

Abstract— This paper describes the need and methods

required to construct an integrated software verification and

mission specification system for use in robotic missions

intended for counter-weapons of mass destruction (c-WMD)

operations, as part of a 3-year effort for the Defense Threat

Reduction Agency. The overall system architecture is

described. The principal tool for verification is a process

algebra, PARS, based on port automata theory. PARS is

introduced, emphasizing its ability to represent probabilistic

programs and uncertain and dynamic environments, followed

by the analysis of mission properties for an example robotic

mission.

Keywords; mobile robots, performance guarantees, formal

properties, verification, robot programming.

I. INTRODUCTION

In an ongoing project for the Defense Threat Reduction
Agency, we are developing methods to provide explicit
performance guarantees for critical missions for autonomous
and semi-autonomous robots. These specifically focus on
counter-weapons of mass destruction operations, such as
might be encountered in search, containment, and/or
neutralization of chemical, biological or nuclear weapons,
typically in urban indoor environments. Performance
guarantees are essential for these missions as there may be
only one opportunity to engage in the operation: failure may
not be an option.

Toward that end, the project’s goals include the design of
a robotic software architecture that includes pre-mission
performance analysis tools and methods for clearly
presenting and confirming operator intention and acceptance
of the mission, based on the level of success predicted and
presented by said analysis. The system architecture also will
allow for iterative refinement prior to deployment to
maximize the likelihood of success derived for feedback from
the verification methods, and the opportunity for the operator
to make a go-no go decision based on these results. This
research builds on our previously developed and usability-
tested mission specification software system, MissionLab

1

[22][24] and earlier research on performance guarantees for
similar systems [20]. The overall intent is to provide highly
reliable performance bounds for autonomous robots operating
in uncertain environments, so that the robot can get it right

* This research is supported by the Defense Threat Reduction Agency,

Basic Research Award #HDTRA1-11-1-0038, to Georgia Tech. with

subcontract to Fordham University.
D.M. Lyons and P. Nirmal are with the Dept. of Computer &

Information Science, Fordham University, Bronx NY 10458, USA (Ph:

718-817-4485, Fx: 718-817-4488, Em: dlyons@cis.fordham.edu).
R.C. Arkin and S. Jiang are with the Mobile Robotics Laboratory,

Georgia Institute of Technology, GA 30332, USA (Em:

arkin@cc.gatech.edu).
1 MissionLab is freely available for research and educational purposes at:

http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/.

the first time.
In Section II we review relevant literature as a basis for

presenting our System Architecture in Section III and our
Verification Model in Section IV. Verifying probabilistic
robot programs has unique challenges, including handling
real-valued variables representing durations, positions and
velocities, and an environment replete with dynamic and
concurrent activities as well as uncertainty. Arguing from the
unique characteristics of robot computation, we propose a
concept, the system period, to analyze this computationally
complex problem. We introduce a process algebra to analyze
the structure of the system of robot program and environment
model to identify the system period. In Section V, we
introduce our principal verification algorithms using a series
of examples and conclude the paper with a summary and
discussion in Section VI.

II. LITERATURE REVIEW

Many robot software development frameworks exist today
that can be potentially extended to include a verification
component for the resulting robot program. Player/Stage is a
robot programming environment developed at USC Robotics
Research Lab [15]. Player was designed to be a robot device
server that provides interface to a robot’s sensors and
actuators via TCP sockets. Pyro, or Python Robotics, is a
Python-based programming framework that allows users to
write robot-independent programs [7]. The authors of Pryo
intended to use it as a tool for teaching robotics at a higher
level without the students worrying about low-level control.
URBI, a Universal Robotic Body Interface, is a programming
environment based on the client/server architecture [6].
Microsoft Robotics Studios (MSRS) is a programming
environment for robot control based on Windows OS [17].
MSRS also has a powerful 3D physics simulator for robot
controllers. MSRS includes a visual programming language
(VPL) that is translated into C# code for compilation. ROS,
or the Robotic Operating System, is a software development
framework that provides operating system like functionality
for robot devices [25]. The Common Control Language
(CCL) provides a mission programming environment tailored
for multiple autonomous underwater vehicles (AUVs) [11].
CCL addressed the main issues of communication and
coordination among AUVs. We chose MissionLab [24][22]
as the software infrastructure to build our mission verification
tool upon because (1) it has a usability-tested [21][14]
graphical programming interface where a user can create her
program as visual, finite state automata (FSAs), and (2) the
high-level FSA is translated to a dataflow language [23] that
is compatible with the proposed verification algorithm.

