Integrating RL and Behavior-based Control for Soccer*
Tucker Balch

Mobile Robot Laboratory
College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280

tucker@cc.gatech.edu

1 Introduction and Background

This paper describes Clay, an evolutionary architecture
for autonomous robots integrating motor schema-based
control and reinforcement learning. Robots utilizing this
system benefit from the real-time performance of mo-
tor schemas in continuous and dynamic environments
while taking advantage of adaptive reinforcement learn-
ing. Clay coordinates assemblages (groups of motor
schemas) using embedded reinforcement learning mod-
ules. The coordination modules activate specific assem-
blages based on the presently perceived situation. Learn-
ing occurs as the robot selects assemblages and samples a
reinforcement signal over time. Clay was used by Geor-
gia Tech in the configuration of a soccer team for the
RoboCup-97 simulator competition [Kitano et al., 1997].
A simple robot soccer strategy is used to to illustrate the
utility of the system.

Motor schemas are the reactive component of Arkin’s
Autonomous Robot Architecture (AuRA) [Arkin and
Balch, 1997]. AuRA’s design integrates deliberative
planning at a top level with behavior-based motor con-
trol at the bottom. The lower levels, concerned with
executing the reactive behaviors are incorporated in this
research.

Individual motor schemas, or primitive behaviors, ex-
press separate goals or constraints for a task. As an ex-
ample, important schemas for a navigational task would
include avoid_obstacles and move_to_goal. Since
schemas are independent, they can run concurrently,
providing parallelism and speed. Sensor input is pro-
cessed by perceptual schemas embedded in the motor be-
haviors. Perceptual processing is minimal and provides
just the information pertinent to the motor schema.
For instance, a find _obstacles perceptual schema which
provides a list of sensed obstacles is embedded in the
avoid_obstacles motor schema.

The concurrently running motor schemas are inte-
grated as follows: First, each produces a vector indi-
cating the direction the robot should move to satisfy
that schema’s goal or constraint. The magnitude of the
vector indicates the importance of achieving it. It is

*Proc.
Japan

1997 1JCAI Workshop on RoboCup, Nagoya,

not so critical, for instance, to avoid an obstacle if it is
distant, but crucial if close by. The magnitude of the
avoid_obstacle vector is correspondingly small for dis-
tant obstacles and large for close ones. The importance
of motor schemas relative to each other is indicated by
a gain value for each one. The gain is usually set by
a human designer, but may also be determined through
automatic means, including on-line learning, case-based
reasoning or genetic algorithms. Each motor vector is
multiplied by the associated gain value and the results
are summed and normalized. The resultant vector is sent
to the robot hardware for execution. An example of this
process is illustrated in Figure 1.

The approach bears a strong resemblance to potential
field methods (e.g. [Connolly and Grupen, 1993]), but
with an important difference: the entire field is never
computed, only the robot’s reaction to its current per-
ception of the world at its present location. In the ex-
ample figure an entire field is shown, but this is only
for visualization purposes. Problems with local minima,
maxima, and cyclic behavior which are endemic to many
potential fields strategies are handled by several methods
including: the injection of noise into the system [Arkin
and Balch, 1997]; resorting to high-level planning; repul-
sion from previously visited locales [Balch and Arkin,
1993]; continuous adaptation [Clark et al., 1992]; and
other learning strategies. Schema-based robot control
has been demonstrated to provide robust navigation in
complex and dynamic worlds.

1.1 Temporal Sequencing

As illustrated above for navigation, motor schemas may
be grouped to form more complex, emergent behaviors.
Groups of behaviors are referred to as behavioral as-
semblages. One way behavioral assemblages may be
used in solving complex tasks is to develop an assem-
blage for each sub-task and to execute the assemblages
in an appropriate sequence. The steps in the sequence
are separate behavioral states. Perceptual events that
cause transitions from one behavioral state to another
are called perceptual triggers. The resulting task-solving
strategy can be represented as a Finite State Automaton
(FSA). The technique is referred to as temporal sequenc-
ing [Arkin and MacKenzie, 1994].



