric situation 
in which individual R depends on H to +1 for an asymmetric situation in which 
individual H depends on R. The value of 0 denotes a symmetric situation (i.e. 
mutual dependence).  

(7) 

 Once the variances for the situation have been computed these values can be used to 

calculate the situation’s location in interdependence space. This is accomplished using 

equations (4-7) from Table 6.1. Equations (4) and (5) are from (Kelley & Thibaut, 1978). 

Equations (6) and (7) are contributions of this dissertation. Equation (4) subtracts the 

outcome resulting from joint action by the individual’s from the outcome resulting from 

partner and individual control. This value is then normalized. Equation (5) subtracts one 
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individual’s control over their own outcomes from the other individual’s control. This 

value is normalized with respect to both individual’s outcomes. These values constitute 

the tuple δγβα ,,, , the situation’s location in interdependence space. 

6.1.3 Using situation analysis to select interactive behaviors 

The situation analysis algorithm presented above begs several questions. Notably, 1) how 

are the outcome matrices created? 2) How is the location in interdependence space used 

to control a robot’s behavior? 3) Does knowing a situation’s location in interdependence 

afford valuable information for determining which behavior to select? This section 

addresses each of these questions in turn.  

 The previous chapter has discussed in detail our methods for creating outcome 

matrices. For the experiments conducted as part of this research, the number of hazards 

and victims perceived is used to construct the outcome matrix (Figure 6.1). These 

matrices expand upon the human-robot cleanup situation described previously. In these 

examples, both the human and the robot select either an action to rescue a victim or to 

cleanup a hazard. The outcome for each pair of selected actions, in this case, is a function 

of the number of victims and hazards in the environment. The functions in Figure 6.1 

were selected to give the autonomous robot a preference for cleanups and the 

teleoperated robot a preference for victims. Preferences such as these might result from 

the configuration of each robot. In the independent situation, for example, if the robot 

chooses to cleanup a hazard and the human chooses to rescue a victim, then the human 

obtains an outcome equal to the number of victims and the robot obtains an outcome 

equal to the number of hazards. In the dependent condition, on the other hand, positive 
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outcome is only obtained if both the robot and the human select the same action. A 

situation such as this could occur if victims must be cleaned prior to being rescued.    

Table 6.2 A list of several simple matrix transformations. The list is not exhaustive. 

Transformation 
name 

Transformation mechanism Social character 

max_own No change Egoism—the individual selects the action 
that most favors their own outcomes 

max_other Swap partner’s outcomes with 
one’s own 

Altruism —the individual selects the action 
that most favors their partner 

max_joint Replace outcomes with the sum of 
the individual and the partner’s 

outcome 

Cooperation—the individual selects the 
action that most favors both their own and 

their partner’s outcome 
max_diff Replace outcomes with the 

difference of the individual’s 
outcome to that of the partner 

Competition—the individual selects the 
action that results in the most relative gain 

to that of its partner 
min_diff Maximize the value of the action 

that has the minimal difference to 
that of the partner. 

Fairness—the individual selects the action 
that results in the least disparity 

min_risk Maximize the value of the action 
that has the greatest minimal 

outcome 

Risk-aversion—the individual selects 
actions that result in the maximal 

guaranteed outcomes 

 Before discussing how this information is used to control a robot’s behavior, we 

consider strategies by which the outcome matrix can be directly used to select actions. 

The most obvious method for selecting an action from an outcome matrix is to simply 

choose the action that maximizes the robot’s outcome. We term this strategy max_own. 

Alternatively, the outcome matrix can be transformed to create a new, different matrix 

that the robot uses to select a behavior. Table 6.2 lists several different methods for 

transforming an outcome matrix. In the case of max_other the partner’s outcome values 

are swapped with the robot’s outcome values. The max_joint transformation, on the other 

hand, replaces the robot’s outcomes with the sum of the robot and its partner’s outcome. 

Once an outcome matrix has been transformed, the max_own strategy is used to select an 

action. This simple technique of transforming the outcome matrix and then using the 

max_own strategy to select a behavior serves as a control strategy and has the benefit of 
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changing the character of the robot’s response without consideration of the actual actions 

involved.   

 Because the situation analysis algorithm simply provides information, this 

information could theoretically be used in many different ways to aid action selection. 

For instance, rules could directly map a situation’s location to a particular action. 

Alternatively, the information could be used to select transformations (Table 6.2). One 

advantage of the latter method is that it does not require knowledge of the actions 

available to the robot. Rather, the situation’s interdependence space location is used to 

alter the robot’s response independent of interactive actions available. Another advantage 

of this approach is that one can test a specified set of transformations at a given location 

to determine which transformation is best at that location. In this manner, a mapping of 

interdependence space location to transformation can be developed which is independent 

of the individuals interacting and the actions available. As will be discussed in the next 

section, our initial step for this research was creating this mapping of situation location to 

transformation.    

 Finally, does knowing a situation’s location in interdependence space afford valuable 

information? We approached this question empirically by performing two experiments in 

simulation. The first experiment investigates the value of this information in a practical 

scenario. The second experiment considers the value of knowing the situation’s location 

over the entire interdependence space. 

6.1.4   Mapping a situation’s location to a transformation 

A mapping from a situation’s location to a transformation can be described formally as 

the function TLf →:  where L is the interdependence space location and T is the space 
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of possible transformations. We subdivide the interdependence space into three areas of 

interest to robotics researchers, namely high interdependence ( 75.0≥Rα ) and low 

correspondence ( 0≤β ), high interdependence ( 75.0≥Rα ) and high correspondence 

( 0>β ) and low interdependence if 75.0<Rα . These areas are abbreviated as  lhhhl lll ,,  

respectively. The area hll  represents situations in which the robot’s outcomes greatly 

depend on its partner but the robot and the human do not have action preferences towards 

the same goal, potentially resulting in poor outcomes for the robot. The area hhl , on the 

other hand, describes situations in which the robot’s outcomes also greatly depend on its 

partner and both the robot and the human have action preferences towards the same goal. 

Finally, the area ll  represents the location of situations in which the robot’s outcomes do 

not greatly depend on its partner. Thus { }lhhhl lllL ,,=  describes the domain of f. The 

codomain of f is the set of transformations considered as part of this work (see Table 6.2 

for descriptions).  

 Given the preceding description, the challenge then is to determine for each location 

in L which transformation from T results in the greatest overall net outcome. To do this 

we created a random matrix and then used the situation analysis algorithm to determine 

the matrix’s location in interdependence space until we had 1000 matrices in each area 

lhhhl lll ,, . Random matrices consisted of an empty matrix populated with random 

numbers between 0 and 24. The number 24 was arbitrarily selected. Next, for every 

matrix in each area lhhhl lll ,, , we iterated through the set T altering the matrix according 

to the transformation’s specification (Table 6.2). Afterward, a simulated robot selects the 

action from the transformed matrix that maximizes its outcome. The robot’s simulated 
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partner also selects an action from the original matrix that maximizes its outcome. 

Finally, the robot’s outcome resulting from the action pair (as dictated by the original 

matrix) is recorded. Figure 6.5 in section 6.2.1 graphically depicts this procedure and the 

other experimental procedures used.   

Table 6.3 The cells denote the mean outcome obtained by the transformation at each location. The 
shaded cells indicate the mean of the best transformation. The confidence interval is included for all values. 

Low interdependence 
 

High interdependence/high 
correspondence  

High interdependence/low 
correspondence 

Transformation  Mean 
outcome 

Transformation  Mean 
outcome 

Transformation  Mean 
outcome 

max_own 13.47 ± 0.46 max_own 15.01 ± 0.39 max_own 14.27 ± 0.41 
min_own 10.36 ± 0.46 min_own 8.75 ± 0.40 min_own 7.712 ± 0.38 

max_other 11.67 ± 0.43 max_other 15.10 ± 0.36 max_other 7.80 ± 0.37 
min_other 11.86 ± 0.43 min_other 10.52 ± 0.42 min_other 12.94 ± 0.42 
max_joint 12.90 ± 0.43 max_joint 16.03 ± 0.34 max_joint 13.40 ± 0.42 
min_joint 11.16 ± 0.44 min_joint 9.55 ± 0.41 min_joint 10.52 ± 0.43 
max_diff 11.41 ± 0.46 max_diff 10.41 ± 0.43 max_diff 9.93 ± 0.47 
min_diff 12.08 ± 0.42 min_diff 12.48 ± 0.43 min_diff 12.10 ± 0.41 
min_risk 13.08 ± 0.41 min_risk 14.82 ± 0.38 min_risk 14.79 ± 0.37 

 Table 6.3 presents the mean outcome resulting from each transformation at each 

location. The transformation that results in the greatest mean outcome for each location in 

shaded. Note that the difference in mean outcome for several of the transformations is not 

great. This lack of difference reflects the similarity of the transform in the particular area 

of interdependence space. More importantly, it foreshadows the need of a robot to 

interact with its partner in a variety of situations located at different positions in 

interdependence space in order to determine the partner’s transformation preference or 

type. The table indicates that max_own, max_joint, and min_risk are the best 

transformations of the group of possible transformations in low interdependence, high 

interdependence/high correspondence, and high interdependence/low correspondence 

situations respectively. From this data the function f mapping the interdependence space 
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location to transformation takes the following form, ( )

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where *l  is the interdependence space location generated by the situation analysis 

algorithm. This function can also be visualized as the decision tree in Figure 6.4.   
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Figure 6.4 A mapping of interdependence space location to outcome matrix transformation.   

 We have therefore found a mapping from a situation’s location in interdependence to 

a transformation. This mapping allows us to create a computational process that begins 

with the outcome matrix and will end with the selection of an action. The next section 

develops the remainder of this process.   

6.1.5   A computational process for situation analysis 

Assuming that outcome matrices can be generated and given the mapping from 

interdependence location to transformation developed in the preceding section, a 

computational process can be developed that selects a robot’s behavior from its 

perception of the situation. This computational process is depicted in Figure 6.5. The 

 max_own 
max_joint 
min_risk 
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right side of this figure depicts a stepwise procedure for generating interactive action 

from perception. The first step is the creation of an outcome matrix. In our experiments, 

these were either derived perceptually, by recognizing objects in the environment and 

using the matrices in Figure 6.1, or generated by populating an empty matrix with 

random values. The next two steps consist of the situation analysis algorithm described in 

section 6.1.2, which results in an interdependence space tuple. This tuple is then mapped 

to a transformation using the function f (also depicted in Figure 6.4). The transformation 

is used to transform the original matrix in the next step. The transformation process 

results in the construction of an outcome matrix on which the robot can act—the effective 

situation (Kelley & Thibaut, 1978). In the final step, the robot selects the action in the 

effective situation that maximizes its own outcome. The left side of Figure 6.5 depicts an 

example run through the procedure. The next section discusses our empirical examination 

of this process.  
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 A Computational Process for Situation Analysis 
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Figure 6.5 This figure depicts the algorithmic process contributed by this work. The process consists of 
six steps. The first step generates an outcome matrix. The second step analyzes the matrix’s variances. The 
third step computes the situation’s interdependence space dimensions. These two steps constitute the 
process of situation analysis. The fourth step selects a transformation and in the fifth step, the 
transformation is applied to the outcome matrix resulting in the effective situation. Steps 4 and 5 constitute 
the transformation process. Finally, an action is selected.  
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6.2 Experiments and Results 

The preceding discussion has described how an outcome matrix can be mapped to a 

location in interdependence space and how information about the matrix’s location can be 

used to select a robot’s interactive action. We have not yet shown, however, that the 

information afforded by the situation analysis algorithm results in better interactive 

behavior on the part of the robot. The experiments presented in this section, therefore, 

examine the value of the information generated by the situation analysis algorithm. Value 

here is operationalized as increase in net outcome. Both experiments test the hypothesis 

that the use of the situation analysis algorithm will result in an increase in net outcome 

when compared to alternative control strategies. The first experiment uses the 

computational process from Figure 6.5 to guide a simulated robot’s action selection in the 

cleanup and rescue example described at the beginning of the chapter. The second 

experiment generalizes the results from the first experiment to the entire interdependence 

space and compares the algorithm to a larger number of control strategies.  

6.2.1 Situation analysis in practice 

To revisit the scenario described at the beginning of the chapter, a teleoperated robot 

attempts to rescue victims of an industrial accident while an autonomous robot works to 

cleanup a spill. We considered two scenarios in simulation: one involving greater 

dependence (high interdependence condition) and another involving little dependence 

(low interdependence condition). Notionally, because of the properties of the chemical 

the high interdependence condition requires that the victims be cleaned before being 

rescued. Thus, in this condition, the robots must both cooperate in order to complete the 
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rescue task successfully. In the low interdependence condition, both robots can operate 

independently of one another. This scenario is based on the well-studied foraging 

problem in robotics (Arkin, 1999). Figure 6.6 depicts the layout. Potential victims and 

hazards for cleanup are located within a disaster area. A disposal area for hazardous items 

is located towards the bottom and a triage area for victims is located to the right. Table 

6.4 summarizes the experiment.   

Table 6.4 Experimental summary for the situation analysis experiment conducted in a search and rescue 
environment. 

Experiment Summary 
Situation Analysis in Practice  

Purpose 
Explore the use of information pertaining to a situation’s position in the 
interdependence space to control a robot’s behavior. 

Experiment Type MissionLab simulation environment 

Hypothesis  
That the use of the situation analysis algorithm results in an increase in net 
outcome when compared to alternative control strategies in dependent 
situations. 

Procedure Follow partner model creation procedure from Figure 6.7. 

Independent variable 
Conditions: use of situation analysis information versus no use of situation 
analysis information; dependent versus independent situation.  

Dependent variable Net outcome 

Method of Analysis 
Ablation experiment consisting of comparison between use of situation 
analysis information and no use of situation analysis information. 

Conclusion 
Hypothesis is supported. Conditions in which the situation was dependent and 
the situation analysis algorithm was used resulted in greater outcome being 
obtained compared to not using the situation analysis algorithm. 
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Figure 6.6 The simulation environment used for the cleanup and rescue experiment is depicted above. 
The experiment required that a teleoperated robot rescue victims while an autonomous robot performs a 
cleanup. Experimental conditions included independent versus dependent situations and the use of our 
situation analysis algorithm versus a control strategy. The teleoperation interface used by the human is 
depicted the right. 

 This experiment compares the net outcome obtained by both robots as well as the 

number of victims rescued and hazards cleaned in four separate conditions. In the 

experimental conditions, the autonomous robot used the computational process depicted 

in Figure 6.5 to select its action. In the control conditions, the autonomous robot 

consistently selected the behavior that maximized its own outcome without consideration 

of its partner (max_own). The experimental and control condition were explored in both 

high interdependence situations and low interdependence situations. A high 

interdependence situation was created by populating the dependent outcome matrix from 

Figure 6.1. Similarly, a low interdependence situation was created by populating the 

independent outcome matrix from the Figure 6.1. Thus, the experiment consisted of the 
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following four conditions: high interdependence-situation analysis, high interdependence-

control strategy, low interdependence-situation analysis, low interdependence-control 

strategy. In all conditions, the teleoperated robot selected the behavior that maximized its 

own outcome without consideration of its partner (max_own). The primary author 

controlled the teleoperated robot. Because the teleoperated robot employs a static actor 

script, experimenter bias is eliminated.      

 Figure 6.7 describes the experimental procedure used (middle procedure). First, a 

random number of victims and hazards were generated. Next, a Gaussian distribution was 

used to the randomly place the victims and hazards in the environment. In the low 

interdependence condition, the autonomous robot perceives the number of victims and 

hazards and uses the independent matrix from Figure 6.1 to create its outcome matrix. In 

the high interdependence condition, the autonomous robot uses the dependent matrix to 

create its outcome matrix. The outcome matrix is then tested using the situation analysis 

algorithm and the control strategy. The behaviors that the robot selects are actually 

collections of actions that direct the robot to locate the closest attractor, pickup the 

attractor, transport the attractor to a disposal area where it is dropped off and finally 

return to a staging area. The MissionLab mission specification system was used. 

MissionLab is a graphical software toolset that allows users to generate mobile robot 

behavior, test behaviors in simulation, and execute  
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collections of behaviors on real, embodied robots (MacKenzie, Arkin, & Cameroon, 

1997).  