The automated verification problem for robot programs

differs from the general automated verification problem

addressed by the field of model checking [10][18] in several

very important aspects. The behavior of a robot controlled

Designing Autonomous Robot Missions with Performance Guarantees*

D.M. Lyons, Member, IEEE, R.C. Arkin, Fellow, IEEE,

 P. Nirmal, Student Member, IEEE, and S. Jiang Student Member, IEEE

mailto:arkin@cc.gatech.edu

by a specific program will be different in different physical

environments. Thus, we need to include a model of the

environment as part of the verification problem. We

represent the robot program as a process that communicates

through its sensor and actuator processes with an

environment process forming a single network of

communicating processes as shown in Figure 1. In fact, for a

realistic example, each of the processes shown in Figure 1

will consist of hierarchically nested process networks.

Figure 1: Program and Environment Network.

 Discrete-Event Control (DEC) considers the analysis of a

controller coupled to a plant model [26]. DEC approaches

have been combined with model-checking software for the

automated generation of higher-level robot controllers in

[12][19]. While many of the techniques developed there can

be applied to parts of our problem, we have to deal with the

combined issues of representing real-valued variables

concurrent activities and uncertainty. The variables may

represent robot positions or velocities, or the duration or

occurrence time of events, or the probability of a sensed

feature or landmark. Concurrency is important to

realistically represent the way the environment changes

while the robot program is executing. The inclusion of

uncertainty is important to handle the characterization of

realistic environments as well as to probabilistic programs.

Software verification captures the effect of computation as

a trajectory in the state-space that is the Cartesian product of

the value sets for all the variables in the program. The

reachability of states in this space can be investigated, within

the limits of computability and the inherent exponential

nature of the space
2
, to determine whether a program will

fail or succeed [10]. While tremendous progress has been

made in this field [18], the additional variable, concurrency

and uncertainty aspects that we add introduce combinatorial

increases in the size of the combined state space of the

program and environment system, rendering it prohibitively

large to use reachability as a verification paradigm. A

standard approach in the field is to search for regularities

that can be leveraged to handle the state explosion, for

example the assume-guarantee approach to modularizing a

system, or the use of fairness conditions to eliminate

undesirable states from analysis [18]. In Section IV we will

introduce a regularity appropriate to robotics, the system

period, leveraging the complexity reduction this allows.

Our main tool will be process algebra [5][16]: a formal

model of concurrent computation in which processes can be

built from other processes using composition operators. Our

operators are similar to CSP operators but chosen for their

2 E.g., run time is polynomial in the number of reachable locations but

the number of reachable locations is exponential in the number of variables
of each procedure during execution.

use in robot programs in particular. It does not include a

built-in concept of optimization as does, e.g., the $-calculus

algebra [13]. The algebraic properties of the composition

operators allow process descriptions to be transformed to

investigate issues such as process equivalence as well as

issues of liveness, safety, and deadlock.

In Section IV, we define a process algebra for robot

programs that has an automaton semantics based heavily on

our preliminary work in [20]. Certain reasoning is made

simpler by this approach such as reasoning related to the

periodic program structure and to the flow of variable values

along communication channels.

III. SYSTEM ARCHITECTURE

The robotic software architecture is being built upon the

MissionLab [22] robot programming environment. The goal

of including a software verification component into the

programming environment is to provide pre-mission

performance analysis of the designed robot controller. The

system architecture, Figure 2, supports three phases of the

robot program development: design, verification, and

execution. The design and verification phases plus the user

form a robot program design loop that iterates until the

mission-specific performance guarantee is satisfied or

deemed unattainable. At this point, the operator can proceed

to the execution phase with the confidence that the robot will

meet the requisite mission requirements.

Figure 2: Robotic Software System Architecture

To illustrate the process of designing robot controllers, we

step through the three development phases with a simple

example: a controller for a robot to repeatedly go back and

forth between two locations (A and B). This task, though

simple, captures the main concept of a waypoint controller,

and we will build on this in future work. The finite state

automaton (FSA) of the back_and_forth robot is shown in

Figure 3. While this example only uses one robot, our

system design also supports programming and verification

for multi-robot systems.

A. The Design Phase

During the design phase, the operator designs a controller

Program
Environment

Actuators

Sensors

for a robot to complete a given mission using CfgEdit

(Configuration Editor), Figure 4. CfgEdit is the graphical

visual programming interface frontend of MissionLab where

the configuration of the robot program is constructed as an

FSA. The configuration of the robot program is based on the

Configuration Description Language (CDL), a specification

language that supports recursive compositions of robot

behaviors that are physical robot-independent [24][22].

Figure 3: FSA for back_and_forth robot

The FSA in Figure 4 implements the back_and_forth

robot in Figure 3. The back_and_forth behavior consists of

two primitive GoTo behaviors, which are provided within a

library of primitive behaviors in MissionLab. More complex

programs can be constructed from this library of primitive

behaviors for more complicated missions (e.g., biohazard

search within a building).