7

S A A
L A A A

7

S A A
L A A A

Figure 1: Motor schema example. The diagram on the left shows a vector field corresponding to a move-to-goal
schema, pulling the robot to a location on the right. The center diagram shows an avoid-obstacles field, repelling
the robot from two sensed obstacles. On the right, the two schemas are summed, resulting in a complete behavior
for reaching the goal. It is important to note that the entire field is never computed, only the vectors for the robot’s
current location. Similarly schemas are used for soccer-playing strategies.

As an example use of temporal sequencing, consider
the strategy for a robot soccer player. The strategy out-
lined here was used in initial research; the actual system
used by Georgia Tech in the RoboCup-97 competition is
more complex. The salient issue for now is that points
are scored by bumping the ball across the opponent’s
goal. Robots must avoid bumping the ball in the wrong
direction, lest they score against their own team. A rea-
sonable approach is for the robot to first ensure it is
behind the ball, then move towards it to bump it to-
wards the opponent’s goal. Alternately, a goalie robot
may remain in the backfield to block an opponent’s scor-
ing attempt.

In this example behavioral system a robot can
be in one of three behavioral states: move_to_ball,
get_behind_ball, and move_to_backfield. The robot is ini-
tialized in the get_behind_ball state. If it detects that
it 1s behind the ball it immediately transitions to the
move_to_ball or move_to_backfield state, depending on
whether it is serving as a “forward” or “goalie.” The
transition occurs on the trigger behind_ball. The robot
will remain in the new state until triggered again by not
behind_ball.

At the highest level, the soccer strategy is an as-
semblage represented as a finite state automaton (FSA)
consisting of two states. FSAs illustrating forward and
goalie strategies are shown in Figure 2. The robot’s pol-
icy may be equivalently viewed as a look-up table (Figure
3). This paper will focus on the look-up table representa-
tion as it is also useful for viewing the policies of learning
robots. The following sections describe how learning can
be introduced, so that the agents don’t necessarily follow
a fixed sequence.

2 Expressing Behaviors in Clay

Behavioral expression in Clay is fully recursive: there is
no limit to the number of levels in a behavioral hierar-
chy. Clay’s primitive, the motor schema, provides a rich

repertoire for behavioral design [Arkin and Balch, 1997].
Motor schemas take full advantage of continuous sen-
sor values and can generate an infinite range of actuator
output; most other approaches integrating reinforcement
learning and behavior-based control only select from a
discrete list of actions. Experiments with Clay have so
far only explored learning at one level, but the designer
is free to introduce learning at any level in the behavioral
hierarchy.

Clay provides for recursive expression of behavior and
adds learning coordination operators and an object-
oriented syntax. The object-oriented approach provides
for a direct expression of schema instantiation and the
“embedding” of perceptual schemas in motor schemas.
For example, the statement:

move_to_ball = new MotorSchemaMoveTo(ball_direction);

creates a new instance of the MoveTo motor schema
using the embedded ball_direction perceptual schema.
The resulting motor process “move_to_ball,” will draw
the robot towards the perceived ball location.

Before moving to a discussion of how Clay integrates
motor schemas and learning, it is helpful to show how
a basic motor schema-based robotic control system is
specified. We begin by outlining the available primitives
and coordination operators. The following generic motor
schemas are available in Clay:

e MoveTo: generates a vector with constant magni-
tude directly towards a perceptual goal.

e LinearAttraction: generates a vector directly to-
wards a perceptual goal with magnitude increasing
linearly (up to a maximum of 1.0) with distance
from the goal.

e LinearRepulsion: generates a vector directly
away from a perceived object. The magnitude
decreases linearly with distance from the object,
falling to zero at the limit of the object’ “sphere
of influence.”



not behind_ball

move_to_ball

get_behind_ball

behind_ball

behind_ball not behind_ball

Control Team Forward

not behind_ball

move_to
back_field

get_behind_ball

behind_ball

behind_ball not behind_ball

Control Team Goalie

Figure 2: An example soccer team’s strategy viewed as
FSAs. This strategy is used as a control in experiments
using Clay. The strategies employed by Georgia Tech in
RoboCup-97 are more complex.

e Dodge: generates a “swirling” field around a per-
ceived obstacle. The robot is nudged around it
rather than directly repulsed from it.