 Experimental Procedure  
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Figure 6.7 The procedures used to create and use outcome matrices are depicted above. The left side 
details the procedure used to generate Table 6.3. This procedure first iterates through all matrices in each 

areas lhhhl lll ,,
 and then iterates through the set of transformations to produce the matrix the robot will use 

to select actions. The middle procedure first creates a random number of victims and hazards. Next, an 
independent and dependent matrix is created from the number of victims and hazards. Finally, in the 
control conditions, max_own is used to select an action. In the test procedure, situation analysis is used to 
select an action. The right most procedure, first generates a random matrix and then transforms the matrix 
with respect to a control matrix or uses situation analysis. The robot selects an action from the transformed 
matrix. The interaction example at the bottom denotes the method used to determine how much outcome 
each individual receives from the presentation of an outcome matrix.      
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 We conducted thirty trials in each of the four conditions: independent 

situation/control robot, independent situation/test robot, dependent situation/control 

robot, dependent situation/test robot. In these experiments, interaction occurs when both 

individuals (autonomous robot and teleoperated robot, or both simulated robots) are 

presented with an outcome matrix and simultaneously select actions from the matrix 

receiving the outcome that results from the action pair. We recorded the number of 

victims rescued and the hazards collected after each trial. We predicted that the situation 

analysis algorithm would outperform the control strategy in the dependent condition but 

not in the independent condition. Independent situations, by definition, demand little 

consideration of the partner’s actions. Thus, in these situations, the autonomous robot’s 

performance is not affected by the actions of the partner. Dependent situations, on the 

other hand, demand consideration of the partner, and we believed that our algorithm 

would aid performance in these conditions. The procedure tests the hypothesis by 

comparing task performance (number of victims and hazards retrieved) with and without 

the situation analysis information.      

 Figure 6.8 illustrates the results from the cleanup and rescue experiment. The left two 

bars portray the results for the independent situation. In these conditions, the autonomous 

robot forages for hazards to cleanup and the human-operated robot uses MissionLab’s 

search and collect behaviors to forage for victims. Thus, in all of the 30 trials each robot 

retrieves either a victim or a hazard. As predicted, the robot using situation analysis 

information and the robot not using situation analysis information both retrieve 30 

victims and 30 hazards in this condition.  
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Cleanup and Rescue Experiment Results
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Figure 6.8 Results for the cleanup and rescue experiment are presented above. The line graph portrays 
the net outcome for each condition. The bars depict the number of hazards and victims retrieved. Hazards 
cleaned are shown above the number of victims rescued. The left two bars and line points depict the 
independent conditions for both the test and the control robot. In these conditions both the control and test 
robot perform equally well. The right two bars and line points examine the dependent situation. Note that in 
this situation the test robot outperforms the control robot. 

 In the dependent condition, because the retrieval of a victim or a hazard required the 

cooperation of both robots, the best possible score was thirty. The autonomous robot’s 

use of situation information results in ten additional victims being rescued. Thus, as 

predicted, in the dependent condition the autonomous robot’s use of situation information 

affords better performance than the robot that does not consider the situation. In this case, 

the information provided by our algorithm indicates to the autonomous robot that its 

outcomes for this situation rely on collaboration with its human-operated partner. The 

control strategy, on the other hand, fails to consider the partner’s role even though the 

situation demands collaboration, hence resulting in poorer performance.  

 Overall, this experiment demonstrates that the information resulting from an analysis 

of the social situation can improve a robot’s ability to perform interactive tasks similar to 

collaborative foraging. The algorithm we have proposed uses perceptual stimuli in the 

environment to produce information about the social situation. Minimally, we have 
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shown the feasibility of our approach and the potential importance of situational 

considerations in human-robot interaction, ideas which have not been investigated as a 

part of HRI in the past. Nevertheless, the results of this experiment are limited in several 

ways. First, the situations encountered as part of the experiment are derived from a 

limited portion of the interdependence space. Second, only a single control strategy was 

considered. The next experiment generalizes these results to the entire interdependence 

space and considers additional controls.    

6.2.2 Situation analysis over the entire interdependence space 

Whereas the previous experiment only explored high interdependence or low 

interdependence outcome matrices, this experiment considers outcome matrices from 

every corner of the interdependence space. We examine the algorithm’s performance 

over thousands of different matrices representing a broad spectrum of the 

interdependence space. Because of time-constraints, it was not possible to test each of 

these matrices using interaction between a human and a robot. Rather, the human was 

replaced with an agent that selected the behavior that maximized its own outcome 

without consideration of its partner (max_own). The same strategy was employed by the 

human in the first experiment and the agent in this experiment.  

 For this experiment, we also compare the algorithm’s performance to four different 

control strategies. For the first control strategy, the autonomous robot consistently 

selected the behavior that maximized its own outcome without consideration of its 

partner (max_own). For the second control strategy, the autonomous robot consistently 

selected the behavior that minimized the difference of its and its partner’s outcome 

(min_diff). For the third control strategy, the autonomous robot consistently selected the 
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behavior that maximizes the sum of its and its partner’s outcome (max_joint). For the 

final control strategy, the autonomous robot consistently selected the behavior that 

resulted in the greatest guaranteed outcome (min_risk).   

Table 6.5 Experimental summary for the situation analysis experiment conducted over the entire 
interdependence space. 

Experiment Summary 
Situation Analysis over the entire Interdependence Space  

Purpose 
Explore the use of information pertaining to a situation’s position in the 
interdependence space to control a robot’s behavior. 

Experiment Type Numerical simulation 

Hypothesis  
That the use of the situation analysis algorithm results in an increase in net 
outcome when compared to alternative control strategies. 

Procedure Follow partner model creation procedure from Figure 6.7. 

Independent variable Action selection strategy.  

Dependent variable Net outcome 

Method of Analysis 
Comparison of several different alternative action selection strategies to the 
use of situation information. 

Conclusion 
Hypothesis is supported. The use of situation analysis information results in 
significantly greater net outcome being obtained by the robot than does any of 
the control strategies.  

 Figure 6.7 describes the experimental procedure used (right procedure). First, a 

random matrix is created from an empty matrix populated with random numbers between 

0 and 24. The random matrix in this case does not have actions assigned. Hence, these 

matrices are abstract in the sense that the rewards and costs are associated with selecting 

one of two non-specified actions. Once a matrix is created, it is presented to both the 

simulated robot and the agent. Both simultaneously select actions from the matrix 

receiving the outcome that results from the action pair. The simulated robot uses either 

situation analysis or one of the previously discussed control strategies (section 6.2.1) to 

determine which action to select from the matrix. This experiment was conducted as a 

numerical simulation and hence did not occur in a robot simulation environment. In other 

words, the simulated robot in this case was an agent that selects an action in accordance 

with the strategy dictated by the experimental condition, but did not actually have to 
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perform the action in an environment. Consequentially, this experiment did not require 

perceptual generation of the outcome matrix and the actions selected by the agents did 

not affect the environment. One consequence is that the conclusions drawn from the 

results of this experiment do not relate to a robot or task in particular.       

 In order to ensure coverage over the entire space, we examined one hundred trials 

each consisting of 1000 randomly generated outcome matrices. We recorded the outcome 

obtained by each individual for the pair of actions selected. We predicted that the net 

outcome received by the simulated autonomous robot would be greater and statistically 

significant when the robot used the computational process from Figure 6.5 when 

compared to the controls. We reasoned that, on average, the information provided by 

situation analysis would be valuable to the robot for its selection of its behavior. We thus 

hypothesized that the use of this information would result in a greater net outcome than 

the control strategies. 

 Figure 6.9 presents results for this experiment. The second bar from the left depicts 

the net outcome using the situation analysis algorithm. The next four bars to the right 

indicate the net outcome for the control conditions. Our algorithm significantly 

outperforms the controls in all four conditions (p < 0.01 two-tailed, for all). The 

maximum possible outcome for a robot with complete a priori knowledge of all of its 

partner’s actions is also depicted to the left for reference.  
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Figure 6.9 Results of this second experiment are presented above. The second bar from the left indicates 
the net outcome when the situation analysis algorithm is used. The next four bars are the controls for the 
experiment. Error bars indicate 95% confidence interval. Analyzing the situation resulted in the greatest net 
outcome of when compared to the control strategies. The leftmost bar portrays the maximum possible net 
outcome. Note that use of the situation analysis algorithm results in significantly greater outcome than the 
other control strategies.  

 The results confirm our prediction that use of the situation analysis algorithm results 

in greater net outcome than does the use of the control strategies. The graph also indicates 

that our procedure outperforms the four different control strategies. Furthermore, the 

results show that our procedure is beneficial on average to an agent or robot that will face 

many different social situations from unique locations in the interdependence space. Still, 

the algorithm performs far below the maximum possible. Better performance could likely 

be achieved by increasing the size of the domain and codomain of f, the mapping from 

interdependence space location to transform (from section 6.1.4). In this work, we 

subdivided the interdependence space into three areas, denoted lhhhl lll ,, . Greater 

subdivision of the space would make better use of the information provided by the 
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situation analysis algorithm. We also limited the number of transformations considered to 

nine. Additional transformations would increase the algorithm’s performance if a novel 

transformation outperformed all other transformations at some location in the space.    

 The value of the situation analysis algorithm, as presented in this chapter, stems from 

the very fact that it knows nothing of its interactive partner. The computational process 

does not assume anything about the partner. Rather it operates only on the information 

available within the outcome matrix. This is in contrast to game theory, which operates 

on the presumption of the partner’s rationality (Osborne & Rubinstein, 1994). We expect 

that the performance of this approach would increase drastically as additional, partner 

specific, information is provided.      

6.3 Situation Analysis Conclusions 

This chapter has introduced a method for capturing information about social situations 

and for using this information to guide a simulated robot’s interactive behavior. We have 

presented an algorithm for situation analysis and a computational process for using the 

algorithm. Our approach is derived from the social psychological theory of 

interdependence and has close ties to the psychology of human-human interaction 

(Kelley & Thibaut, 1978). The value of knowing a situation’s location in interdependence 

space has been highlighted with experiments indicating that, on average, this information 

can aid in selecting interactive actions and that in some situations this information is 

critical for successful interaction and task performance.  

 We do not address the challenge of managing uncertainty in this chapter. Much work 

has already addressed this topic with respect to the outcome matrix (Osborne & 
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Rubinstein, 1994). The uncertainty present in the outcome matrix will result in similar 

uncertainty in the situation’s location in interdependence space.  

 We have presented one method for using information about a situation’s location to 

guide behavior selection. Our method relates the matrix’s location to a transformation of 

the matrix. For the most part, we have not used all of the information available. We did 

not, for example, explore the effect of a situation’s symmetry on the behavior of the 

robot. Symmetry describes the balance of control that the robot or its partner has over the 

other. The value of this dimension could play an important role in determining behavior. 

This possibility could be explored as part of future research. Moreover, we have assumed 

throughout that the partner consistently selects the max_own transformation. The 

exploration of different partner types will also be the fruits of future research.  

 In summary, it is our contention that this approach offers a general, principled means 

for both analyzing and reasoning about the social situations faced by a robot. Because the 

approach is general, we believe that it can be applied to a wide variety of different robot 

problems and domains. The development of theoretical frameworks that include 

situation-specific information is an important area of study if robots are expected to move 

out of the laboratory and into one’s home. Moreover, because this work is based on 

research which has already been validated for interpersonal interaction, we believe that it 

may eventually allow an artificial system to reason about the situation-specific sources of 

a human’s social behavior. The results of this chapter have shown that our theoretical 

framework, and the representations included therein, can have a strong positive impact on 

a robot’s ability to select actions. Moreover, these results serve as partial evidence 

towards the second subsidiary question posed in the first chapter—what effect will 
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deliberation with respect to the social situation have on the robot’s ability to select 

actions? The chapters that follow explore the use of this framework with respect to 

relationships and then to trust.    
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CHAPTER 7 

REPRESENTING AND REASONING ABOUT RELATIONSHIPS 

 

Relationships are a fundamental aspect of human socialization (Duck, Acitelli, Manke, & 

West, 2000). Every human being alive today has, from birth, relied on a vast network of 

other human beings for survival. From the doctor in the delivery room to an army of 

teachers, instructors, and friends, humans are shaped and guided by their relationships. It 

is telling that a lack of relationships is one important indicator of social dysfunction 

(Farrington, 1993). Clearly then socialization is critical for human development as reports 

of children raised with minimal socialization often indicate severe disorders (Toth, 

Halasz, Mikics, Barsy, & Haller, 2008). Hence, for humans, having relationships is 

essential for survival.  

 Relationships are also critical for learning. Teachers build relationships with their 

students that are mutually rewarding and often the material taught is specifically tailored 

for the student (Trigwell, Prosser, & Waterhouse, 1999). Young non-human primates, for 

example, predicate their learning with respect their relationships—accepting the tuition of 

only those individuals with which they have strong relationships (V. Horner, personal 

communication, February 9, 2006).    

 Relationships are important for cooperation. There are simply some things which 

cannot be completed successfully without the help of others. Games, such as soccer for 

instance, require the participation of others. Relationships allow an individual to better 

predict and reason about the actions of the other person or people in a cooperative or 
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competitive team. If a robot is to be a good teammate or a good competitor it must build 

relationships which allow it to predict the actions of the other members of the team. 

 Finally, relationships impact communication in important ways. Interpersonal 

communication is often regulated by the characteristics of the relationship (Sears, Peplau, 

& Taylor, 1991). Speaking to a superior influences not just what is communicated but 

also how it is communicated (Schatzman & Strauss, 1955). Similarly, how something is 

communicated often identifies important characteristics of the relationships. For all of 

these reasons it will be important for a robot to reason about its relationships.  

 The purpose of this chapter is to begin to develop the theoretical and algorithmic 

underpinnings that will allow a robot to reason about its relationships. The chapter begins 

with a definition of the term relationship and uses the framework set forth in the 

preceding chapters to create methods that allow the robot characterize its relations.  

7.1 Relational Disposition 

Relationships develop and are defined by the interactions that compose them (Kelley et 

al., 2003). Interdependence theory describes a relationship between two individuals as a 

type of summary of the dyad’s interactions over a series of interactions. The definition 

offered by the American Heritage Dictionary concurs. It states that a relationship is “a 

particular type of connection existing between individuals related to or having dealings 

with each other (Relationship, 2000).” Both descriptions of the term agree that a 

relationship represents a distinctive connection between individuals which develops from 

their having repeated interactions with one another.  

 Recall from section 4.1 that the selection of actions by both individuals in an 

interaction results in outcomes for both individual. Using the notational tools developed 
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in the previous chapters, we can represent the result of a series of interactions between 

two individuals as [ i
N

ii
N

i oooo −− ,,;,, 00 KK ] where N is the number of interactions. Each of 

the N interactions occurs when both individuals selects an action ( )i
k

i
k aa −,  and results in 

an outcome for both individuals ( )i
k

i
k oo −, . As will be shown, the pattern of outcomes that 

results from a series of interactions can be used to describe the overall interdependence 

properties of these interactions. These interdependence properties characterize the 

distinctive connection that has developed from the series of interactions. Consider the 

interactions of teammates. Teammates select actions that result in mutually positive or 

mutually negative outcomes. In soccer, for example, when a teammate scores a goal, that 

individual’s actions result in positive outcomes for the entire team. Hence, the pattern of 

outcomes is correspondent. In contrast, the interactions of opponents are typically 

conflicting, with the actions selected by one individual resulting in contrasting outcomes 

compared to that of the opponent. Again considering a soccer example, when an 

opponent scores a goal, positive outcomes result for the opponent while negative 

outcomes result for one’s own team. Hence, we can use the pattern of outcomes to 

characterize a relationship in terms of its interdependence properties.     
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Figure 7.1  Kelley and Thibaut noted that relationships can also be presented within the 
interdependence space (Kelley & Thibaut, 1978). This figure presents their original mapping of 
relationships within the interdependence space. Kelley and Thibaut recognized that relationships can be 
described in terms of interdependence and correspondence, two of the same dimensions that are used to 
describe social situation.   

 Kelley and Thibaut note that relationships, like the interactions they accrete from, can 

be described in terms of their interdependence space location (Figure 7.1). Close 

relationships, such as that of a husband and wife, tend to be characterized by a high 

degree of interdependence. Thus the actions of the husband tend to have a large impact 

on the outcomes of the wife, and vice versa. The interactions of casual acquaintances, in 

contrast, are marked by little or no interdependence between the two individuals. 

Correspondence, the extent that each partner’s outcomes are consistent with the other 

partner’s outcomes, can similarly be used to map the difference between friends and 

enemies, with friends having correspondent outcomes and enemies conflicting outcomes. 

Colloquially the term relationship is often used to describe a particular type of 

relationship such as mother-daughter, husband-wife, or friends. These and many other 

relationship types represent generic labels for common interpersonal relationships. Still 
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they can and have been described with respect to their location in interdependence space 

(Kelley & Thibaut, 1978). Figure 7.1 depicts the result of research conducted by Kelley 

and Thibaut relating a dyad’s interactions to its two dimensional interdependence space 

location.  