Figure 4: CfgEdit example for back_and_forth robot

To generate the C++ source code for the back_and_forth

robot that can be compiled to control simulated or real

robots, the CDL is first compiled into the Configuration

Network Language (CNL) specification [23]. CNL specifies

a robot program as a directed graph, where nodes represent

primitive behaviors and edges represent dataflow links

between behaviors. The CNL code is then compiled into

C++ code. Finally, the C++ source code is compiled to

generate robot executables for either simulation or mission

execution using real robots.

The operator can simulate the controller design in

MissionLab to verify her design intent before running it on a

real robot. However, to obtain any guarantee that the robot

will successfully complete the required mission in the real

world target environment, a formal verification step is

necessary before robot deployment. Even for the

back_and_forth mission, the slippage between the robot’s

wheels and the floor in the real environment can cause the

robot to fail the mission. One of the goals of the software

verification system is to take into account the model of the

environment (e.g., slippage) as well as noise and failure

models of the sensors and actuators, and provide pre-mission

performance analysis of the controller design.

B. The Verification Phase

One crucial aspect of verification of robot programs that is

different from traditional software verification is that robots

have to interact with real environments both from a sensing

and an actuation perspective. Uncertainty about the world

makes it difficult to predict the exact response of the robot,

which makes formal verification of robot software a unique

challenge. Nonetheless, formal verification is necessary for

critical missions (e.g., c-WMD missions such as finding,

containing, and neutralizing Chemical-Biological-Nuclear

(CBN) weapons) where failure is not an option.

The verification phase of the system design starts by

translating the CNL specification of the robot program into

the language required by the verification module, (see Fig.

2). The verification language, called Process Algebra for

Robot Schemas (PARS), is presented in the next section. We

use CNL as the input to the verification module because the

CNL specification of the robot program is similar to the port

automata based Robot Schemas (RS) framework [20].

For pre-mission performance analysis of a robot, it is

necessary for the verification module to take into account the

mission performance criteria and models of both the robot

hardware and the operating environment. Our system

includes three pre-constructed model libraries for

verification: the robot model library, sensor model library,

and environment model library (Fig. 5-7). The operator can

select from these libraries for different combinations of

robot platforms, sensors, and environments to match the

mission’s conditions. Similarly, for performance criteria, the

operator is offered a selection of customizable criteria in

terms of verification conditions and constraints.

Based on the choices of verification constraints and

robot, sensor, environment models, the verification module

tests the combination of the robot software with the chosen

constraints and models for specific properties of safeness,

liveness, and/or efficiency. At the end of verification, the

verifier provides the operator with performance guarantee

information regarding the robot carrying out the required

mission under the specified conditions. If the result is

unsatisfactory (e.g., some verification constraints are

violated), the operator can use the feedback from the verifier

to iteratively refine the robot program. In other words,

besides simply telling the operator “yes/no” that the robot

program satisfies the specified performance criteria, the

verifier also identifies potential causes of failure in the

program and provides the operator with this useful

information, to assist in mission completion enhancement.

For the back_and_forth example, the operator can verify

her robot controller by choosing a Pioneer robot with wheel

encoders and noisy sonar sensors operating in an empty

room with flat tiled floor and no obstacles. The operator can

also specify a performance criterion such that the robot

needs to be within 0.1 meters radius of each goal’s spatial

location for that leg to be considered successful. Other

mission constraints such as time (e.g., maximum round trip

time = 10 seconds) or minimum battery level can also be

Start GoTo

A

GoTo

B

At_A

At_B

specified. The verifier then conducts a pre-mission analysis

and generate a performance guarantee of whether the robot

will successfully accomplish the mission with specified

performance criteria. If the verifier found that the robot

cannot complete the mission successfully because the

maximum round trip time constraint is violated, it reports

failure along with the violated constraint(s). With the this

information, the operator can make new design choices: e.g.,

increase the robot’s speed or maximum round trip time.

Figure 5: Notional example of robot model library

Figure 6: Notional example of sensor model library

Figure 7: Notional example of environment model library

C. The Execution Phase

The operator makes a go-no go decision based on the

verification result. If a satisfactory performance guarantee is

provided, she proceeds to the execution phase with

confidence that the robot will successfully complete the

mission. Executing the mission with MissionLab is

straightforward [22][24]. The robot program executes on the

robot directly or remotely from a base-station. For more

details on robot, environment, and sensor libraries, see [4].

IV. VERIFICATION MODEL

This section (and the next) addresses the verification

processing in Figure 2 in more detail. It begins by

introducing a regularity that can be used to combat the

exponential nature of the combined system state-space

explained at the end of Section II. The process-algebra tool,

PARS, we have developed to represent programs and

environment is introduced. Examples of robot programs and

environment models which illustrate use of real-value

variables, concurrency and uncertainty are presented. We

then show how tail-recursion in PARS can be used to

represent and identify periodic behavior.