When instantiated with appropriate embedded per-
ceptual schemas, the generic motor schemas become spe-
cific. For instance MoveTo serves as move_to_ball
when instantiated with a ball-finding perceptual schema,
or move_to_goal when instantiated with a goal-finder.
Among others; Clay includes the following perceptual
schemas germane to soccer:

e EgoBall: provides a vector towards the soccer ball,
based on sensor values.

e DefendedGoal: returns a vector towards the de-
fended goal.

e BehindBall: returns a 1 if the robot is behind the
ball, 0 otherwise. This perceptual feature is used to
trigger transitions between behavioral states.

Schemas may be combined and coordinated with these
operators:

e CoordinateSum: multiplies each constituent mo-
tor schema or assemblage output by an associated
gain value, then sums the results.

e CoordinateSelection: selects one motor schema
or assemblage for output based on an embedded dis-
crete selector process.

Now we revisit the goalie soccer strategy outlined
above to show how perceptual and motor schemas are

perceptual assemblage
feature | mtb gbb mib f
not behind_ball 0 1 0
behind_ball 1 0 0
Control Team Forward

perceptual assemblage
feature | mtb gbb mitb f
not behind_ball 0 1 0

behind_ball 0 0 1
Control Team Goalie

Figure 3: A simple soccer team strategy viewed as look-
up tables. The 1 in each row indicates the behavioral
assemblage selected by the robot for the perceived sit-
uation indicated on the left. The abbreviations for the
assemblages are introduced in the text.

composed and coordinated in Clay. Recall that the
agents are to be provided three behavioral assemblages:
move_to_ball, get_behind_ball and move_to_backfield. The
assemblages and their primitive components are config-
ured when the robot is initialized. Here is code specifying
the move_to_ball assemblage:

ball_direction = new PerceptSchemaEgoBall (m) ;

move_to_ball

When it is initialized, the control system configura-
tion routine is passed a handle, m, for access to the
robot’s sensor and actuator interface. The handle
is in turn passed to primitive perceptual schemas so
they can access the sensor hardware. The first line
of code above instantiates a new perceptual schema,
ball _direction, which provides a vector from the robot
to the sensed location of the ball. The second line em-
beds ball_direction in move_to_ball, an instantiation
of the MoveTo motor schema.

Motor and perceptual schemas, once instantiated,
are easily reused. This is illustrated in the following
declaration of move_to_backfield. move_to_backfield is
a weighted combination of move_to_ball and a new
schema, stay _near_goal:

defended_goal
= new PerceptSchemaDefendedGoal (m) ;

stay_near_goal
= new MotorSchemalLinearAttraction(1.0,
0.25, defended_goal);

move_to_backfield_schemas[0] move_to_ball;

move_to_backfield_gains[0] 0.5;
move_to_backfield_schemas[1] = stay_near_goal;
move_to_backfield_gains[1] =1.5;

move_to_backfield
= new CoordinateSum(move_to_backfield_schemas,
gains) ;

The first two lines declare stay mear_goal as a linear
attraction motor schema configured to move the robot
towards its defended goal. The parameters 1.0 and 0.25

new MotorSchemaMoveTo(ball_direction);



specify ranges at which the schema’s magnitude is max-
imized and minimized, respectively. Next, the schemas
comprising move_to_backfield and their gains are spec-
ified: move_to_ball and stay near_goal are assigned
gains of 0.5 and 1.5 respectively. Finally, the component
schemas are coordinated by gain multiplication and sum-
mation. The get_behind_ball is declared similarly.

Once the primitive behaviors have been combined as
assemblages, they are coordinated in the goalie configu-
ration as follows:

behind_ball
= new PerceptFeatureBehindBall(m) ;

assemblages[0] = get_behind_ball;
assemblages[1] = move_to_backfield;
top_level

= new CoordinateSelection(assemblages,
behind_ball);

top_level is the output of a selection operator which
chooses between get_behind_ball and move_to_backfield
depending on whether the robot is behind the
ball. assemblages[0], or get_behind ball, is se-
lected when behindball == assemblages[1], or
move_to_backfield is selected when behindball ==

This completes the specification of a goalie robot’s be-
havior. If a designer were interested in building a more
complicated agent with soccer as one of several capabil-
ities top_level could be included as just another assem-
blage for integration at the next level up.