 The outcomes [ i
N

ii
N

i oooo −− ,,;,, 00 KK ] represent the end result of several interactions 

between two individuals. As a roboticist, it is important to develop robots capable of 

characterizing their developing relationship with a human. To do that, the robot needs to 

not only recognize the pattern of outcomes that has transpired between it and the human, 

but must also be able to map that pattern of outcomes back to the human’s transformation 

tendencies. Recall from section 4.3, that an individual transforms the given matrix (GO ) 

to produce an effective matrix (EO ) which includes the individual’s relational 

disposition. Disposition is defined as a stable, social character manifested in an 

individual. An individual’s disposition describes a durative or predominant tendency with 

respect to an individual’s social character. A relational disposition then describes a 

durative tendency with respect to an individual’s relationship with another individual.  

 Dispositions are exacted via transformation tendencies. Enemies, for example, will 

tend to have a relational disposition marked by conflict, often attempting to minimize 

their interactive partner’s outcomes. Recall that the transformation process is described 

formally as ( )θ,GE OfO =  where EO  is the effective outcome matrix, GO  is the given 

outcome matrix,  θ  is the transformation, and the function f transforms the matrix. 

Interdependence theory originally developed the transformation process from data 

describing human interaction. Hence, we expect that the transformation process of the 

robot’s human partner can be expressed formally as ( )ii
G

i
E OfO −−− = θ, . Disposition then 
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is an individual’s tendency to select a particular type of transformation. One’s relational 

disposition reflects an individual’s tendency to select a particular type of transformation 

when interacting with a particular individual. Generalization over classes of individuals 

may also be possible using the stereotype techniques described in section 5.4. Table 7.1 

lists several transformations. Consider again, for example, the difference between friends 

and enemies. Friends will tend to choose prosocial transformations such as max_joint, 

max_other, or min_diff whereas enemies will tend to choose antisocial transformations 

such as min_joint, max_own, min_other, and max_diff. One problem for the robot then is 

to determine its partner’s relational disposition from a series of interactions with that 

partner.     

Table 7.1 A list of several different types of transformations and a description of each. A relational 
disposition describes an individual’s tendency to use a single transformation when interacting with a 
particular partner. Hence, the table below describes several relational dispositions. 

Relational Disposition Types 
Name Character Description 

max_own Egoistic—the individual selects the action 
that most favors their own outcomes. 

min_own Ascetic—the individual selects the action 
that minimizes his/her own outcomes. 

max_other Altruistic —the individual selects the action 
that most favors their partner. 

min_other Malevolence—the individual selects the 
action that least favors the partner.  

max_joint Cooperative—the individual selects the 
action that most favors both their own and 
their partner’s interests. 

min_joint Vengefulness—the individual selects the 
action that is most mutually disagreeable.   

max_diff Competitive—the individual selects the 
action that results in the most relative gain to 
that of its partner. 

min_diff Fair—the individual acts in a manner that 
results in the least disparity.   

7.2 Diagnostic Situations 

Consider the following scenario: A robot interacts with one of two types of humans, 

enemies and friendlies, perhaps in a military domain. The relational disposition of 
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enemies is to consistently use transformations that minimize the robot’s outcomes 

(min_other) whereas the transformational tendency of friendlies (max_other) is to 

consistently select transformations that will maximize the robot’s outcomes. Can a robot 

separate enemies from friendlies based solely on their pattern of interaction? We will 

assume that the robot only has control over its own transformation. This section presents 

foundational material that will result in a solution to this problem.  

 A diagnostic situation is a situation that reveals a partner’s matrix transformation 

tendencies (Holmes & Rempel, 1989). As such, diagnostic situations can potentially be 

used to discern a partner’s relational disposition. Consider the outcome pattern resulting 

from interaction between an outcome maximizing robot (max_own) and a friendly 

(max_other). Let the transformation pair (max_own, max_other) represent each member 

of the dyad’s relational disposition. An outcome maximizing robot will consistently 

select the action that results in the most outcome for itself. A friendly will select the 

action that will result in the most outcome for its partner—the robot. Hence, after each 

interaction both individuals will select the action pair which results in the maximum 

outcome for the robot. Over any number of interactions, the outcome resulting from the 

transformation pair (max_own, max_other) will be greater or equal to any other 

combination of transformation types from Table 7.1 for the robot. Formally the following 

relationship of outcomes holds RR oo 21 >  where the transformation pair (max_own, 

max_other) is denoted by the subscript 1 and the transformation pair (max_own, any) is 

denoted by the subscript 2. 

 Alternatively, consider the pattern of outcomes resulting from interaction with an 

enemy. The transformation pair (max_own, min_other) will represent each member of the 
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dyad’s relational disposition. In this case, the robot attempts to maximize its own 

outcome while its partner is attempting to minimize the robot’s outcome. The actual 

outcome received by the robot will depend on a characteristic of the situation called 

symmetry. Recall from section 6.1, that symmetry describes the degree to which the 

partners are equally dependent on one another. Importantly, unlike the interaction with 

the friendly, the robot’s outcome will not always be maximal when interacting with an 

enemy. We can use this fact to discern a pattern of interactions with a friendly partner 

from a pattern of interaction with an enemy. Figure 7.2 presents an example.  
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Figure 7.2 An example of a diagnostic situation. The robot and the human are presented with a given 
situation. The robot selects an action according to a max_own transformation and predicts the outcomes 
resulting for both itself and the human partner if the human selects according to a max_other relational 
disposition. In the resulting interaction depicted below, the human actually selects according to a max_own 
relational disposition. The situation is diagnostic because different outcomes for the robot result from 
different relational dispositions.   

 Consider another scenario. Rather then interacting with enemies or friendlies, in this 

scenario the robot interacts with competitors or cooperators. Competitors attempt to 

maximize the difference (max_diff) in outcome between themselves and the robot 

whereas cooperators attempt to minimize the difference in outcome (min_diff). If we 
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compare the difference in outcome ( HR oo − ) resulting from interaction with 

competitors versus cooperator, here again, the results are clear. In this case, the 

difference in outcome will always be greater or equal when the transformation pair is 

(max_diff, max_diff) versus (max_diff, min_diff). Formally the following relationship of 

outcomes holds HRHR oooo 2211 −>−  where the transformation pair (max_diff, max_diff) 

is denoted by the subscript 1 and the transformation pair (max_diff, min_diff) is denoted 

by the subscript 2. In other words, for a given situation, the difference in outcome will 

never be less when the partner’s type is max_diff when compared to a partner type of 

min_diff. 

 We have thus formulated two rules for discerning a partner’s type. In the enemies 

versus friendlies scenario the robot’s relational disposition was max_own and in the 

competitors versus cooperators scenario the robot’s relational disposition was the 

max_diff transformation. A systematic investigation of each robot relational disposition in 

Table 7.1 indicates that each robot disposition type can discern between two different 

partner types given a method of comparison. Table 7.2 lists each robot type with the 

partner transformation types that it can distinguish as well as the method of comparison. 

For example, the robot can use the max_own transformation type in conjunction with the 

RR oo 21 >  method of comparison to discern a partner of type max_other from one that is of 

type min_other. Similarly, the robot can use the max_diff transformation type in 

conjunction with the HRHR oooo 2211 −>−  method of comparison to discern a partner of type 

max_diff from one that is of type min_diff. To emphasize the discussion above, 
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combinations of robot type and methods of comparison will discern particular partner 

transformation types.   

Table 7.2 The table below lists the diagnostic characteristics for different combinations of robot 
transformation type, first transformation type, second transformation type, and comparator. Each of these 
combinations does not result in an inverted characterization. The combinations of robot type, hypothesized 
transformation type and method of comparison only result in diagnostic and non-diagnostic situations and, 
hence, can be used to determine the partner’s relational disposition. 

Diagnostic Situation Characterization 
Robot type Hypoth. 

Transform. 
Type 

Real 
Transform. 

type 

Method of 
Comparison 

Diagnostic Non-
diagnostic 

Inverted 

max_own max_other min_other RR oo 21 >  Yes Yes No 

min_own min_other max_other HH oo 21 <  Yes Yes No 

max_other max_own min_own HH oo 21 >  Yes Yes No 

min_other min_own max_own RR oo 21 <  Yes Yes No 

max_diff max_diff min_diff HRHR oooo 2211 −>−  Yes Yes No 

min_diff min_diff max_diff HRHR oooo 2211 −<−  Yes Yes No 

max_joint max_joint min_joint HRHR oooo 2211 +>+  Yes Yes No 

min_joint min_joint max_joint HRHR oooo 2211 +<+  Yes Yes No 

 Before moving on to how to discern the difference between partner relational 

disposition types, we must consider the nature of diagnostic situations more deeply. As 

mentioned above, a diagnostic situation is a situation that will reveal the partner’s 

transformation type. With respect to Table 7.2 a diagnostic situation occurs whenever the 

method comparison holds. Thus, for the friendlies and enemies example, a diagnostic 

situation is any situation in which the outcome resulting from interaction with a friendly 

is greater than the outcome resulting from the interaction with an enemy. Clearly this 

should be the majority of situations. Diagnostic situations do not conclusively tell us that 

our hypothesized partner type is the partner’s real type, but they do lend support to the 

hypothesis. Hence, we cannot conclude that the partner is friendly (max_other) simply 

because the outcome resulting from one interaction with the partner was greater than the 



 179 

outcome that would have been expected from interaction with an enemy (min_other). 

Figure 7.2 presents an example of a diagnostic situation.  

 Not all situations are diagnostic however. Many situations do not reveal the partner’s 

transformation type. These situations are termed non-diagnostic, as they do not tell us 

anything about partner’s transformation tendencies. The most obvious example of a non-

diagnostic situation is a situation that is populated with all of the same outcome values. 

Returning to our friendlies and enemies example, a non-diagnostic situation will result in 

the same outcome for the robot regardless of whether the partner type is a friendly or an 

enemy. Hence, our method of comparison for these type, RR oo 21 > , will not hold. 

Unfortunately, the occurrence of non-diagnostic situation does not tell us that the partner 

is an enemy and not a friendly. It simply tells us nothing. Figure 7.3 presents an example 

of a non-diagnostic situation.  
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Figure 7.3 An example of a non-diagnostic situation is presented above. The situation is non-diagnostic 
because the outcome pair is the same regardless of the human’s transformation type. The top row presents 
the interaction hypothesized by the robot and the middle row presents the resulting interaction. The key 
point here is that this given situation does not distinguish between the human’s differing relational 
dispositions. Even if the robot were to interact with a human in many different non-diagnostic situations, 
the robot would not be able to determine the human’s relational disposition.     

 If, on the other hand, the pattern of outcomes that results is inverted with respect to 

our method of comparison, the outcome resulting from interaction with an enemy was 

greater then that of a friendly, then we can reject our method of comparison. We call this 

an inverted situation. The situation is inverted from our expectations with respect to the 
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method of comparison. In contrast to a non-diagnostic situation an inversion tells us that 

our method of comparison and, hence, our hypothesized partner type must be wrong. 

Considering our example, an inversion tells us that the partner type is not a friendly. 

Figure 7.4 presents an example of an inverted situation.  
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Figure 7.4 An example of an inverted situation. The situation is inverted because the robot’s outcome in 
the resulting interaction (min_other) is greater than the robot’s outcome in the hypothesized interaction 
(max_own).   
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 Returning to Table 7.2 each of the combinations of robot type, method of comparison 

and partner types results in both diagnostic and non-diagnostic situations. These 

combinations do not result in inverted situations. Formally we define the set 

{ }NID ,,=Υ  as representing the three classifications of situation, diagnostic, inverted, 

and non-diagnostic, respectively.  

 We now develop an algorithm for determining a situation’s classification type given a 

situation O , a robot transformation type iθ , and the predicted ( )*, i
k

i
k oo −  and actual 

outcomes ( )i
k

i
k oo −,  of an interaction. It should be noted that much of the preceding 

discussion described transformation pairs such as (max_own, max_other) and 

(max_own, min_other) whereas the algorithm uses predicted ( )*, i
k

i
k oo −  and actual 

outcomes ( )i
k

i
k oo −, . The conversion from transformation pairs to outcomes follows 

directly by using the function, ( )ii
G

i
E OfO −−− = θ, . Hence, in the examples presented above 

the following series of steps are used to convert from pairs to transformations to pairs of 

outcomes,  

  1) ( i
GOf − , max_other ) i

EO−=   

  2) max_own( ) i
k

i
E aO −− =   

  3) ( i
GOf − , min_other ) i

EO−=  

  4) max_own( ) i
k

i
E aO −− = .  

  5) Finally ( )i
k

i
k

i
k

i
k ooaaO −− = ,),(  is used to create the outcome pairs.  

The preceeding steps represent the partner’s transformation process (Figure 2.5 and 

described in detail in section 4.3). The algorithm (Box 7.1) follows directly from Table 
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7.2, essentially classifying the situation based on each of the algorithms parameters. 

Overall, the parameters to our algorithm are ( ) ( )( )i
k

i
k

i
k

i
k

i ooooO −− ,,,,,
*θ . This algorithm 

will be the basis for an algorithm that characterizes the partner’s relational disposition. 

Figure 7.5 provides an example.   

 
Box 7.1 The algorithm above characterizes situations in terms diagnostic characteristics. The robot 
type is used to determine the comparator that will be used.  Next the outcomes are used in conjunction with 
the information from Table 7.2 to determine the characterization.  

Determining a Situation’s Diagnostic Characteristics 
 

Input : Hypothesized interaction result ( )*, ii oo − , real interaction results ( )ii oo −, , robot 

transformation iθ   

Output : Situation’s diagnostic characteristics { }NID ,,=Υ   

 
1. if  ( 

( =iθ max_own and ii oo =* ) or    

( =iθ max_other and ii oo −− =* ) or 

( =iθ max_joint and iiii oooo −− +=+ ** ) or 

( =iθ max_diff and iiii oooo −− −=−** )) 

//Combinations of robot type and 
//method of comparision resulting in 
//non-diagnostic situation.    

2.        return  N   

3.     else if( 

          ( =iθ max_own and ii oo <* ) or       

          ( =iθ max_other and ii oo −− <* ) or    

          ( =iθ max_joint and iiii oooo −− +<+ ** ) or   

          ( =iθ max_diff and iiii oooo −− −<−** )) 

//Combinations of robot type and 
//method of comparision resulting in 
//inverted situation.    

4.          return  I  //return inverted situation type 
5.     else  
6.          return  D  //return diagnostic situation type for all 

//other situations 
7.     endif  
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Figure 7.5 The example above uses the given situation from Figure 7.2 and demonstrates use of the 
algorithm from Box 7.1. The given situation is transformed by the robot and the human to produce an 
effective situation and finally an action. The action pair results in an outcomes for both the robot and its 
partner. In the hypothesized interaction (top row) the outcome pair is predicted. In the resulting interaction, 
the outcome pair is the result of an interaction between the robot and the human. These pairs of outcomes 
as well as the robot’s transformation type are used as input to the algorithm which characterizes the 
situation as diagnostic.  

7.2.1 Diagnostic Situations as a function of Matrix Size 

We can use the algorithm presented in previous section to explore the proportion of non-

diagnostic to diagnostic situations. A robot that is faced with the challenge of discerning 

its partner’s relational disposition does not generally have complete control over the 

situation it faces. Rather, it must use whatever situations present themself to determine 
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the partner’s type. Hence, the existence or lack of diagnostic situations is an important 

question faced by a robot attempting to discern its partner’s relational disposition. 

Table 7.3 Summary of the diagnostic situations as a function of matrix size experiment.  

Experiment Summary 
Diagnostic Situations as a Function of Matrix Size  

Purpose 
Investigate the preponderance of diagnostic situations among matrices of 
different size.  

Experiment Type Numerical simulation 

Hypothesis  
As matrix size increases, the ratio of diagnostic to non-diagnostic situations 
will increase.  

Procedure Follow the procedure presented in Table 7.4. 

Independent variable Matrix size: 2x2, 3x3, 4x4, 5x5, 6x6, 7x7, 8x8, 9x9, 10x10.  

Dependent variable Percentage of diagnostic situations 

Method of Analysis Graph analysis 

Conclusion 
Hypothesis is supported. As matrix size increases, the number of diagnostic 
situations increases becoming asymptotic at about size 7x7. 

 We conducted a numerical simulation to determine how the ratio of diagnostic to 

non-diagnostic situations changed with respect to the size of the outcome matrix. We 

reasoned that one important cause of non-diagnostic situations is constriction of 

individual’s action space. Action space constriction occurs when either or both 

individuals has few actions to choose from in the interaction. This constriction results in a 

smaller matrix size in terms of the number of columns and/or rows. The smallest matrix 

that still offers a decision choice for both individuals is a 2x2 matrix. This matrix results 

in only four pairs of potential outcomes. Hence each combination of transformation pairs 

is mapped to an outcome pair space of size four. We further reasoned that increasing the 

action space would increase the relative number of diagnostic situations compared to 

non-diagnostic situations. Table 7.3 summarizes the experiment.   