A. The System Period

To address the intractability of the combined system state-

space, we identify a program regularity unique to behavior-

based robotics, and we leverage this to modularize the

verification problem. A behavior-based robot interacting

with its environment [2] will respond to a specific set of

environmental affordances as programmed by its behaviors.

In this situation, which we refer to as a behavioral state,

because the robot continually responds to the fixed set of

affordances, a periodic regularity is induced in the combined

state-space. Once an affordance is responded to, the robot

may return to this behavioral state or move to another that

handles a different set of affordances. However, the essence

of the behavioral state is this potential to repeatedly handle a

specific set of affordances. We will analyze the combined

program and environmental models to identify the periodic

structure imposed by behavioral states. First, we introduce

the algebraic framework in which we situate this problem.

B. Verification language – PARS

The process is our basic unit of program and environment

model structure. The port automaton [27] (PA) model,

extended slightly, will provide the semantics for a process.

We formalize processes as automata, and communication

connections between processes as ports. The PA model is

compositional: a composite port connection automaton can

be constructed for a set of communicating PA. We formalize

the ways in which the automata can be composed to a port

connection automaton as process algebra composition

operations. Our structural analysis will be performed

primarily at the more abstract, process algebra level and not

at the more detailed, PA level.

We will write a process P with initial parameter values

u1,u2,… and which produces final result values v1,v2,… as:

Pu1,u2,… v1,v2,…

It is understood that this process refers to a timed PA: a PA

augmented with a duration map and a partitioned set of end

states, which is written as:

P = (Q, L, X, , , d, T, , ) where (1)
 Q is the set of states
 L is the set of ports
 X = (Xi | i L) is the event set for each port
  : Q XL 2Q is the port transition function,

. . .

Environment Model Library

Layout

Empty Walls

Obstacle

Static

Dynamic

Terrain

Flat Rough

. . . Sonar

Camera

Laser

Sensor Model Library

Noise

-None

-Gaussian

. . .

Robot Model Library

iCreate

Pioneer

ATRV-Jr

Actuator

Noise

-None

-Gaussian

 where XL= { (i, Xi) | i L }
 d: Q  QT is the timed transition function,
 where dom(d)  proj1 dom() =
  = (i | i L) i : Q  Xi output map for port i
   2Q is the set of start states

   2Q is the set of end states
and where there are two mappings

i (u1, u2, …) = 0  
 e (v1, v2, …) = 0  

that relate the initial parameter values to the starting states,

and the final result values to the end states of the PA. We

partition the set of end states  into a set of stop end states

+ and a set of abort end states - where a process that

terminates in + is said to stop and a process that terminates

in - is said to abort.

A basic process corresponds to a PA defined using (1).

All other processes are defined in terms of compositions of

these processes. Examples of basic processes include:

 Delayt is a process that stops a duration t after it has been

started;

 Ranv is a process that stops and returns a random

sample v from a distribution .

 Incy and Outc,x are processes that perform input and

output, respectively, on port c and then stop.

 Eqa,b , Neqa,b , Gtra,b , etc., are processes that stop when

a=b, ab, a>b, etc., respectively and abort otherwise.

Non-basic processes are defined using composition

operators, e.g.:

T = Inc1x ; Outc2,x

is process that inputs a value on port c1 and then outputs it

on port c2. In our definition of sequential composition, if the

first PA aborts (terminates in -) rather than stops, the port

connection automaton aborts without proceeding to the

second PA. Mapping this to a standard programming

language such as C, this one operation implements both the

sequence (‘;’) and the conditional (‘if’) operations.

In concurrent composition, both PA execute at the same

time. For example

T = Outc2,x | Inc2x

is a port connection of two PA, one that outputs a value on

its port c2 and one that inputs a value from its port c2; we

use here the simplification that similarly named input and

output ports are connected to each other.

A disabling composition of two processes is written

T = P # Q

and denotes a port connection automaton of P and Q

connected so that whenever P terminates, it causes Q to

terminate, and vice-versa.

 Having developed the PARS notation sufficiently far, we

now present some examples of its use for robot programs.

C. Example Programs and Environments

We continue the running example program BFa,b that moves

the robot back and forth between two locations a and b

specified in a global coordinates frame.

BFa,b = MoveToa ; MoveTob ; BFa,b

The MoveTo process moves the robot towards a location. Let

the position of the robot be available on a port p and let the

port v accept a velocity and then move the robot according to

that velocity. We can write a very simple controller as:

MoveTog = Inpr ; Neqr,g ; Outv, s(g-r) ; MoveTog

where s(d) maps a position difference to an appropriate

velocity vector, pulling the robot towards the goal using the

potential field [2] approach until the goal is reached.