A potential difficulty for hierarchically specified be-
havioral systems is that as a behavioral configuration
grows more complex, run time computational demands
can explode exponentially. Clay avoids the problem
by only executing currently activated assemblages and
schemas. Computational demands are also be reduced
when the designer re-uses schemas in a configuration (as
move_to_ball is re-used above). Synchronization tech-
niques ensure a schema’s output is re-calculated only
once per movement cycle.

3 Adding Reinforcement Learning

The initial implementation of Clay utilizes a form of Q-
learning as a coordination operator. Q-learning is a type
of reinforcement-learning in which the value of taking
each possible action in each situation is represented as a
utility function, Q(s,a). Where s the state or situation
and a is a possible action. If the function is properly
computed, an agent can act optimally simply by looking
up the best-valued action for any situation. The prob-
lem is to find the Q(s, a) that provides an optimal pol-
icy. Watkins [Watkins and Dayan, 1992] has developed
an algorithm for determining Q(s, a) that converges to
optimal under certain conditions.

Q-learning is integrated by the addition of a new co-
ordination operator, CoordinateLearner. Coordi-
nateLearner is “plug compatible” with Coordinate-
Selection but it learns which subordinate assemblage
to activate. At configuration time, an instantiation of

CoordinateLearner is provided an embedded “reward
schema” that it uses for learning over time. Here is how
a Q-learning soccer robot might be configured:

learner
= new Learner((states, actions, alpha, gamma,
randomrate, randomdecay) ;

reward = new RewardOnScore(m);

assemblages[0] = move_to_ball;
assemblages[1] = get_behind_ball;
assemblages[2] = move_to_backfield;
top_level

= new CoordinatelLearner(assemblages, behind_ball,
reward, learner);

First, a Q-learning module is instantiated (the param-
eters aren’t important for this discussion). Next a re-
ward schema is instantiated. RewardOnScore, is one
of several potentially useful reward functions for soccer.
It returns 1 when the robot’s team just scored, -1 when
the opponents score and 0 otherwise. The next few lines
specify which assemblages are to be selected from. Fi-
nally, top_level is declared with a learning coordination
operator. An important advantage of the declaration
syntax is the ease with which alternate learning tech-
niques and reward functions may be substituted.

After configuration, the coordination runs as follows:
At each movement step the reward schema is queried as
to the current reinforcement signal. Next, the percep-
tual feature behind_ ball is accessed to determine the
agent’s perceived state. Finally, the learning module is
queried with the state and provided the reinforcement
signal. The learning module updates its Q-values ac-
cordingly and returns an integer indicating which of the
assemblage to activate.

References
[Arkin and Balch, 1997] R.C. Arkin and T.R. Balch. Aura:

principles and practice in review. Journal of Experimental
and Theoretical Artificial Intelligence, in press, 1997.

[Arkin and MacKenzie, 1994] R.C. Arkin and D.C. MacKen-
zie. Temporal coordination of perceptual algorithms for
mobile robot navigation. IEEE Transactions on Robotics
and Automation, 10(3):276-286, 1994.

[Balch and Arkin, 1993] T. Balch and R.C. Arkin. Avoiding
the past: a simple but effective strategy for reactive navi-
gation. In IFEF Conference on Robotics and Automation,
pages 678-685. IEEE, May 1993. Atlanta, Georgia.

[Clark et al., 1992] R.J. Clark, R.C. Arkin, and A. Ram.
Learning momentum: On-line performance enhancement
for reactive systems. In IFEE Conf. on Robotics and Au-
tomation, pages 111-116. I[EEE, May 1992. Nice, France.

[Connolly and Grupen, 1993] C. Connolly and R. Grupen.
On the applications of harmonic functions to robotics.
Journal of Robotic Systems, 10(7):931-936, 1993.

[Kitano et al., 1997] H. Kitano, M. Asada, Y. Kuniyoshi,
I. Noda, and E. Osawa. Robocup: The robot world cup



initiative. In Proc. Autonomous Agents 97. ACM, 1997.
Marina Del Rey, California.

[Watkins and Dayan, 1992] Christopher J. C. H. Watkins
and Peter Dayan. Technical note: Q learning. Machine
Learning, 8:279-292, 1992.