 We used a numerical simulation in this experiment. We tested the hypothesis by 

presenting a simulated robot and simulated partner matrices of different sizes and 
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recording the number of diagnostic situations that resulted. To do this, the following 

procedure was employed: 

Table 7.4 Experimental procedure for the diagnostic situations as a function of matrix size experiment. 

Experimental Procedure 

1) Create 1000 matrices of the following different sizes: 2x2, 3x3, 4x4, 5x5, 6x6, 
7x7, 8x8, 9x9, 10x10. Each matrix ( )O  was populated with random values 

aribitarily ranging from [ ]20,20− . 

2) For the max_own robot type, the transformation process 
( ,OfOi

E = max_own ) ; max_own ( ) i
k

i
E aO =  was used to determine the robot’s 

predicted action. The matching hypothesized transformation for the partner 
(Table 7.2 row 1 column 2) was used in conjunction with the functions 

( )ii
E OfO −− = θ, ; max_own ( ) i

k
i

E aO −− =  to determine the partner’s action. The 

predicted outcomes were calculated from ( )*,),( iii
k

i
k ooaaO −− = . 

3) The same procedure as in the previous step was repeated using the partner’s 
real transformation type (Table 7.2 row 1 column 3). The real outcomes were 
calculated from ( )iii

k
i
k ooaaO −− = ,),( . 

4) Next, the algorithm from Box 7.1 was used to characterize the matrix as either 
type { }ND,  diagnostic or non-diagnostic. 

5) The characterization of the situation was recorded. 

6) We repeated the procedure for the max_own, max_other, max_diff, and 
max_joint rows from Table 7.2 

 The independent variable for this numerical simulation experiment is matrix size. 

Hence, we manipulated the action space of both individuals to produce random matrices 

of a desired size. The dependent variable is the number of diagnostic situations that 

resulted.    
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Figure 7.6 The graph above depicts the percentage of diagnostic situations as a function of matrix size. 
We hypothesized that matrices with fewer actions would result in a smaller percentage of diagnostic 
situations than matrices with more actions. The trend is true regardless of the type of comparison made.   

 Figure 7.6 depicts the result. As the matrix size increases from 2x2 to 6x6, the percent 

of diagnostic situations grows from 65 percent to 86 percent before leveling off at around 

size 7x7 for each of the robot transformation types. The number of non-diagnostic 

situations is equal to n−1  where n is the number of diagnostic situations for all data 

points in the figure. The graph provides support that a constrained action space can limit 

the robot’s ability to determine its partner’s relational disposition. For a 2x2 matrix 

approximately 65 percent of situations are diagnostic, providing information about the 

partner’s relational disposition. For matrices of size 7x7 and greater, this percentage 

grows to approximately 90 percent.   

 These results have implications for robot applications in which the robot must 

determine its partner’s relational disposition in few interactions. Military applications 

involving interaction among both enemy and friendly individuals is one such area. In this 

case, the robot is better served to have a large action space that will afford a larger 

proportion of diagnostic situations in general.     



 188 

7.3 Characterizing Relationships 

Diagnostic situations can be used to characterize the relational disposition of an unknown 

partner. In this section we present an algorithm that utilizes diagnostic situations to 

determine relational disposition of an unknown interactive partner.  

 The previous section described diagnostic situations, non-diagnostic situations, and 

inverted situations. We described a set (rows of Table 7.2) of combinations of robot and 

partner types along with methods of comparison that resulted in only diagnostic or non-

diagnostic types. We noted that the combinations of robot type and partner type along 

with the method of comparison do not result in inversions. 

 In this section, we develop an algorithm based on the rows of Table 7.2 that will 

allow us to determine a partner’s transformation type i−θ . In the most general sense, the 

algorithm operates by hypothesizing a partner type, interacting with the partner over 

successive situations, and observing the results of the interactions. The algorithm from 

Box 7.1 is used to classify the situation as diagnostic, non-diagnostic, or inverted. If an 

inverted situation occurs, then the hypothesized type is rejected. If a non-diagnostic 

situation occurs then additional interactions with the partner will be necessary. Finally, if 

a diagnostic situation results, the situation is consider evidence that the hypothesized 

partner type is the true type. Once the robot’s evidence reaches a predefined threshold, 

the robot concludes that, indeed the hypothesized type is the correct type. Box 7.2 

presents the method in the form of pseudocode.    
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Box 7.2 The algorithm above characterizes the partner’s relational disposition. It takes as input a series 
of interactions and outputs the partner’s transformation type. The algorithm operates by iterating through 
each type of relational disposition and several interactions, predicting the outcomes that would result from 
interaction with the partner type in line 1. After interacting the algorithm in Box 7.1 is used to characterize 
the situation. The characterization is used to either rule the type out or, possibly, conclude that the 
hypothesized is the true type.   

 The algorithm’s first step simply iterates through each hypothesized partner 

transformation type. Next, for each hypothesized partner type the robot interacts in 

several situations. In step 3, the robot uses Table 7.2 to determine which transformation, 

Ti ∈θ , it should use to test the hypothesized type. Next, the robot uses the partner’s 

transformation process, ( )ii
E OfO −− = θ, , max_own( ) i

k
i

E aO −− =  to predict the partner’s 

action and its own transformation process to predict its own outcome, ( )ii
E OfO θ,= , 

max_own ( ) i
k

i
E aO = . These actions are used to predict the outcome that will result from 

the interaction, ( )*,),( i
k

i
k

i
k

i
k ooaaO −− = . Next, in step 5, the robot interacts with the partner 

and records the outcomes that result ( )i
k

i
k oo −, . Next, the parameters 

( ) ( )( )i
k

i
k

i
k

i
k

i ooooO −− ,,,,,
*θ  are used as input to the algorithm for determining a situation’s 

Characterizing a Partner’s Relational Disposition 
 

Input : Series of interactions kOO ,,1 K  

Output : Ti ∈−θ   
 

1. For each Ti ∈−θ    //For all partner transformation types 

2. For each jOO ,,1 K   //For a series of interactions 

3. Use Table 7.2 to determine Ti ∈θ . //Use the table to determine the robot’s type 
4. Predict the outcomes that would result from interaction with this type of partner. 
5. Interact with the partner to determine the actual outcomes. 
6. Use algorithm from Box 7.1 to characterize the situation. 
7. Determine if the characterization of the situation allows one to rule out the partner’s type 

or conclude that the hypothesized type is the true type. 
8. Endfor 
9. Endfor 
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diagnostic characteristics (Box 7.1). In step 7, the results are used to determine if the 

characterization of the situation allows one to rule out the hypothesized type if the 

situation is inverted, or alternatively, conclude that the hypothesized type is the true type 

if a predefined threshold of diagnostic situations has been meet. 

 The final step of the algorithm assumes the existence of a threshold. The threshold is 

used to determine if the number of situations characterized as diagnostic or inverted is 

enough to conclude that the hypothesized type is the partner’s true type or to rule out the 

hypothesis. If we can assume that the partner’s relational disposition is constant, then a 

single characterization of a situation as inverted is enough to rule the relational 

disposition out. If, on the other hand, the partner’s relational disposition is not constant, 

but rather principally governed by a single transformation type with occasional 

alternative types, then we can define a ratio of situations characterized as inverted and 

use this ratio to rule out a hypothesized relational disposition. If the situation is 

characterized as diagnostic we still cannot conclude that the hypothesized relational 

disposition is the partner’s true relational disposition. Rather, we must define a threshold, 

either a particular number of diagnostic situations or a ratio of diagnostic situations, in 

order to conclude that the hypothesized relational disposition is the partner’s true 

relational disposition.     

7.3.1 Accuracy of Relational Disposition Algorithm  

Much of the previous discussion has assumed that the partner’s relational disposition is 

fixed. In other words, the partner uses a static or fixed transformation during all 

interactions. This, however, is not realistic. Humans will often alter or dynamically 

change their relational disposition (Sears, Peplau, & Taylor, 1991). While it is not 
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uncommon that a human’s relational disposition will remain largely static, occasional 

changes are also normal.  

 Preliminary experiments involving the algorithm presented in Box 7.2 showed that if 

the partner’s relational disposition is static then the algorithm could determine the 

partner’s type with perfect accuracy. In this case, a single inversion was sufficient to 

reject a partner type hypothesis, and thresholding the number of diagnostic situations 

encountered at an arbitrary value of 100 resulted in correct type determination in each of 

a 1000 attempts. 

Table 7.5 Summary of the relational disposition algorithm experiment. 

Experiment Summary 
Accuracy of Relational Dispositions Algorithm   

Purpose 
Explore the ability of the relational dispositions algorithm to determine the 
partner’s relational disposition.   

Experiment Type Numerical simulation 

Hypothesis  
As the percent variability of the partner’s relational disposition increases, the 
percent correct determination of the partner’s relational disposition will 
decrease.    

Procedure Follow the procedure presented in Table 7.6. 

Independent variable Percent variability of the partner’s relational disposition.  

Dependent variable Percentage correct determination of partner’s type.  

Method of Analysis T-test analysis for significance. 

Conclusion 
Hypothesis is supported. As the percent variability of the partner’s disposition 
type increases the ability of the algorithm to determine the partner’s relational 
disposition decreases.  

 Still, because a human partner’s relational disposition is not expected to remain 

constant, a more realistic test of the algorithm would allow for occasional variability in 

the partner’s transformation type. We hypothesized that as the amount of partner 

variability increased the accuracy of the algorithm to determine the partner’s type would 

decrease. Our independent variable was the variability of the partner’s relational 

disposition, which ranged from 0 percent to 20 percent variability. Hence, a single 

relational disposition was randomly chosen for the partner. That disposition was then 
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randomly replaced with another relational disposition at a rate determined by the 

independent variable. Our dependent variable was the accuracy of our algorithm for 

relational disposition characterization. In other words, the percentage that the algorithm 

correctly determined the partner’s type. Table 7.5 provides a summary of the experiment.   

 We tested this hypothesis as a numerical simulation. Again, our numerical simulation 

of interaction focused on the quantitative results of the algorithms and processes under 

examination and attempts to simulate aspects of the robot, the human, or the 

environment. The advantages and disadvantages of this approach have already been 

discussed in section 7.2.1. This numerical simulation experiment again involved a single 

simulated robot and simulated human. Both selected nominal actions from outcome 

matrices and received the outcomes that resulted, but the actions were not performed by 

either individual.    

 To test this hypothesis the following procedure was followed:  
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Table 7.6 Experimental procedure for the relational disposition algorithm experiment. 

Experimental Procedure 

1) One thousand situations populated with random values (arbitrary range of 
[ ]20,20−  was used) were created. 

2) The robot’s partner was assigned a random “target” relational disposition. 

3) The robot is presented with one outcome matrix (O ) from the thousand. 

4) The robot performs steps 1-4 of our algorithm for characterizing a partner’s 
relational disposition (Box 7.2). 

5) For step 5 of our algorithm for characterizing a partner’s relational disposition, 
the robot uses its relational disposition, iθ , to select an action (ika ) according 

to the transformation process ( )ii
E OfO θ,= ; max_own ( ) i

k
i
E aO = . The partner 

also uses its relational disposition, i−θ , and transformation process, 
( )ii

E OfO −− = θ, ; max_own ( ) i
k

i
E aO −− = , to select an action. 

6) The resulting outcomes, from ( )ii oo −,  are calculated from the action pair and 

the outcome matrix, ( ),( i
k

i
k aaO − ). 

7) The robot performs steps 6 and 7 of our algorithm for characterizing a partner’s 
relational disposition (Box 7.2). 

8) Steps 3-7 are repeated until our algorithm has determined the partner’s 
relational disposition. 

9) The partner relational disposition returned by the algorithm is compared to the 
partner’s true relational disposition and the result is recorded. 

With each new situation faced by the dyad, the partner’s relational disposition was 

selected in accordance with the independent variable. Hence, if the independent variable 

was set to explore the results of using the algorithm with a partner that varies their 

disposition in 7 percent of situations, then the partner’s disposition had a 7 percent 

chance of being different from the base type with each interaction.   

 Step 7 of our algorithm determines if the situation’s characterization allows us to rule 

out the partner type hypothesis or conclude that the hypothesis is true. Because the 

partner has a non-constant relational disposition, it is not possible to reject a partner type 

hypothesis because of a single inversion. Rather, we experimented with different ratios 
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for rejecting or accepting the partner type hypothesis. Letting d be the number of 

diagnostic characterizations, n the number of non-diagnostic characterizations, v the 

number of inverted characterizations, and T be the total number of all characterizations, 

the conditions for rejecting a partner type hypothesis in this experiment was set to 

04.0>
T

v
 and 10>T . The conditions for accepting a partner type hypothesis was set to 

04.0>+
T

dn
 and 100>T . These values were empirically derived.  
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Figure 7.7 The graph above depicts the accuracy of the partner’s relational disposition as a function of 
partner transformation type variability. We hypothesized that as the partner’s transformation variability 
increased the algorithm’s accuracy would decrease. The results above support our hypothesis.   

 Figure 7.7 presents the results of the experiment. As hypothesized the overall 

accuracy of algorithm decreases as the variability of the partner’s transformation 

selection increases. The rate of decrease is approximately linear. Yet the slope of 

decrease is 18.2
20

5.929.48 −=−
. When the partner’s relational disposition did not vary, 

the algorithm, using the ratios for accepting and rejecting a partner hypothesis described 

above, was successful 92.5 percent of the time. When the partner’s transformation type 
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varied 20 percent of the time, the algorithm was only 48.9 percent accurate. Each data 

point in Figure 7.7 also displays the point’s confidence interval.  

 The results of the numerical simulation indicate that the accuracy of our algorithm for 

determining a partner’s relational disposition decreases rapidly with partner variability 

(slope of decrease is 18.2
20

5.929.48 −=−
). Domain specific testing will be necessary to 

determine if the reduction in accuracy will inhibit task or domain specific performance. 

For example, warfare domains may result in minimal (less than 5%) partner 

transformation variability. Still, even with this low amount of variability, an accuracy of 

80≈  may be insufficient if the result of being characterized as an enemy is being fired 

upon.  

 Transformation similarity may also make the results appear worse than they actually 

are. For instance, the max_joint transformation has similar outcome and action 

characteristics as the min_diff transformation. Hence, a coarser division of 

transformations as pro and antisocial could potentially result in much better algorithm 

performance.     

 Alternatives to this algorithm, such as standard machine learning techniques, may 

also improve performance. The use of support vector machines or other machine learning 

techniques could potentially outperform the presented algorithm. The advantage of the 

algorithm we present is that its performance is not based on training data and hence 

affords relational disposition determination without being first trained to do so. It may not 

be possible to train a robot to determine their partner’s relational disposition in every 

environment they will face, hence the value of the algorithm we propose.   



 196 

7.4 Conclusions 

The preceding chapter has begun the long and challenging task of investigating how a 

robot should represent and reason about its relationships. Using interdependence theory 

as an underpinning, we have argued that relationships accrete from a series of interactions 

and that these interactions result in a pattern of outcomes which can be used to 

characterize the relationship. We have developed algorithms based on this pattern of 

outcomes that allow a robot to determine its partner’s relational disposition. Our 

algorithm is based on the robot’s ability to characterize a situation as diagnostic, non-

diagnostic, or inverted.      

 The experiments presented in this chapter are much more of an introduction to the 

study of human-robot relationships than a conclusion. We have examined the hypothesis 

that a constrained action space is one cause for non-diagnostic situations. Our results 

indicate that, indeed, matrix size is a factor for determining the proportion of non-

diagnostic to diagnostic situations. We have also examined an algorithm that 

characterizes a partner’s relational disposition. Our results here indicate that the accuracy 

of the algorithm’s determination of partner type decreases rapidly with increased partner 

type variability.  

 Overall, the research presented in this chapter represents a novel and interesting 

approach to the exploration of human-robot relationships. We have developed the first 

algorithms allowing a robot to discern and characterize its relationships and have 

illuminated aspects of this topic of research which may prove critical for human-robot 

relationship understanding.     
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CHAPTER 8 

TRUST IN HUMAN-ROBOT INTERACTIONS 

 

Trust. The term itself conjures vague notions of loving relationships and lifelong familial 

bonds. But is trust really so indefinable? As we detailed in the second chapter, the 

phenomena of trust has been seriously explored by numerous researchers for decades. 

Moreover, the notion of trust is not limited to interpersonal interaction. Rather, trust 

underlies the interactions of employers with their employees, banks with their customers, 

and of governments with their citizens. In many ways trust is a precursor to a great deal 

of normal interpersonal interaction.  