In a simple model of the environment, the robot accepts

the velocity on port v and instantly moves at that

commanded velocity. The exact position of the robot at any

time is available on port p, and the robot operates on flat,

obstacle-free terrain:

DEnvr = (Delayt # DOdor # Atr) ; Invu ; DEnvr+ut (2)
 DOdor = Outp,r ; DOdor

This DEnv model implements a discrete integral of velocity
(with time granularity t) to generate position. The actual
position of the robot, at any time, is represented by Atr.

In a more realistic model, there will be noise associated
with the sensors and actuators:

NEnvr,q = (Delayt # NOdoq #Atr) ; (3)
 (RanN(0,s1)e | Invu) ; NEnvr+(u+e) t , q+ut
 NOdoq = RanN(0,s2)e ; Outp,q+e ; NOdoq

Here, the velocity that the robot acts on is the command
velocity u contaminated with a zero-mean normal error e.
The position that the robot reads from its odometry on port p
is the actual position contaminated with a zero mean normal
error. See [20] for other kinds of noise models, including
terrain slip, in a similar process algebra framework.

We can also model static obstacles by modifying the
environment dynamics so that if the robot tries to move
through an obstacle, it collides with the obstacle and remains
stuck.

Obsq = Outb,q ; Obsq (4)
 OEnvr = (Delayt # Odor #Atr) ; (Invu | Inbq) ;
 (Neqq,r+ut ; Set r+ut nq |
 Eqq,r+ut ; Set q+e nq) ; OEnvnq

Here, Set rq is a basic process that just sets output q=r.
The semantics of PARS allows for a rich description of

process delays and probabilistic functionality. Stochastic
properties that can be modeled include probabilistically
delayed enabling/disabling, and synchronization as well as
random variable values. The dynamic arrival of an object is

captured by ObsGen (for  ~ Exp()):

 ObsGen = Ran

x ; Delayx ; Obj

Probabilistically delayed arrival and termination, for example
the existence and duration of difficult terrain patches in an
uncertain environment, can be captured as:

 TerGen = (Ran

t | Ran


d) ; Delayt ; (Delayd # Rough) .

Where  ~ Exp() and  ~ N(,) (a combination referred

to as a severity [28]). This framework can represent

previously unseen or unknown objects and events, and the

adaptive/learning algorithms to handle them, as long as the

potential for these events is written in the form above.

We will now look at how periodic behavior, as described in

subsection A, can be represented and identified in PARS.

D. Recursive Processes

The tail-recursive (TR) expression:

T = P ; T

describes a process that repeats P continually until it aborts.

The semantics of a TR process is a port connection

automaton that implements such a loop; an efficient

‘implementation’ of recursion. Mapping to a standard

programming language such as C, this implements a ‘while’

loop. Boem and Jacopini [8] established that any language

that implements sequence, condition and loop constructs is,

in fact, sufficient to represent any program.

For convenience, the following notation is used for

sequential compositions:

Pn = Pn-1 ; P and P1 = P

This allows us to ‘unroll’ a TR process:

 T = P ; T = Pn ; T n>0 (5)

We can interpret T as a process that goes through multiple

instances of the same computation, P. That is, P is the

periodic aspect of T. As it stands however, this iteration is

history-less. We can include history if we add parameters:

 Tu = Pu ; Tf(u) = ()
 () n>0, f 0(u)=u (6)

T offers a repeated interaction with its environment, but now

the effect of previous events after the ith iteration is captured

by the sequence of values of f
i
(u). In the case that P can

terminate with abort as well as stop, because of the

conditional nature of the sequential composition, we get

 Tu = Pu ; Tf(u) = ()
 n>0 (7)

We will refer to f as a parameter-flow function: a mapping

f : ⅅm → ⅅm that relates the values of m parameters in the

nth and (n+1)th iterations of the period P. The use of flow

functions allows us to handle the issue of real-valued

variables (ⅅ = ℝ) transformed by processes, and this feature

is one of the principal motivations in using tail recursion as a

loop construct.

Verification Approach: The period and parameter flow

function associated with a TR process are a concise

implicit representation of the entire state-space of the

process and offer an alternative to explicit state

enumeration.

E. Identifying the System Period

When we analyze a robot program operating in a given

environment, we analyze a concurrent, communicating

composition of the program and the environment (Fig. 1). If

we have a set of TR process equations P1, P2, …, Pm that

form a system Sys through concurrent composition:

Sys = P1 | P2 | …| Pm

then an important question is, can this Sys be rewritten in a

TR form? That is, under what conditions can we develop an

expression for the period of the system in terms of the

periods of its component processes?

For a TR definition of process P, the section of the

process definition between the equal sign and the tail-

recursion will be called the period P’

P = P’ P

If the component periods P1’, P2’, …, Pm’ contain port

communication, then those interactions sequence the

component periods with respect to one another, forcing a

partial sequence of computations. In the case that all ports’

communications can be matched, input to output, across the

component periods, then a system period can be identified:

Sys = Sys’ Sys

Sys’ = F(P1’, P2’, …, Pm’)

Where F(.) is a process composition obtained by matching

the port communications in component periods. It may be

necessary to unroll shorter component periods one or more

times using results (5) & (6) to provide sufficient port

communications for a longer component period (longer and

shorter in this context refer to the number of port

communication operations).

F. Implications and Computational Complexity

What is the practical implication of assuming that a system

period exists for the combination of robot program and

environment model? A system period will not exist in the

cases that:

 the processes don’t communicate with each other;

 port communications are unmatched;

 an infinite sequence of unrollings is needed.

With respect to the first case, a robot program that does

not actually interact with its environment can never achieve

any level of performance! This is a major error that should

be flagged. In the second case, unmatched communications

means that some part of the robot program will block

forever, a potential deadlock case that also needs to be

flagged to the attention of the designer.

Finally, an infinite sequence of unrollings is evidence of

a lack of periodic behavior. However, MissionLab’s FSA

program model is based on the kind of behavioral states

mentioned in subsection A.

The computational complexity of calculating the system

period relies on the complexity of the matching process. If

no explicit fan-in or fan-out is allowed, then the

computational complexity is O(n
2
) where n is the number of

input processes in the (final, unrolled) system.

V. VERIFICATION ALGORITHMS

Here we present by example our approach to the analysis of
the system period to determine if a robot program achieves a
performance guarantee in an environment.

A. Task Completion

A designer may wish to know if a specified system completes
a task (liveness). In our approach, both the system and
property to be verified are specified in PARS. The two
process networks are compared and analyzed, and if the
specified system can be shown equivalent to the property, we
report success (cf. [1],[9]). For example, the designer may
wish to know if the robot arrives and stays in position a after
time t1. We can specify this verification property using
PARS as:

Goal = Delayt1 ; (Delayt2 #Ata); Delayt3 ; Goal

This states that the robot will be at position a after time t1
and remain there at least a subsequent time t2. Notice that t1,

t2 and t3 are variables not constants. A property specification
process network differs from a process network in that it is
actually a process network constraint expression, a
specification of a set of possible networks.

Consider the deterministic environment model DEnv from
(2) for the BF program. The system in this case is

Sys = DEnvp0 | BFa,b

The first step in our verification approach is to find the
system period from the component periods:

BF’a,b = MoveToa ; MoveTob
MoveTo’g = Inpr ; Neqr,g ; Outv, s(g-r)
DEnv’r = (Delayt # Odor #Atr) ; Invu

The parameter flow functions (that link variables values in
the n

th
 iteration to those in the n+1

th
 iteration) are:

BF’a,b fBF(a,b) = (a,b)
 MoveTo’g fMoveTo(g) = g
 DEnv’r fDEnv(r) = r+ut

The only port constraints between the environment and the
program are input on port p and the output on port v. The
period of DEnv must be unrolled n times to match the first
part of BF. To match the second part of BF we need to unroll
DEnv again, yielding:

Sys = Sys p r; Sysr
 Sys p = (

 ()
)n ; (

 ()
)m

 Sys1p = | MoveToa

To generate the parameter flow function f for Sys1, we need
to propagate values across the port connections between
DEnv’ and MoveTo’. We can associate a set of recurrence
relations with the system flow functions:

 Flow Function Recurrence
 fSys1(r) = r + s(g - r)t rn+1=rn+s(gn - rn)t
 fMoveTo(g) = g gn+1=gn

If we project () the network onto the processes in the
property specification network, and if we reasonably assert
that Delaytn = Delaynt then we have:

Sys’  {Delay, At} =
 Delay(n-1)t ; (Delayt # ()) ;

 Delay(m-1)t ;(Delayt # ())

We need to find a structural mapping between the Sys’ and
Goal’ networks. In this case, structural mapping is trivial:

Delay(n-1)t ; (Delayt # ()) ;

 Delay(m-1)t ;(Delayt # ()) =

 Delayt1 ; (Delayt2 # Ata); Delayt3

To complete the mapping, the flow recurrences need to be
solved for n and m for which f

n
(p0)=a in which case t1=(n-

1)t and t2=mt.
The automatic construction of system flow functions

requires tracing a variable through a system period. The
complexity is linear in the length of the period. It also
requires substituting values communicated via port
connections. This is linear in the number of concurrent
processes in the period. We use existing tools (e.g. PURRS

3
)

to solve flow functions.

3
 http://www.cs.unipr.it/purrs.

B. Task Safety

A safety property states that “bad things” won't happen. We
analyze the system period to make sure that the safety
property is something that is always addressed by the
program. Once again, we will use algebraic equivalence
relations to re-structure the network, and map this re-
structured network to the property to be verified.