 For interactions involving humans and robots, an understanding of trust is particularly 

important. Because robots are embodied, their actions can have serious consequences for 

the humans around them. Several people have already died as a result of their work with 

robots (Economist, 2006). A great deal of research is currently focused on bringing 

robots out of labs and into people’s homes and workplaces. These robots will interact 

with humans—such as children and the elderly—unfamiliar with the limitations of a 

robot. It is therefore critical that human-robot interaction research explore the topic of 

trust.   

 In contrast to much of the prior work on trust, the research presented here does not 

begin with a model for trust. Rather, we begin with a very simple idea: if it is true that 

outcome matrices serve as a representation for interaction, then should it not also be true 

that some outcome matrices include trust while others do not? In other words, some 

interpersonal interactions require trust, yet others do not. If an outcome matrix can be 
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used to represent all interactions then it should also represent those interactions which 

require trust. Our task then becomes one of determining what the conditions for trust are.   

8.1 Recognizing Situations that Require Trust 

We begin the task of delineating the conditions for trust with a definition. As first 

introduced in section 2.3.1 trust is a belief, held by the trustor, that the trustee will act in 

a manner that mitigates the trustor’s risk in a situation in which the trustee has put its 

outcomes at risk.    

 Rather than recognizing interactions that require trust, we will present conditions for 

recognizing situations that require trust. Recall that social situations abstractly represent a 

class of interactions. This section develops conditions for classifying a situation in terms 

of trust. Classification of a situation in terms of trust is a binary task, i.e. a true/false 

statement concerning whether or not the selection of an action in a situation would 

require trust. The section that follows introduces a method for measuring trust.  

 Consider, for example, the trust fall. The trust fall is a game played in an attempt to 

build trust between two or more people. One person simply leans backward and falls into 

the awaiting arms of another person (Figure 8.1). We will use the trust fall as a running 

example to explain our conditions for trust.  

 Assume that the trust fall involves two people. The person leaning back acts as the 

trustor, whereas the person doing the catching represents the trustee. The trustor decides 

between two potential actions in the interaction: lean back and do not lean back. The 

trustee also decides between two potential actions: catch the falling person and do not 

catch the falling person. Hence we can represent the interaction as a 2x2 outcome matrix 

(Figure 8.1). In this interaction the trustor holds the belief that the trustee will break their 



 199 

fall before they hit the ground. Moreover, the action of leaning back puts the trustor at 

risk of possible injury. The actual result of the interaction depends on the actions of the 

trustee. Their choice of action can result in injury or no injury to the trustor. As 

described, the situation implies a specific pattern of outcome values.     

 

 
Figure 8.1 An example of the trust fall. The trust fall is a trust and team-building exercise in which one 
individual, the trustor, leans back prepared to fall to the ground. Another individual, the trustee, catches the 
first individual. The exercise builds trust because the trustor puts himself at risk expecting that the trustee 
will break her fall.      

 The definition for trust listed above focuses on the actions of two individuals: a 

trustor and a trustee. These individuals can be arbitrarily listed as the interacting 

individuals in an outcome matrix (Figure 8.2). Without loss of generality, we limit our 

discussion of the decision problem to two actions (ia1  and ia2  for the trustor, ia−
1  and ia−

2  

for the trustee). We will arbitrarily label ia1  as the trusting action and ia2  as the untrusting 

action for the trustor. Similarly, for the trustee the action ia−
1  arbitrarily denotes the 
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action which maintains trust and the action ia2  the action which does not maintain trust. 

The definition for trust implies a specific temporal pattern for trusting interaction. 

Because the definition requires risk on the part of the trustor, the trustor cannot know 

with certainty which action the trustee will select. It therefore follows that 1) the trustee 

does not act before the trustor. We can model this condition in outcome matrix notation 

as ii −⇒ .  

 

Trustor 

ia1  ia2

 

ia−
1  

ia−
2

 

Situational Trust with Example 

io11  io12  

io22  io21  

io−
11  

io−
22  io−

21  

Action 
requiring trust 

Action not 
requiring trust 

Trustee 
Trustee maintains 

trust 

Trustee does not 
maintain trust 

Outcome from trustor selecting 
action that does not require trust 

Trustor selects trusting action 
and trustee maintains trust 

Trustor selects trusting action 
and trustee violates trust 

2
1a

 

2
2a

 

ia1  ia2

 

8 

8 

4 

12 0 

0 

12 

4 

Example:  
The Chicken 

Situation 

io−
12  

 
Figure 8.2 The figure visually depicts the reasoning behind the development of the conditions for trust. 
The matrix on the left visually describes the conditions for trust. The matrix on the right presents an 
example.  

 The definition for trust notes that risk is an important consideration for the trustor. 

Risk refers to a potential loss of outcome. The occurrence of risk implies that the 

outcome values received by the trustor depend on the action of the trustee. Our second 

condition notes this dependence relation by stating that 2) the outcome received by the 

trustor depends on the actions of the trustee if and only if the trustor selects the trusting 

action. Recall that io  denotes the outcome received by the trustor. If the trustor selects 

the trusting action then we are comparing the outcomes io11  and io21  from Figure 8.2. 
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The statement indicates that there will be a difference, 12111 ε>− ii oo , where 1ε  is a 

constant representing the minimal amount for dependence, between these two outcomes.  

 The trustor may also select the untrusting action, however. The existence of the 

untrusting action implies that this action does require risk on the part of the trustor. In 

other words, the outcome ( )i
x o2  received by the trustor when selecting the untrusting 

action does not depend on the actions of the trustee. This leads to a third condition, 3) the 

outcome received when selecting the untrusting action does not depend of the actions of 

the trustee. In other words, the outcomes for action ia2  do not depend on the action 

selected by the trustee. Stated formally, 22212 ε<− ii oo , where 2ε  is a constant 

representing the maximal amount for independence between these two outcomes. 

 The definition for trust implies a specific pattern of outcome values. It indicates that 

the trustor is motivated to select the trusting action only if the trustee mitigates the 

trustor’s risk. If the trustee is not expected to mitigate the trustor’s risk then it would be 

better for the trustor to not select the trusting action. We can restate this as a condition for 

trust, 4) the value, for the trustor, of fulfilled trust (the trustee acts in manner which 

mitigates the risk) is greater than the value of not trusting at all, is greater than the value 

of having one’s trust broken. Again described formally, the outcomes are valued 

ii
x

i ooo 21211 >> . 

 Finally, the definition demands that, 5) the trustor must hold a belief that the trustee 

will select action ia−
1  with sufficiently high probability, formally ( ) kap ii >−

1  where k is 

some sufficiently large constant. 
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 The preceding conditions are necessary for a trusting interaction. Sufficiency occurs 

when these conditions are met and the trustor selects action ia1 . The first four conditions 

describe the situational conditions necessary for trust. By testing a situation for these 

conditions one can determine whether or not an interactive situation requires trust. Box 

8.1 presents an algorithm for determining if a putative situation requires trust.   

 
Box 8.1 The algorithm above depicts a method for determining whether a social situation requires trust. 
The algorithm assumes that the first individual is the trustor, the second individual is the trustee, the action 

ia1  is the trusting action, and the action  ia2  is not a trusting action. 

 The chicken situation (see Figure 8.2) is an example of a social situation that 

potentially meets the conditions for situational trust. The first condition will be assumed 

to be true. In this situation, the second condition results in values (from the matrix)  

1012 ε>− . Thus, action ia1  does depend on the actions of the partner for constant 

121 <ε . The values assigned to the constants k,, 21 εε  are likely to be domain specific. 

The constant 1ε  represents a threshold for the amount of risk associated with the trusting 

Testing for Situational Trust 

 
Input : Outcome matrix O 

Assumptions: Individual i is trustor, individual -i is trustee, action ia1  is the trusting action and 

action ia2  is not a trusting action. 

Output : Boolean stating if O requires trust on the part of individual i. 
 

1. If ii −⇒  is not true  //the trustee does not act before the trustor 
 Return false  

2. If 12111 ε>− ii oo  is not true //the outcome received by the trustee depends on the  
 Return false   //action of the trustor when selecting the trusting action 

3. If 22212 ε<− ii oo  is not true //the outcome received by the trustee does not depend on  

 Return false   //the action of the trustor when selecting the untrusting action 

4. If ii
x

i ooo 21211 >>  is not true //the value of fulfilled trust is greater than the value of not

 Return false   //trusting at all, is greater than the value of having one’s trust  
 Else    // broken. 
 Return true 
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action. The constant 2ε , on the other hand, represents a threshold for the lack of risk 

associated with the untrusting action. The third condition results in values, 248 ε<− . 

Here, the action ia2  does not depend on the actions of the partner for constant 42 ≥ε . 

The final condition results in values 0}4,8{12 >> . Hence, for individual one, the 

selection of action ia1  involves risk that can be mitigated by the actions of the partner and 

the selection of action ia2  does not involve risk that is mitigated by the actions of the 

partner. Appendix B lists additional situations that meet the conditions for situational 

trust under the assumption  ii −⇒  or ii −⇔ . 

8.1.1 Interdependence space mapping of situational trust  

The preceding discussion has introduced a method for testing whether or not a situation 

demands trust. In this section we use this method to test a hypothesis about the nature of 

trust itself.  

Table 8.1 Summary of the interdependence space mapping of situational trust experiment. 

Experiment Summary 
Interdependence space mapping of situational trust   

Purpose 
Determine if situations meeting the conditions for situational trust occupy a 
particular portion of the interdependence space.   

Experiment Type Numerical simulation 

Hypothesis  
Situations which do meet the conditions for trust do carve out a subspace of 
the interdependence space.    

Procedure Follow the procedure presented in Table 8.2. 

Independent variable Whether or not a particular situation meets the conditions for trust.  

Dependent variable Location within the interdependence space.  

Method of Analysis Graph analysis. 

Conclusion 
Hypothesis is supported. Situations meeting the conditions for trust do not 
create a subspace within the interdependence space.   

 Given that all social situations occupy some location in the interdependence space, 

we considered the possibility that situations demanding trust carve out separate portion of 
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that space apart from those situations not demanding trust. For example, if all situations 

demanding trust occur in a limited location of the interdependence space, then the 

interdependence properties of that location could provide important information as to the 

nature of trust itself. We therefore hypothesized that those situations that meet the 

conditions for trust would indeed carve out a subspace of the interdependence space. 

Table 8.1 summarizes the experiment.  

 Our hypothesis was based, in part, on our experience investigating the 

interdependence conditions necessary for deception. In research currently under review 

we have demonstrated that social situations that warrant the use of deception form a 

subspace of the interdependence space. Hence, it seemed reasonable to expect that the 

situations that met the conditions for trust would similarly form a subspace within the 

interdependence space.  

 We used a numerical simulation to test this hypothesis. The following experimental 

procedure was followed: 

Table 8.2 Experimental procedure for the interdependence space mapping of situational trust 
experiment. 

Experimental Procedure 

1) Create 1000 matrices populated with random values aribitarily ranging from 
[ ]24,0 . 

2) Our algorithm Box 6.1 was used to determine the situation’s location in 
interdependence space. The situation’s location was recorded. 

3) Each situation was used as an input to the algorithm in Box 8.1 and the result 
was recorded. 

 Figure 8.3 depicts the results. The graph on the left hand side depicts those situations 

which our algorithm for situational trust indicates as demanding trust. The graph on the 

right hand side depicts all 1000 situations with those demanding trust colored red and 

those not demanding trust colored blue. In the right hand side, notice that the situations 
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demanding trust are interspersed throughout with the situations not demanding trust. 

Figure 8.4 depicts the same graph in two dimensions for easier understanding. Again we 

see approximately the same scattering regardless of the conditions for trust. We conclude 

that the conditions for trust do not result in a subspace of the interdependence space.  

  

 
Figure 8.3 The graphs depict the interdependence space mapping of random situations. The left hand 
side depicts only the situations meeting the conditions for trust (red). The right hand side depicts both those 
situations meeting the conditions for trust and those not meeting the conditions (blue). We hypothesized 
that the situations meeting the conditions for trust would form a subspace in the right hand side graph. As 
can be seen, the situations meeting the conditions for trust are interspersed with situations not meeting the 
conditions. Hence, our hypothesis is false; the situations meeting the conditions for trust do not form a 
subspace of the interdependence space.   
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Figure 8.4 The figure depicts 2D graphs of situations meeting the conditions for trust (left hand side) and 
situations not meeting the conditions for trust (right hand side).  Comparison of the graphs to the right with 
the graphs on the left indicates no difference. Hence, in none of the 2D graphs does the space of situations 
meeting the conditions for trust form a subspace of the interdependence space separate from those 
situations that do require trust. 
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 Looking closer at the conditions for trust, the reasons become apparent. The 

conditions for trust place conditions on the pattern of outcomes for only the trustor but 

not for the trustee. Yet a situation’s mapping in the interdependence space results from 

the pattern of outcomes for both individuals. Hence, while the trustor’s pattern of 

outcomes is not random, the trustee’s is random. Overall, the combination of the trustor 

and trustee’s patterns of outcomes does not carve a subspace of the interdependence 

space. Hence, interdependence space conditions cannot be used to test or to measure the 

amount of trust.     

8.1.2 Canonical situations and the conditions for trust  

But do our conditions for trust agree with normative human understanding of trust? In 

other words, does the Testing for Situational Trust algorithm (Box 8.1) select the same 

situations as requiring trust as would a human or group of humans? We hypothesis that it 

does.   

Table 8.3 Summary of the canonical situations and the conditions for trust experiment. 

Experiment Summary 
Canonical situations and the conditions for trust   

Purpose 
Provide evidence that the conditions for trust agree with normative human 
understanding of trust.   

Experiment Type Numerical simulation 

Hypothesis  
Our conditions for trust select the same situations as requiring trust as would 
a human or group of humans.    

Procedure 

The following procedure was used: 
1) Select situations to examine. 
2) Input into the algorithm from Box 8.1. 
3) Record algorithm’s output. 

Independent variable Situations tested.  

Dependent variable Determination of whether or not the situation demands trust.  

Conclusion 

Experiment provides evidence in support of the hypothesis. Several situations 
commonly associated with trust are judged as demanding trust by our 
algorithm. Similarly, situations not expected to require trust are judged not to 
require trust by our algorithm.    
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 In this section we qualitatively compare examples of those situations which meet the 

conditions for trust to those which do not. Our goal is to demonstrate that the situations 

selected by our algorithm as demanding trust intuitively match those situations in which 

humans use trust. Additionally, we strive to show that situations which are typically not 

considered to demand trust are also deemed to not require trust by our algorithm. The 

purpose of this analysis is to provide support for the hypothesis that the Testing for 

Situational Trust algorithm (Box 8.1) does relate to the conditions underlying normative 

interpersonal trust. It is challenging, if not impossible, to show conclusively outside of a 

psychological setting that indeed our algorithm equates to normal human trust processes. 

Table 8.3 summarizes the experiment.   

 In order to test this hypothesis, we selected five situations listed in Kelly et al.’s atlas 

of social situations (Kelley et al., 2003). Table 8.4 lists the five social situations. The 

situations were selected because they represent different areas of the interdependence 

space. Each situation was used as input to the algorithm in Box 8.1. The values for 

constants were arbitrarily set at 61 =ε  and 62 =ε . The independent variable is the 

situations selected for testing. The dependent variable then is the determination of 

whether or not the situation demands trust.  

 The results are listed in the rightmost column of Table 8.4. This column states 

whether or not the algorithm indicates that the situation demands trust on the part of the 

trustor. The trustor is assumed to be the individual depicted on the top of the matrix. The 

trusting action is assumed to be located in the first column of each matrix.   

 For example consider the Cooperative Situation, the first row from Table 8.4. The 

outcome matrix for the situation is used as input to the algorithm. The first line in the 
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algorithm is assumed to be true. The second line of the algorithm calculates 

12111 ε>− ii oo  as 6613 >− . Hence the second condition for situational trust is true. The 

third line of the algorithm calculates 22212 ε<− ii oo  as  666 <− . This third condition 

for situational trust is also found to be true. Finally, the forth line of the algorithm 

computes ii
x

i ooo 21211 >>  to be 66,613 >>  which is false. The final output of the 

algorithm for this situation is false.  

Table 8.4 Several situations arbitrary situations are depicted above. The table includes a description of 
the situation and the situation’s outcome matrix. The first condition the algorithm in Box 8.1 is assumed to 
hold for all situations. Columns 3-5 present the results for the remaining conditions. The right most column 
presents the algorithms final output, stating whether or not the situation demands trust. 

Social Situations for Qualitative Comparison 
Situation Outcome 

Matrix 
Condition 

2 
Condition 

3 
Condition 

4 
Situational 

Trust? 