Consider the BF program for the environment model (4)
that includes obstacles, OEnv. A safety property in this
example would be obstacle avoidance: The robot is never
within 1m of an obstacle. As a process network, this is:

G = (Odop | Obsp+q) ; G where q > 1

We analyze the network consisting of an obstacle at location

d with BFa,b :

Sys = Obsd | OEnvp,0 | BFa,b

As before, we obtain the periods of each component process

and construct the system period.

 BF’a,b = MoveToa ; MoveTob
 MoveTo’g = Inpr ; Neqr,g ; Outv, s(g-r)
 Obs’q = Outb,q
 OEnv’r = (Delayt # Odor #Atr) ; (Invu | Inbq) ;
 (Neqq,r+ut ; Set r+ut nq | Eqq,r+ut ; Set q+e nq)

Since the system period must always satisfy the safety

property, the first step is a connectivity check. Starting at

Odo and at Obs (the processes in the safety property) we

follow the port and variable value connections, dividing the

system period network into equivalence classes of processes.

Unless Odo and at Obs fall into the same class, there is no

way to guarantee the safety property. In this case, since there

is no connection from the obstacle process to any part of the

BF network, the safety property fails.

 To address the safety property, we need to introduce a

sensor that can report on the object location:

Sensorc = (Inbq | Inpr) ; Gtr|r-q|,c ; Outspq ; Sensorc

This sensor accurately reports on the location of the obstacle

as long as it is less than c from the robot. Modifying BF:

MoveTog = (Inpr | Inspq) ; Neqr,g ;
(Gtr|r-q|,h ; Outv, s(g-r) |
 Lte|r-q|,h ; Outv, s(r-q)) ; MoveTog

If the obstacle is within a distance h >c the robot will stop

moving towards the goal (velocity s(g-r)) and instead move

away from the obstacle. Because of the additional

connectivity to the Sensorc process, on examination of the

period of the system, we see that Odo and Obs fall into the

same equivalence class. We have to verify that the

parameters to Odo and Obs satisfy the safety property. We

construct the system period flow function as before,

projecting the system period onto the goal process network,

yielding:

 () =
 ()

 ()

We can match the safety property network if h > 1, and

hence verifying the safety property.

C. Stochastic properties

Now we consider a verification example that includes

uncertain environment. The specification goal will be: The

robot arrives to position a within 10t time units at least 90%

of the time. This can be specified in PARS as:

Goal = Ran x ; Delayt ; Ata ,

where  is a distribution such that P(x ≤ 10t) ≥ 90%.
Consider the non-deterministic environment model NEnv

in (3). When we analyze the system (NEnv | MoveTo), we now
get the recurrence relation:

rn+1 = rn + (un + en) ,

where (,) is a normally distributed random
variable. To handle uncertainty, we need to move from the
case of variables with a single value to variables with a
distribution of values. The domain ⅅm

of the flow function
now becomes distributions and the recurrence becomes

rn+1 = rn * (un )

Where  = (,) and * denotes convolution. If we
simplify our environment models to capture uncertainty and
noise with just normal distributions, or mixtures of normal
distributions, this expression can be solved efficiently. The
sum of normal distributions is also normal (,)

If we include Poisson processes in our environment, to
model arrival times, then we will need to also allow for
exponential-normal interaction. A very important example of
this is the severity terrain model that we presented at the end
of section IV.C. In terms of the recurrence relation above,
this would mean that in addition to (,) the solution

n ~ Exp(). A form for the severity distribution is developed
in [28] by Yang and Nadarajah.

VI. DISCUSSION

This paper addresses the pressing need to be able to verify

mission-critical robotic software in the context of its

environment and specific physical hardware (sensors and

actuators) with the goal of providing performance guarantees

to an operator prior to their sending a robot into a potentially

hazardous situation. To do so we have developed a software

architecture that provides visual programming capabilities

and an internal language that is amenable to such analysis.

 To verify mission critical robot programs, we need to

analyze a combination of program and environment model,

each of which contains real valued variables, concurrent

activities and uncertainty. A unique regularity of behavior-

based robot computation, the system period, is introduced to

render this complex problem more tractable. A process

algebra, PARS, is introduced to represent and analyze

programs and their environments. The expressiveness of

PARS for both deterministic and stochastic processes, as

well as the proposed verification approach, is illustrated on a

simple back and forth robotic mission.

 We are currently in the first year of a 3-year program to

develop and integrate the existing software and incorporate

the new ideas described herein. We anticipate the final

system to be able to operate in a range of environments,

using multiple types of hardware platforms, specified over

teams of robots.

 References

[1] Alur, R., Theory of Timed Automata. Theoretical Computer Science,
v. 126 Issue 2, pp. 183-235, 1994.

[2] Arkin, R.C., Motor Schema-Based Mobile Robot Navigation. Int.
Journal of Robotics Research, Vol. 8, No. 4, Aug. 1989, pp. 92-112.

[3] Arkin, R.C., Diaz, J., Line of Sight Constrained Exploration for
Reactive Multiagent Robotic teams. AMC02, July 2002, pp. 455-461.

[4] Arkin, R.C., Lyons, D.M., Jiang, S., Nirmal, P., Zafar, M., Getting it
Right the First Time: Predicted Performance Guarantees from the
Analysis of Emergent Behavior in Autonomous and Semi-
autonomous Systems, SPIE Defense, Security and Sensing:
Unmanned Systems Technology XIV, Baltimore MD, 2012.

[5] Baeten, J., A Brief History of Process Algebra. Elsevier J.
Theoretical Comp. Sci. – Process Algebra, 335(2-3), 23 May 2005

[6] Baillie, Jean-Christophe, URBI: Towards a Universal Robotic Low-
Level Programming Language. Proc. IROS, 2005.

[7] Blank, D.S., Kumar, D., Meeden, L., and Yanco, H., Pyro: A
Python-based Versatile Programming Environment for Teaching
Robotics. J. Educational Resources in Computing (JERIC) 2003.

[8] Boem, C. and Jacopini, G., “Flow diagrams, Turing machines and
languages with only two formation rules, CACM 9(5) 1966.

[9] Buchholz, P., Equivalence Relations for Stochastic Automata
Networks. Proc. 2nd Int. Meeting on the Numerical Solution of
Markov Chains,1995

[10] Clark, E., et al., Model Checking. MIT Press 1999.

[11] Cuarte, C., et al, “A Common Control Language to support multiple
cooperating AUVs” Proc, 14th Int. Symp. Unmanned Untethered
Submersible Vehicles Technology, 2005

[12] Ding, X., Kloetzer, M., Chen, Y., and Belta, C., Automatic
Deployment of Robotic Teams. Robotics & Automation Magazine
18(3) Sept 2011.

[13] Eberbach, E., “$-calculus of bounded rational agents: flexible
optimization as search under bounded resources in interactive
systems.” Fundamenta Informatica, V68 p47-102, 2005.

[14] Endo, Y., MacKenzie, D., and Arkin, R.C., Usability Evaluation of
High-level User Assistance for Robot Mission Specification. IEEE
Trans. SMC Vol. 34, No. 2, pp.168-180, May 2004.

[15] Gerkey, B., Vaughan, R., Howard, A., The Player/Stage Project:
Tools for Multi-Robot and Distributed Sensor Systems. 11th Int.
Conf. Adv. Robotics, pp. 317-323, Coimbra Portugal, June 2003.

[16] Hennessy, M. Algebraic Theory of Processes. The MIT Press, 1988.

[17] Jackon, J., Microsoft Robot Studio: A Technical Introduction. IEEE
Rob. & Aut. Magazine, Dec. 2007.

[18] Jhala, R., Majumdar, R., Software Model Checking. ACM
Computing Surveys, V41 N4, Oct. 2009.

[19] Kress-Gazit, H., Wongpiromsarn, T., Corrective, Reactive, High-
level Control. Robotics & Automation Magazine 18(3) Sept 2011.

[20] Lyons, D., Arkin, R., Towards Performance Guarantees for
Emergent Behavior. IEEE Int. Conf. on Robotics and Aut., 2004.

[21] MacKenzie, D., Arkin, R., Evaluating the Usability of Robot
Programming Toolsets. Int. Journal of Robotics Research, Vol. 4,
No. 7, April 1998, pp. 381-401.

[22] MacKenzie, D., Arkin, R.C., Cameron, R., Multiagent Mission
Specification and Execution. Aut. Robots, 4(1), pp. 29-52, 1997.

[23] MacKenzie, D.C., Configuration Network Language (CNL) User
Manual. College of Computing, Georgia Tech., V 1.5, June 1996.

[24] MissionLab v7.0 User Manual, available at
http://www.cc.gatech.edu/aimosaic/robot-
lab/research/MissionLab/mlab_manual-7.0.pdf

[25] Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J.,
Berger, E., Wheeler, R.,and Ng, A., ROS: An open-source robot
operating system. Proc. Open-Source Software Workshop, Int. Conf.
Robotics and Aut., 2009.

[26] Ramadge, R., Wonham, W., Supervisory control of a class of
discrete event processes. SIAM J. Cont. & Opt. 25(1) 1987.

[27] Steenstrup, M., Arbib, M.A., Manes, E.G., Port Automata and the
Algebra of Concurrent Processes. JCSS 27(1): 29-50 (1983).

[28] Yang, D.W., Nadarajah, S., Drought modeling and products of
random variables with exponential kernals Stoch. Env. Research and
Risk Ass. V21 N2 2006.

http://www.cc.gatech.edu/aimosaic/robot-lab/research/MissionLab/mlab_manual-7.0.pdf
http://www.cc.gatech.edu/aimosaic/robot-lab/research/MissionLab/mlab_manual-7.0.pdf