 Cooperative Situation— Each 
individual receives maximal 

outcome by cooperating with the 
other individual. 

13 
12 

6 
6 

6 
6 

6 
0  

True True False False 

Competitive Situation—Each 
individual gains from the other 

individual’s loss. Maximal 
outcome is gained through non-

cooperation. 

6 
6 

12 
0 

0 
12 

6 
6  

False False False False 

Trust Situation— In this 
situation, cooperation is in the 

best interests of each individual. 
If, however, one individual 

suspects that the other will not 
cooperate, non-cooperation is 

preferred. 

12 
12 

8 
0 

0 
8 

4 
4  

True True True True 

Prisoner’s Dilemma 
Situation—Both individuals are 
best if they act non-cooperatively 

and their partner acts 
cooperatively. Cooperation and 

non-cooperation, results in 
middling outcomes for both.  

8 
8 

12 
0 

0 
12 

4 
4  

True False False False 

Chicken Situation—Each 
individual chooses between safe 
actions with middling outcomes 
and risky actions with extreme 

outcomes. 

12 
4 

8 
8 

0 
0 

4 
12  

True True True True 

 The following additional situations were analyzed:  
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1. The Cooperative situation describes a social situation in which both 

individuals interact cooperatively in order to receive maximal outcomes. Given the 

algorithm’s parameters, the trustor faces a situation in which the trusting action is 

dependent on the trustee. The untrusting action, in contrast, is not dependent on the 

trustee. Nevertheless, the trustor stands to lose nothing if the trustee does not maintain 

trust (6 versus 6). Hence, selection of the trusting action does not involve risk as the 

trustor stands to minimally gain as much by selecting this action as by selecting the 

untrusting action. We therefore conclude that the situation does not meet the 

conditions for trust.    

2. The Competitive situation also does not demand trust, but for different 

reasons. In this situation the trusting and untrusting actions afford equal risk. Thus the 

trustor does not face a decision problem in which it can select an action that will 

mitigate its risk. Rather, the trustor’s decision problem is simply of a matter of 

selecting the action with the largest guaranteed outcome. Trust is unnecessary 

because the trustor’s decision problem can be solved without any consideration of the 

trustee’s beliefs and actions.   

3. The Trust Situation describes a situation in which mutual cooperation is in 

the best interests of both individuals. As the name would portend, this situation 

demands trust. The trustor’s outcomes are dependent on the action of the trustee if it 

selects the trusting action. Further, nominal outcomes are risked when selecting 

untrusting action. Finally, the trustor stands to gain the most if it selects the trusting 

action and the trustee maintains the trust. The trustor’s second best option is not to 
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trust the trustee. Finally, the trustor’s worst option is to select the trusting action and 

to have the trustee violate that trust. 

4. The Prisoner’s Dilemma is perhaps the most extensively studied of all 

social situations (Axelrod, 1984). In this situation, both individual’s depend upon one 

another and are also in conflict. In this situation, selection of the trusting action by the 

trustor does place outcomes at risk dependent on the action of the trustee. Given the 

parameters selected, however, the untrusting action is also critically dependent on the 

action of the trustee. Hence, the decision problem faced by the trustor is more 

complicated than simply dissecting the problem into trusting and untrusting actions. 

Importantly, both actions require some degree of risk on the part of the trustor. Our 

conditions for situational trust demand that the decision problem faced by the trustor 

offer the potential for selecting a less risky action. As instantiated in Table 8.4, this 

version of the prisoner’s dilemma does not offer a less risky option. Note, however, 

that by changing one of the trustor outcomes, say 8 to 9, and the algorithm’s constants 

to 9,8 21 == εε  the situation does then demand situational trust. Overall, the 

prisoner’s dilemma is a borderline case in which the specific values of the outcomes 

determine whether or not the situation demands trust.  

5. The Chicken situation is a prototypical social situation encountered by 

people. In this situation each interacting individual chooses between safe actions with 

intermediate outcomes or more risky actions with more middling outcomes. An 

example might be the negotiation of a contract for a home or some other purchase. 

This situation, like the Trust Situation, demands trust because it follows the same 

pattern of risks as the Trust Situation.  



 212 

 Table 8.4 and the analysis that followed examined several situations and employed 

our conditions for situational trust. In several situations our algorithm indicated that the 

conditions for trust were met. In others, it indicated that these conditions were not met. 

We related these situations back to interpersonal situations commonly encountered by 

people, trying to highlight the qualitative reasons that our conditions match situations 

involving people. Overall, this analysis provides preliminary evidence that our algorithm 

does select many of the same situations for trust that are selected by people. While much 

more psychologically valid evidence will be required to strongly confirm this hypothesis, 

the evidence in this section provides some support for our hypothesis. We now move on 

to the problem of measuring trust.      

8.2 Measuring Trust 

Several trust researchers have recognized the importance of risk in defining, 

characterizing, and quantifying trust (Deutsch, 1962; Luhmann, 1979, 1990). Risk is 

typically quantified as the expectation of a loss function (Risk, 2007). Formally, 

( ) ( ) ( )∑=
i

ypyxLyxR ,,  is the risk associated with predicting x when the true value is y. 

Here, we define the loss function to be the difference in outcome associated with a 

partner’s choice of one action over another. In other words, the loss L for individual i 

when action ia−
2  is selected by individual -i over action ia−

1  is equal to, 

( ) ( ) ( ) iiiiiiiiiii ooaaOaaOaaL 2111211121 ,,, −=−= −−−− . The expectation of the loss function 

is ( )iap −
2  where ( )⋅p  is the probability. This expectation can also be conditioned on 

external evidence, such as the situation’s correspondence, the partner’s recent history, 
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etc. Overall then the risk to the trustor associated with selecting the trusting action ia1  is 

measured as ( ) ( ) ( )( )iiiiiii apaaLaaR −−−−− = 22121 ,, . We propose that trust, τ , is proportional 

to the risk assumed by the trustor given that the situation requires trust, namely 

( )iii aaR −−∝ 21 ,τ . Box 8.2 provides an algorithm for measuring trust.  

 
Box 8.2 The algorithm above depicts a method for measuring the trusted required by a social situation.  

 Using a situation described in section 2.3.2, the investor-trustee game, we 

successively created situations that placed the trustor (investor) at risk to explore the 

algorithm’s predictions. Recall that the investor-trustee game is a situation that has been 

used by scientists to explore the neuroscientific origins of trust (King-Casas et al., 2005). 

The game appoints one individual as the investor (the trustor for this discussion) and 

other individual as the trustee. The investor is given some quantity of money. He or she 

chooses some amount to invest with the trustee. The amount invested is multiplied by a 

factor. Finally the trustee decides how much to give back to the investor. Change in trust 

has been shown to correlate with investor reciprocity in this game.  

 In Table 8.5 we demonstrate our algorithm for measuring trust via the investor-trustee 

game. In our simplified version of the game, the investor is given a quantity of money 

Measuring Trust 
 

Input : Outcome matrix O 
Output : Real number τ  measuring trust or NULL 
 

1. Use the algorithm from Box 8.1 to generate Boolean b. 

2. If ( )falseb =   //Determine if the situation requires trust 

 Return NULL 

3. If ( ) kap i ≤−
1

1   //Ensure that the trustor holds belief that  

 Return NULL  //the trustee will select the trusting action 
 Else 

 Set ( ) ( ) ( )( )iiiiiii apaaLaaR −−−−− == 2211211 ,,τ    

4. Return τ    //return the measure for trust 
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delineated in the first column of Table 8.5. The investor has a binary decision choosing to 

either invest all or half of the money with the trustee. The trustee also chooses between 

two potential actions, either returning all or none of the appreciated money back to the 

investor. Money invested with the trustee doubles in value.  

Table 8.5  The table demonstrates the change in trust measure with respect to the changing conditions of 
the investor-trustee game. The table shows that as the probability that the trustee will violate the trust 
increases, so to does the trust measure. Hence the amount of trust necessary to selected the trusting action 
increases. Moreover, as the loss increases in relation to the initial money given to the investor the trust 
measure increases. 

Investor-Trustee Demonstration of Algorithm for Measuring Trust 
Initial Investor 

Money 
Outcome Matrix Situational 

Trust? 
( )iap −

2  ( )iii aaL −−
211 ,  τ  

50 100 
0 

75 
0 

0 25 

true 0.0 100 0 

50 100 
0 

75 
0 

0 
100 

25 
50  

true 0.5 100 50 

50 100 
0 

75 
0 

0 25 

true 0.9 100 90 

      0 0 
0 

0 
0 

0 0 

false 0.5 0 null 

25 50 
0 

37.5 
0 

0 
50 

12.5 
25  

true 0.5 50 25 

50 100 
0 

75 
0 

0 
100 

25 
50  

true 0.5 100 50 

 The second column of Table 8.5 depicts the outcome matrix resulting from an initial 

investor amount depicted in the first column. The next column denotes whether or not the 

situation meets the conditions for situational trust. Only the situation without initial 

investment fails to meet the conditions for situational trust. In the top half of the table, the 
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forth column of the table varies the probability that the trustee will choose to not return 

the investor’s investment. When the probability that the trustee will violate the trust is 

zero (last column), the situation presents no risk. Our measure of trust returns zero, 

reflecting the risk to the investor. As the probability that the trustee will violate the trust 

increases so to does our trust measure. The final three rows in Table 8.5 demonstrate the 

trust measure’s change with increasing initial investment.    

 
Figure 8.5 Graphical depiction of the increase of our proposed trust measure with respect to increasing 
loss and probability of untrusting action selection. Our trust measure is a unitless measure which is 
proportional to the amount of loss and the probability of selecting the untrusting action. The measure is 
useful for comparing situations that require trust.  

 Table 8.5 demonstrates our measure of trust for a particular situation. Because the 

investor-trustee game has typically been tied to money the situation is a good intuitive 

demonstration that allows us to show various levels of loss and probabilities of loss. In 

general, the risk associated with the trust measure obeys the function depicted in Figure 
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8.5. As described, our trust measure is linear with respect to amount of loss and 

probability of loss. Results from Cumulative Prospect Theory contradict the linearity of 

our trust measure at extreme amounts of loss (Tversky & Kahneman, 1992). Future 

refinements of our trust measure could include Cumulative Prospect Theory’s measures 

of expected utility. Regardless, further experimentation involving the use of human 

subjects will be necessary in order to provide additional evidence that our algorithm for 

measuring trust is quantitatively accurate.  

8.3 Recognizing Relationships that afford Trust 

In this final section we connect much of the preceding theory and discussion by asking if 

a robot can determine if a particular partner can be trusted in a particular situation. The 

examination of this topic forces the robot to assume the role of the trustor, deliberating 

with respect to the actions of its human partner. This question is potentially relevant to 

many robotics problems today. Automatic pilots helping to fly planes and drive trains 

might question the authority and decision making of the human while in transit. 

Autonomous robots operating in dangerous locations such as space might reject the 

actions of a human if they are deemed to put the entire team or mission at risk. While the 

applications of today do not require robots capable of rejecting the advice or actions of a 

human, the applications of tomorrow will.     

 Selecting the most trusted partner requires that a robot have models of all of the 

potential partners. Hence the robot will need to interact with each partner, constructing 

models of each individual. Next, the robot faces a situation requiring trust and must select 

one individual to be the trustee. In this final section, we propose a method for recognizing 

relationships that afford trust.    
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8.3.1 Selecting a Trusted Partner 

The selection of a trusted partner begins with interaction. The robot must interact and 

construct a model of all of its potential partners. Once these models have been developed, 

the robot can then predict each partner’s likely action based on knowledge of the partner. 

Questions of trust are primarily concerned with the trustee’s internal tendency to act in a 

manner that mitigates the risk assumed by the trustor. Thus, to determine that a partner is 

trustworthy, the robot must conclude that, given some situation O
~

 requiring trust, the 

partner’s transformation, i−θ , will be such to create an effective situation EO  in which 

the partner will select action ia−
1  resulting in outcome io11  such that ii

x
i ooo 21211 >>  for 

the trustor. To make this conclusion the robot must hold the belief that ( ) kap iii >−− θ1 . 

To select the most trusted partner for the situation the robot solves the equation 

( )iii

i
ap −−

−
θ1maxarg , determining the partner with maximum likelihood of selecting action 

ia−
1  given the partner’s transformation. Box 8.3 describes the process algorithmically. 

The following section proposes a means for evaluating our method of selecting a trusting 

partner.  
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Box 8.3 A method for selecting the most trusted partner among several potential partners is presented. 

 Consider, for example, coworkers at a dangerous job such as a prison. Both 

individuals must place their own safety at risk in order to perform tasks, such as checking 

on inmates. Each individual must believe that if they are attacked while performing a task 

that the other individual will act in a manner that will mitigate their risks. The trustor in 

this example is the individual walking and observing inmates. Their outcomes are at risk 

because they are alone or outnumbered by dangerous people. Their coworker, in the 

meantime, remains safe but must be able and willing to react and come to their rescue if 

an attack occurs. The coworker is thus the trustee.   

 While this situation clearly demands trust, we can now consider how the situation 

changes if we allow the trustor to interact with and build models of different coworkers. 

Once the trustor does this we offer them the opportunity to select the coworker whom 

they trust the most.    

Selecting a Trusted Partner 
 

Input : Partners kii −− ,,1 K , trusting situation O
~

. 

Output : Most trusted partner *i . 
 

1. The robot interacts with individuals kii −− ,,1 K  constructing models 
i

k
ii mmm −−− ,,, 21 K  for each partner. 

2. The robot is then presented with a situation O
~

 requiring trust.  

3. For each partner the robot generates belief ( )iii ap −− θ1  

4. The robot selects the most trusted partner by solving 

( ) *
1maxarg iap iii

i
=−−

−
θ . 

5. Return the most trusted partner *i .   
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8.3.2 Selecting the most Trusted Partner 

Table 8.6 Summary of the selecting the most trusted partner experiment. 

Experiment Summary 
Selecting the most trusted partner   

Purpose 
Investigate the possibility of using the algorithms presented in this chapter to 
select the most trusted partner.   

Experiment Type Laboratory experiment 

Hypothesis  
Use of the selecting a most trusted partner algorithm will result in greater 
outcome obtainment than use of a max_own strategy which does not consider 
the partner when selecting an action.      

Procedure Follow the procedure presented in Table 8.7. 

Independent variable Experimental versus control condition.  

Dependent variable Average outcome obtained. 

Method of Analysis 
Ablation experiment consisting of comparison of the experimental condition 
involving use of the selecting a most trusted partner algorithm to a control 
condition. 

Conclusion 
Hypothesis is supported. The average outcome obtained in the experimental 
condition was significantly greater than the outcome obtained in the control 
condition.   

We conducted a robot experiment to explore the effect of selecting the most trusted 

partner on the robot’s task performance. The experiment was designed to complement the 

prison guard example presented above. The robot in this case is tasked with guarding one 

of two types of prisoners: escape threats or riot threats. The robot also has two potential 

teammates for the task: a fast but weak human partner and a strong but slow human 

partner. The fast partner is better able to capture escaping convicts while the strong 

partner is better able to quell riots. 

 The purpose of the experiment is to demonstrate the algorithm from Box 8.3 for 

selecting the most trusted partner. Our experiment compares the same robot in the same 

situation with and without use of the most trusted partner algorithm. Hence this is an 

ablation experiment. We hypothesize that use of the algorithm would result in greater 

average outcome. Our independent variable in this experiment is thus an experimental 

condition in which the robot uses the algorithm versus control condition in which the 
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robot does not use the algorithm. In the control condition the robot used a max_own 

strategy to select the action that maximized its own outcome without regard to the 

partner. The dependent variable here is average outcome obtained by the robot. Outcome 

obtained is a crude measure of task performance. Table 8.7 summarizes the experiment.  

 The design of the experiment is meant to notionally resemble a scenario in which 

selecting the most trusted partner might be critical for the robot’s performance and well-

being. The scenario chosen focuses on a prison environment in which the robot must 

select the most trusted partner for a dangerous task. Numerous other scenarios are also 

possible. This scenario was chosen because it once again highlights the generality of this 

framework in different environments.   

Experimental Setup 

The experiment was conducted in a laboratory environment. Figure 8.6 depicts the 

layout. Two notional prison cells are located next to one another with a divider 

preventing the robot from observing both cells at one location. The robot’s base is located 

approximately seven feet from both cells in a straight line. The top half of Figure 8.6 

(left-most photo) depicts the robot at its base position. A human operator sat at a notional 

prison operations desk. The robot’s base is not located within the sight of the human 

operator.  

 The robot used gestures to communicate its partner preference to the human operator. 

Notionally, the human operator would then assign a human teammate to the robot. To 

make its partner preference known the robot moved forward approximately three feet into 

an area easily observed by the operator.  
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 Experimental Setup 

Base Position Riot Observation 
Position 

Escapee Observation 
Position 

Riot 
Prisoners 

Escapee 
Prisoners 

Robot start 
place 

Riot 
Prisoners  

Escapee 
Prisoners 

Robot start place 

Partner preference statement Team action performance  

Human operator Human operator 

Operation desk Operation desk 

Robot moves to state 
its partner preference  

 
Figure 8.6 The top of the diagram shows the laboratory setup for the most trusted partner experiment. 
Left photo shows the base position which is located about 10 feet in front of two containers representing 
cell blocks. The center position shows the robot at an observation position in front of riot prisoners. The 
right photo depicts the robot observing the escapee prisoners. The two lower diagrams depict the actions 
the robot performs in the experiment. In the left diagram the robot first moves to a position within view of 
the operator and then moves to state “yes” or “no” with respect to its partner preference. In the right 
diagram, the robot moves to observe either the riot prisoners or the escapee prisoners.  

 The robot’s convict observation actions were performed by moving to locations in 

front of the two cells. The center image in the top half of Figure 8.6 depicts the robot 

observing the cell containing the riot threat convicts and rightmost image depicts the 

robot observing the cell containing the escape threat convicts. The bottom half of Figure 
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8.6 portrays the robot’s motions when stating its partner preference and making its prison 

cell observations.    

Partner Preference Statement 

When the robot selects it partner it must communicate its selection to the human operator. 

The process of partner selection has three stages: 1) the human operator asks the robot in 

a verbal statement if it prefers partner x; 2) the robot uses the algorithm in Box 8.3 to 

determine which partner it prefers; 3) if the partner preferred by the robot is the same as 

the one asked about by the human operator then the robot produces a “yes” motion, if not 

then the robot produces a “no” motion. Figure 8.7 depicts the robots stating “yes” and 

Figure 8.8 depicts the robot stating “no.” To state “yes” the robot moved its camera neck 

in an up-and-down motion imitating the same motion a human makes when shaking their 

head yes. To indicate “no” the robot turned back and forth through approximately 180 

degrees imitating a human shaking their head no.   

 Rovio indicating Yes 

 
Figure 8.7 Robot movement for stating “yes” to the operator’s question regarding its partner preference. 
The robot moves its neck up and down to state yes.    
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 Rovio indicating No 

 
Figure 8.8 Robot movement for stating “no” to the operator’s question regarding its partner preference. 
The robot moves back and forth in a half circle to indicate no. 

Partner Models 

Prior to the experiment two models of human partners were created. Both models 

contained the actions: chase-convict, ignore-escape, defend-from-attack and 

flee-riot. The chase-convict action results in the human partner chasing an escaping 

convict. The flee-riot action results in the human partner fleeing the prison. The 

defend-from-attack action results in the human partner defending the robot and the 

prison during an attack. The ignore-escape action results in no action from the human 

partner. The robot’s model of the fast human partner contained the belief ( )iap −  that that 

human would select the chase-convict action with a probability of 0.90, the ignore-

escape action with a probability of 0.10, the defend-from-attack action with a 

probability of 0.10, and flee-riot action with a probability of 0.90. The robot’s model 

of the strong human partner contained the belief ( )iap −  that that human would select the 

chase-convict action with a probability of 0.10, the ignore-escape action with a 

probability of 0.90, the defend-from-attack action with a probability of 0.90, and 

flee-riot action with a probability of 0.10. Hence, the robot’s models of the two 
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partners’ indicated different action preferences. Again these models were given to the 

robot.  

Experimental Procedure 

In addition to stating its partner preference the robot’s action model consisted of the 

following two actions: observe-riot-convict and observe-escapee-convict. The 

observe-riot-convict resulted in the robot moving to a position where it could 

observe the cell containing the convicts with a potential to riot. The observe-escapee-

convict resulted in the robot moving to a position where it could observe the cell 

containing the convicts with a potential to escape. 

 Prior to experimentation, twenty outcome matrices meeting the conditions for trust 

were created. These twenty outcome matrices were used in both the experimental and 

control conditions. As mentioned above, the robot’s partner models were constructed 

prior to experimentation by the experimenter. Hence, use of the algorithm for selecting 

most trusted partner began with step two of Box 8.3. In this step, the robot is presented 

with one of the twenty outcome matrices created prior to experimentation, O
~

. The 

experimental procedure is listed below: 

Table 8.7 Experimental procedure for the most trusted partner experiment. 

Experimental Procedure 

1) Twenty outcome matrices populated with random values (arbitrary range of 
[ ]20,20−  was used) meeting the condition for trust (Box 8.1) were created. 

2) The robot is presented with a new outcome matrix O
~

 (one of the twenty 
created in step 1). The robot is randomly tasked with observing either the 
convicts with a potential for rioting or the convicts with a potential for 
escaping. 

3) Experimental condition: The algorithm from Box 8.1 is used to determine if 
the situation demands trust. 



 225 

4) Experimental condition: For each of the two potential partners, the robot 
uses the partner models to retrieve belief ( )iap −

1  that the partner will select 
the trusted action. 

5) Experimental condition: The robot selects the partner with the greatest 
likelihood of selecting the most trusted action. 

6) Experimental condition: The human operator verbally asks the robot if it 
would prefer to have one of the two potential partners as a teammate. 

7) Experimental condition: If the robot is asked to be a teammate with the 
same partner that if prefers then it makes the yes motion, otherwise it makes 
the no motion. 

8) Experimental condition: The robot selected the trusting action. 

Control condition: The robot selected the action that maximzed its own 
outcome without regard to the partner (max_own). 

9) The robot moves to either observe the convicts with a potential for rioting or 
convicts with a potential for escaping (Figure 8.9). 

10) Notionally, the convicts with a potential for rioting attempt to riot and the 
convicts with a potential for escaping attempt to escape. 

11) The robot observes the convict’s actions and the human teammate selects an 
action according to its action preference relation.  

12) The robot receives maximal outcome (actual value depends on O
~

) if the 
convicts attempting to escape are captured and the convicts attempting to riot 
are prevented from rioting. This occurs if the robot has selected the strong 
human partner as a teammate when it is observing convicts with the potential 
for rioting and if the human partner selects the defend-from-attack 
action, which it does with probability of 0.90. The robot also receives 
maximal outcome if it has selected the fast human partner as a teammate 
when it is observing convicts with the potential for escaping and if the human 
partner selects the chase-convict action, which it does with probability of 
0.90. All other combinations of robot and human action result in reduced 

outcome (actual value depends on O
~

). 

In essence, the experimental condition used our algorithm for selecting the most trusted 

partner whereas the control condition did not.  
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 The Robot’s Observation Actions 

Convicts with a potential 
to riot 

Convicts with a potential 
to riot 

 

Convicts with a potential 
to riot in the dark 

 
Figure 8.9 Examples of the robot’s observation actions from the two (left and center) prisoner 
observation points. The image to the right depicts an experimental trial conducted under limited lighting.   

Results 

We ran twenty trials in each of two conditions: one control condition and one 

experimental condition. Recall that the purpose of the experiment is to show that use of 

our method for selecting the most trusted partner by a robot results in greater average 

outcome in situations demanding trust.   

 As depicted in Figure 8.10 the average outcome received in the control condition was 

-7.24 versus 10.57 in the experimental condition in which the robot used our algorithm to 

select the most trusted partner. This difference was statistically significant (p<0.03). In 

terms of partner selection, in the experimental condition the robot consistently selected 

the best partner. In the control condition, on the other hand, the robot selected the best 

partner in 35 percent of the trials. With respect to the results for the team, in the 

experimental condition the human robot team received an average of 13.05 outcome per 

trial versus -2.19 for the control condition. This difference however was not statistically 

significant (p ~ 10.1).   
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Figure 8.10 Results from the selecting the most trusted partner experiment. When the robot uses the 
algorithm from Box 8.3 to select the most trusted partner the average outcome was 10.57. The control 
condition, in contrast, in which the robot used a max_own strategy to select its action without 
consideration of the partner resulted in an average outcome of -7.24. The difference between these two 
conditions was statistically significant (p<0.03).  

 The results support our hypothesis that our algorithm for selecting the most trusted 

partner does indeed aid the robot’s task performance. It is not clear, however, that the use 

of the algorithm aids team performance. Although the team results indicate a difference, 

the difference was not found to be statistically significant. The fact that we used only 

twenty trials in each condition is likely the cause for this lack of significance. Still, the 

team results indicate that selection of the most trusted partner by the trustor does not 

always aid the trustee. This again demonstrates the one-way nature of trust. Namely, that 

acts of risk mitigation by the trustee may not have a positive impact on the trustee’s 

outcomes.  

 This experiment, in and of itself, serves as a demonstration of our algorithm for 

selecting the most trusted partner which is based on the theoretical principles described in 

sections 8.1 through 8.3. It does not, however, serve as a conclusive proof of the 
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algorithm we have presented. This experiment is meant to complement the other 

experiments by demonstrating a particular situation in which a real robot selects actual 

actions as part of a grounded situation. Further testing in additional domains will be 

necessary to show that the algorithm and the results apply to other domains.    

8.4 Conclusions: Trust in Human-Robot Interactions 

The preceding chapter has introduced ideas for defining, representing, and measuring 

trust based on interdependence theory. We have presented algorithms for segregating 

those social situations that demand trust from those which do not, algorithms for 

measuring trust, and algorithms for selecting the most trusted partner from several 

potential candidates.  

 Many different types of experiments have been presented in this chapter. Some of the 

experiments have consisted of simple demonstrations, numerical simulations, and also 

laboratory experiments involving the use of real robots. Our results have both supported 

our hypotheses and refuted them. Overall, the research and the results presented serve 

more as an introduction to the approaches presented herein than as a conclusion. These 

ideas will need to be further tested on a variety of hardware systems and in a multitude of 

environments. We believe that these ideas will serve as a basis for various different 

research avenues. Moreover, although the evidence for the theories and hypotheses 

presented may not be as complete as desired, it is the breadth and scope of our framework 

that offers the most potential for robotics and for artificial intelligence.     



 229 

CHAPTER 9 

CONCLUSIONS 

 

In this final chapter we summarize the principal results of our research, discuss directions 

for future work, and present some final remarks.   

9.1 Summary of Contributions 

This dissertation makes the following contributions: 

• A general, computational framework implemented on a robot for 

representing and reasoning about social situations and interaction based on 

interdependence theory. We have presented a computational framework based 

on interdependence theory that affords a means of representing interactions and 

social situations as outcome matrices. As argued in Chapter 5, outcome matrices 

are an established method for representing interaction in game theory, 

experimental economics, and neuroscience communities (Kelley, 1979; Osborne 

& Rubinstein, 1994). Moreover, the presented framework is general in the sense 

that the results that have been presented are not tied to a particular robotic system, 

social situation, environment, or type of human partner.    

• A principled means for classifying social situations that demand trust on the 

part of a robot and for measuring the trust required by a situation in which a 

robot interacts with a human. This dissertation has introduced a novel, general, 

and principled method for representing and reasoning about trust. Using a 

definition for trust developed from a lengthy literature review, a series of 
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conditions for trust have been expounded. In Chapter 8 we showed that these 

conditions could be used to determine if a particular interaction demands trust on 

the part of the robot or the robot’s partner. Further, we have argued that the 

amount of trust can be measured as risk and developed methods for measuring 

trust.   

• A methodology for investigating the theory underling human-robot 

interaction. This dissertation has explored a top-down methodology for exploring 

the theory that underlies human-robot interaction. This top-down methodology 

begins with the definition of concepts such as relationship and trust (Chapters 7 

and 8). These concepts are then related to our computational representation of 

interaction and social situations. We then develop general purpose algorithms that 

tie these concepts to the robot’s interactions. This top-down methodology stands 

in contrast to the bottom-up methodologies typical in most current day human-

robot research (Fong, Nourbakhsh, & Dautenhahn, 2003).  

• A computational framework for social action selection implemented on a 

robot. Interdependence theory postulates the existence of a process for social 

action selection that includes a person’s own internal predispositions. This 

process is called the transformation process. This dissertation has demonstrated 

that the transformation process can be used by a robot for social action selection 

(section 7.3).   

• An algorithm that allows a robot to analyze and characterize social 

situations. This dissertation has presented an algorithm (Box 6.1) that allows a 

robot to map an interaction to a portion of the interdependence space and, by 
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doing so, characterize the situation in terms of its interdependence properties 

(section 6.1). This characterization affords information that has been shown to be 

an important factor for social action selection and increased task performance (as 

measured by outcome obtainment).   

• Methods for modeling the robot’s human partner and for characterizing a 

robot’s relationship with the partner. This dissertation has explored and 

developed techniques that afford a robot the ability to model its human partner 

(section 5.3). Moreover, we have shown that these techniques can be extended to 

learning about clusters of human types, or stereotype learning (section 5.4). We 

have shown that stereotyped models of human partners can bootstrap the process 

of learning about a particular partner. Finally, we have demonstrated techniques 

by which a robot can determine its partner’s underlying type (section 7.3).  

9.2 Research Questions Revisited 

The first chapter detailed several questions that we intended to explore. In this section we 

review these questions stating the conclusions this work has set forth.  

1) What effect will the development of a theoretical framework that allows a 
robot to represent social situations and recognizing situations that require 
trust have on the robot’s ability to select actions?  

The development of a theoretical framework allowing a robot to represent and 

recognize situations that require trust has been shown to afford better partner 

selection and task performance (sections 8.1 through 8.3). Moreover, this 

dissertation has shown that the creation of the theoretical framework, in and of 

itself, allows for a general and principled investigation of human-robot interaction 
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(section 4.1). Finally, the representations for interaction and social situations 

described and developed as a part of this research have played an integral role in 

the creation of methods for everything from stereotype learning (section 5.4) to 

reasoning about trust (section 8.1). 

2) What effect will deliberation with respect to a social situation have on the 
robot’s ability to select actions?  

This research has resulted in algorithms that allow the robot to deliberate with 

respect to the robot’s human partner (section 5.3), the interdependence 

characteristics of the situation (section 6.1), and the dyad’s relational disposition 

(section 7.1). In all of these cases, the robot’s consideration of the different 

aspects of the interaction has resulted in greater outcome obtainment which is a 

general reflection of better task performance.   

3) What effect will algorithms, developed as part of the theoretical framework 
of social situations, that allow a robot to represent its relationship with its 
human partner and to characterize these relationships in terms of the trust 
have on the robot’s ability to select actions?  

This dissertation has presented algorithms that allow a robot to reason about the 

relational disposition of its partner (section 7.1). Moreover, we have demonstrated 

that the methods and techniques created pertaining to trust offer the robot a means 

for selecting the best partner for a task (section 8.3). Hence, these results serve as 

evidence that a robot’s ability to represent its relationships and to characterize 

these relationships in terms of trust is affords the robot techniques for improved 

task performance as determined by the outcome it obtains.      
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Principal Research Question  

4) What effect will characterizing the trustworthiness of social relationships 
and of social situations have on a robot’s ability to select actions? 

Overall, the characterization a robot’s social relationships and situations in terms 

of trust has an important effect on the robot’s social performance. As 

demonstrated by sections 5.3, 5.4, 6.2, and 8.3 this characterization affords 

improved task performance. In a larger sense, the ability of the robot to represent 

and reason about trust, relationships, and the interdependence characteristics of 

the situations that it faces has a significant impact on the robot’s social behavior. 

As indicated by the results from sections 5.3, 5.4, 6.2, 7.3 and 8.3, a robot capable 

of deliberating about its interactions, its partner, and the social situation, is better 

suited to act in an appropriate manner in a wider variety of situations then a robot 

which lacks these capabilities.         

9.3 The Road Ahead 

The presented framework offers numerous avenues for potential research. Applications of 

this work could conceivably touch many different areas of artificial intelligence. Some of 

the most promising and immediate applications of this work is in the domain of assistive 

therapy. Assistive therapy often involves one-on-one interactions with the same person 

over the course of the treatment, a good opportunity for partner modeling (Feil-Seifer, 

2008). Moreover, therapeutic treatments often involve repeatedly asking the patient for 

their current state. This information could potentially be translated in outcomes. 

 Before discussing long-term avenues of this research, we will briefly describe how 

this framework could be deployed on a fielded robotics system. On a deployed system it 

will be necessary for the robot to generate outcome values reflecting the partner’s state. 
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Smile/frown detectors, pose detectors, and affect in speech recognition could all 

potentially be used to provide estimates of the partner’s outcome value. The robot’s 

outcome value, on the other hand, will likely be tied to task performance for most 

applications. Embuing the robot with action recognition presents is a significant 

challenge to deploying this framework. Nevertheless, researchers have begun to explore 

this challenge (Philipose et al., 2004; Picard, 2000). The implementation of these 

underpinnings should allow a robot to create outcome matrices representing its 

interactions. Sensor noise and uncertainty present additional challenges. Game theory 

offers a variety of techniques for managing uncertainty which could potentially be 

explored to address these challenges (Osborne & Rubinstein, 1994). Once the preceding 

concerns have been addressed, the framework should be capable of interactive action 

selection on a fielded robotics system.  

 Although the development of fielded systems is an important next step for this 

research, it is the theoretical extensions of this framework that hold the most promise to 

advance our understanding of human-robot interaction.   

• Emotion – The outcome values described throughout this dissertation may serve as a 

placeholder for emotion. Emotion is an important and active area of research within 

the artificial intelligence community (Velasquez & Maes, 1997). The relation of 

outcome values to emotion is unclear, yet certainly important. Outcome values are 

defined as scalar real numbers, but emotions are often described multi-dimensionally 

(Ortony, Clore, & Collins, 1988). Do outcome values serve as a scalar descriptor of 

emotion? Or can interdependence theory be used to explain emotions? Fear, for 

example, could be described as the negative outcomes resulting from deliberation 

with respect to future negative outcomes. Jealousy could similarly be delineated as 

negative outcomes resulting from positive outcomes received by another individual. 

Still, other emotions, such as anger, seem difficult to describe as an outcome value. A 
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framework tying the broad areas of emotion and interdependence together would be 

an important theoretical result for both artificial intelligence and psychology.  

• Symbol Grounding – Symbol grounding refers to the problem of how seemingly 

meaningless symbols are translated into meaningful monikers for artifacts in the real 

world (Harnad, 1990). The framework detailed in this dissertation offers the 

possibility of grounding symbols in terms of the reward and cost they afford the 

robot. For example, the symbol of firefighter comes to represent the actions and 

outcomes afforded by a firefighter in specific situations. When and if this framework 

becomes tied to emotion, it may then be possibly to describe symbols such as 

firefighter in terms of the emotion that the symbol produces. This connection would 

begin to touch Damasio’s somatic-marker hypothesis, which states that emotional 

processes guide behavior via associations with emotion imprinted memories 

(Damasio, 1994).    

• Deception – Deception is generally defined as “causing another to believe what is not 

true; to mislead or ensnare (Deception, 1999)”. McCleskey notes that deception is a 

deliberate action or series of actions brought about for a specific purpose 

(McCleskey, 1991). The framework presented in this dissertation offers a means of 

understanding and reasoning about deception. Deception can be modeled as an action 

or series of actions taken by the deceiver with the purpose of influencing the target to 

select a particular action or series of actions. The question then becomes how the 

robot’s model of the partner influences its ability to deceive.   

• A general theory of interaction – Many of the concepts and ideas discussed in this 

dissertation relate not only to robots but to any system of interacting entities. Whether 

one is exploring how two companies interact to maximize profit and cooperation, a 

husband and wife interact to minimize fighting, or a human and a machine interact to 

perform a task, many of the same principles apply. It may be possible to forge a 
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general theory of interaction encompassing all of these seemingly disparate fields, 

and in doing so, provide tools for each field to move forward. 

9.4 Towards a Socially Intelligent Robot 

While the dream of creating a sociable robot is still a great many years away, the theory, 

and principles on which these social beings will be based must be created today. This 

dissertation has approached this challenge by extending and adapting theories of human 

social psychology and game theory to the problems faced by an interacting human and 

robot. The theories and principles developed herein have been formulated from first 

principles and generally accepted definitions. From these definitions we have crafted and 

tested algorithms. We have shown that this approach leads to research that is not tied to a 

particular robotic platform, environment, or human. We feel that this type of underlying 

scientific theory will be critical for the future success of the human-robot interaction 

field.  

 The challenge of creating sociable robots uniquely bridges human psychology and 

artificial intelligence. Simple optimization algorithms are unlikely to succeed in a way 

that results in naturalistic interaction. Moreover, it will not be feasible to perfect a robot’s 

interactions. The imperfection of human socialization plays a large role in defining us as 

humans. The interactive, socially intelligent robots of the future should share our social 

fallibility (Sharkey & Sharkey, 2010 in press). Imagine the horror of interacting with a 

robot that has optimized for every rebuttal, every joke, every tender moment. Social 

intelligence is defined by a human’s social flexibility in a myriad of different situations 

and different partners. The creation of a new socially intelligent being will likely tell us 

as much about ourselves as it will tell us about robotics.  
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APPENDIX A  

GLOSSARY OF TERMS 

 
 
Actor script: A predefined set of interactive instructions that an individual follows when 

interacting with the robot. Used to control the human’s behavior.  

Basis of control: The ways in which each partner affects the other’s outcomes (Kelley & 
Thibaut, 1978). 

Belief: A possibly uncertain truth statement held by an individual.   

Bilateral Actor Control (BAC): The human or robot’s ability to affect its own outcomes 
in a social situation (Horswill, 1998; Kelley & Thibaut, 1978). 

Concurrent interaction style: A style of interaction in which both individuals select 
actions at the same time. 

Correspondence: The extent that each partner’s outcomes are consistent with the others 
(Kelley & Thibaut, 1978). 

Diagnostic situation: A situation or network of situations that is used by an individual to 
assign credit for a partner’s action selection to either the partner or the environment 
(based on Rusbult &  Van Lange, 2003). 

Disposition: A durative or predominant tendency with respect to an individual’s social 
character. 

Dyad: A group of two; a couple; a pair (Dyad, 2006).  

Dyadic interaction: One-to-one interaction occurring between only two individuals.  

Effective situation: A conceptual term used to denote the cognitively transformed and 
internal representation of a social environment that an individual uses to determine 
how to act (Kelley & Thibaut, 1978). 

Given situation: A conceptual term used to denote the direct perceived experience of a 
social environment (Kelley & Thibaut, 1978). 

Individual: Either a human or a social robot. 

Interaction: influence—verbal, physical or emotional—by one individual on another. 
(Sears, Peplau, & Taylor, 1991).    

Interdependence: The extent that each partner’s outcomes are influenced by the other 
partner’s actions (Kelley & Thibaut, 1978).  

Interdependence space: A four dimensional space used to represent all dyadic social 
situations (based on (Kelley et al., 2003).     

Mutual Joint Control (MJC): The individual’s ability to affect both its own outcomes and 
the outcomes of its partner in a social situation (Kelley & Thibaut, 1978).   
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Mutual Partner Control (MPC): The individual’s ability to affect their partner’s outcomes 
in a social situation or interaction (Kelley & Thibaut, 1978).   

Outcome: A unitless scalar value representing an individual’s utility, reward, and/or 
happiness. 

Outcome matrix: A conceptual and computational representation of an interaction and 
social situation that includes information about the individuals interacting, actions 
available, and resulting outcome for the selection of an action pair by the dyad 
(Kelley & Thibaut, 1978).  

Outcome matrix deconstruction: The algorithmic process of separating an outcome 
matrix into the BAC, MPC, and MJC representing three distinct types of control. 

Partner feature: Perceptual features related to the recognition and state determination of 
the partner. 

Partner state: The emotional, behavioral, or physical state of the partner. 

Partner type: A partner’s classification in terms of disposition with respect to a space of 
types.  

Relationship: A particular type of connection existing between individuals related to or 
having dealings with each other (Relationship, 2000). 

Risk: The expectation of a potential loss of outcome.  

Stereotype: An interpersonal schema relating perceptual features to distinctive clusters of 
traits (Sears, Peplau, & Taylor, 1991).  

Situation: A particular set of circumstances existing in a particular place or particular 
time (Situation, 2007).   

Situation analysis: A two-step algorithmic process that uses an outcome matrix to 
produce a situation’s location in interdependence space.    

Situation feature: Perceptual features related to the recognition and consideration of the 
situation and/or social environment.  

Situation-based interaction: Interaction that includes consideration of the environmental 
factors or social situation, as well as the interacting individuals themselves, as 
influences of interactive behavior. 

Situation network: A finite state representation of causally connected social situations 
that is used to describe the movement to and from situations resulting from mutual 
interactive behavior selection (based on Kelley, 1984). 

Social environment: Any environment with more than one social robot or human. 

Social learning: Improvement with respect to some performance measure on some class 
of tasks with experience derived from a social environment. 

Social situation: the social context surrounding an interaction between individuals 
(Rusbult &  Van Lange, 2003).     
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Socially deliberative pathway: A computational process by which deliberation over the 
individual’s motives and other internal predilections is included in the individual’s 
action decision.   

Socially reactive pathway: A computational process in which deliberation over the 
individual’s motives and other internal predilections is not included in the 
individual’s action decision.   

Symmetry: The degree to which the partners are equally dependent on one another 
(Kelley & Thibaut, 1978). 

Transformation: A computational method, applied to the values of an outcome matrix 
that results in the selection of an action.  

Transformation process: The process by which a given situation is modified to include 
the individual’s own internal tendencies and concerns to produce an effective 
situation (Kelley & Thibaut, 1978). 

Trust: A belief, held by the trustor, that the trustee will act in a manner that mitigates the 
trustor’s risk in a situation in which the trustee has put its outcomes at risk.  

Trustee: In a social situation meeting the conditions for trust, the individual that must 
determine whether to act in a manner that alleviates the trustor’s risk.  

Trustor: In a social situation meeting the conditions for trust, the individual the must 
decide whether to place their outcome at risk or not.   

Turn-taking interaction style: A style of interaction in which individuals iteratively select 
interactive actions. 

Unpopulated outcome matrix: An outcome matrix devoid of outcome values.  

Untrusting action: A potential action for the trustor that does not entail risk. 
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APPENDIX B 

EXAMPLE SOCIAL SITUATIONS 

 
The following list describes several canonical social situations. Sixteen situations are 
presented (Kelley et al., 2003). These situations represent several different areas of the 
interdependence space. The abbreviations denote the interdependence space location in 
Figure 6.2. The outcome matrices depicted by are normalized. The situation’s potential 
for meeting the conditions for situational trust is listed.    

 

Social Situations 

Interdependence 
Space Location 

Name Verbal Description  
(based on Kelley et al., 2003) 

Outcome 
Matrix 

I-space abbr. 

Situational 
Trust? 

1.0, 0.2, -0.3, 0.0 
 

Chicken 
Situation 

Each individual chooses between 
safe actions with middling outcomes 

and risky actions with extreme 
outcomes. 

8 
8 

12 
4 

4 
12 

0 
0  

CHK 

Yes 

0.5, -1.0, -0.5, 0.0 
 

Competitive 
Situation 

Each individual gains from the other 
individual’s loss. Maximal outcome 
is gained through non-cooperation. 

6 
6 

12 
0 

0 
12 

6 
6  

COMP 

No 

1.0, -1.0, 1.0, 0.0 
 

Conflicting 
Coordination 

Situation 

Each individual’s outcomes depend 
on the other individual, yet both 

individuals action preferences are in 
conflict. 

12 
0 

0 
12 

0 
12 

12 
0  

CNCO 

No 

0.5, 1.0, -0.5, 0.0  Cooperative 
Situation 

Each individual receives maximal 
outcome by cooperating with the 

other individual. 

12 
12 

6 
6 

6 
6 

0 
0  

COOP 

No 

1.0, 1.0, 1.0, 0.0 Correspondent 
Coordination 

Situation 

Each individual’s outcomes depend 
on the other individual and both 
individuals action preferences 

correspond. 

12 
12 

0 
0 

0 
0 

12 
12  

CRCO 

No 

0.7, 0.5, 0.3, 0.1 
 

Hero Situation Individuals have a mutual desire to 
coordinate their actions but a conflict 
of interest exists as to which action to 

choose. 

15 
8 

0 
0 

2 
4 

5 
12  

HERO 

Yes 

0.0, 0.0,-1.0, 0.0  Independent 
Situation 

The action selected by each 
individual has no impact on the 
outcome received by the other 

individual. 

12 
12 

0 
12 

12 
0 

0 
0  

IND 

No 
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1.0, -0.3, -0.3, 0.3 Investor-
Trustee 

Situation 

This situation is a trust situation for 
the investor and a prisoner’s dilemma 

situation for the trustee.  

36 
24 

23 
5 

12 
48 

18 
10  

Not listed 

Yes 

0.4, 0.0, -0.3, 0.8 Martyr 
Situation 

Individuals have a weak mutual 
desire to coordinate their actions but 

a strong conflict of interest as to 
which action to choose. 

30 
8 

20 
12 

60 
4 

10 
0  

Not listed 

Yes 

1.0, 0.0, -1.0, 0.0 Exchange 
Situation 

Each individual has a choice as to 
whether or not to have a positive or 

negative impact on the other 
individual. 

12 
12 

12 
0 

0 
12 

0 
0  

EXCH 

No 

0.8, -0.8, -0.6, 0.0 Prisoner’s 
Dilemma 
Situation 

Both individuals are best off if they 
act non-cooperatively and their 

partner acts cooperatively. 
Cooperation and non-cooperation, 

results in intermediate outcomes for 
both.  

8 
8 

12 
0 

0 
12 

4 
4  

PRD 

No 

0.8, 0.0, -0.6, 0.0 Strong Threat 
Situation 

One individual has greater control 
over the dyad’s outcomes. The other 

individual, if exploited, has 
significant power to reduce the 
outcomes of both individuals. 

8 
12 

12 
4 

0 
8 

4 
0  

STHR 

No 

1.0, 0.2, -0.3, 0.0 Trust Situation  In this situation, cooperation is in the 
best interests of each individual. If, 

however, one individual suspects that 
the other will not cooperate, non-

cooperation is preferred. 

12 
12 

8 
0 

0 
8 

4 
4  

TRU 

Yes 

1.0, -0.9,- 0.1, -0.7 Asymmetric 
Investor-
Trustee 

Situation 

Same as the investor-trustee 
situation, except that the situation’s 

asymmetry is increased.  

10 
13 

14 
11 

21 
6 

17 
5  

Not listed 

Yes 

1.0, 0.8, 0.2, -0.2 Slight 
Asymmetric 

Situation 

Individual two has slightly greater 
control over individual one’s 

outcomes. Still, both individuals 
action preferences correspond. 

7 
19 

1 
9 

1 
7 

10 
15  

Not listed 

No 

0.5, 0.0, 0.5, 0.0 Weak Threat 
Situation 

One individual has greater control 
over the dyad’s outcomes. The other 
individual, if exploited, has limited 

power to reduce the outcomes of both 
individuals. 

6 
12 

12 
6 

0 
6 

6 
0  

WTHR 

No 
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APPENDIX C 

LIST OF TRANSFORMATION TYPES 

 
The following table depicts a list of transformation types developed for this dissertation, a 
description of the robot’s character if the robot often selects the transformation type, and 
the mathematical method for performing the transformation.  

Transformation Types 
Name Character Description Transformation Method 

max_own Egoistic—the individual selects the action 
that most favors their own outcomes. 

No change 

min_own Ascetic—the individual selects the action 
that minimizes his/her own outcomes. 

111 )max(ˆ ooo xyxyxy −=  

max_other Altruistic —the individual selects the action 
that most favors their partner. 

21ˆ oo xyxy =  

min_other Malevolence—the individual selects the 
action that least favors the partner.  

221 )max(ˆ ooo xyxyxy −=  

max_cert Risk-averse—the individual selects the 
action that results in the maximal guaranteed 
outcome.  

if ( )),min(),min( 1
22

1
12

1
21

1
11 oooo =  

)max(ˆ 11 oo xyxy =  

else 

if ( )),min(),min( 1
22

1
12

1
21

1
11 oooo >  

)max(ˆ 11
1 oo xyx =  

else  

)max(ˆ 11
2 oo xyx =  

 
min_cert Risk-seeking—the individual selects the 

action that results in the minimal guaranteed 
outcome. 

if ( )),min(),min( 1
22

1
12

1
21

1
11 oooo =  

)max(ˆ 11 oo xyxy =  

else 

if ( )),min(),min( 1
22

1
12

1
21

1
11 oooo <  

)max(ˆ 11
1 oo xyx =  

else  

)max(ˆ 11
2 oo xyx =  

 
max_joint Cooperative—the individual selects the 

action that most favors both their own and 
their partner’s interests. 

211ˆ ooo xyxyxy +=  

min_joint Vengefulness—the individual selects the 
action that is most mutually disagreeable.   

( )21211 )max(ˆ ooooo xyxyxyxyxy +−+=  

max_diff Competitive—the individual selects the 
action that results in the most relative gain to 
that of its partner. 

211ˆ ooo xyxyxy −=  

min_diff Fair—the individual acts in a manner that 
results in the least disparity.   

21211 )max(ˆ ooooo xyxyxyxyxy −−−=  
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