376 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 3, JUNE 1997

Case-Based Reactive Navigation: A Method
for On-Line Selection and Adaptation of
Reactive Robotic Control Parameters

Ashwin Ram,Associate Member, IEEERonald C. Arkin,Senior Member, IEEE
Kenneth Moorman, and Russell J. ClaMember, IEEE

Abstract—This article presents a new line of research inves- This article presents a case-based reasoning method for
tigating on-line adaptive reactive control mechanisms for au- on-line selection of robotic control behaviors, and on-line
tonomous intelligent agents. We discuss a case-based method,y,naiion of selected behaviors to the immediate demands of
for dynamic selection and modification of behavior assemblages h . ithi . h
for a navigational system. The case-based reasoning module ist€ €nvironment, within a reactive approach to autonomous
designed as an addition to a traditional reactive control system, robotic control. The method allows an autonomous robot
and provides more flexible performance in novel environments to automatically select appropriate behaviors and to adapt
without extensive high-level reasoning that would otherwise slow these behaviors dynamically based on the demands of the

the system down. The method is implemented in the ACBARR (A . . . . )
Case-BAsed Reactive Robotic) system and evaluated through em_envwonment, and results in a substantial improvement in per

pirical simulation of the system on several different environments, formaflce- In particular, the system makes use of bOt_h_ g|0_ba|
including “box canyon” environments known to be problematic behavior changes when needed as well as local modifications

for reactive control systems in general. which act to optimize its behavior. Consider, for example, the
Index Terms—Case-based reasoning, reactive ControL robot Scenario ShOWﬂ in F|g 1 Th|5 ﬁgure ShOWS a Simulated I’ObOt
navigation. navigating through a world which consists of both relatively

clear areas and relatively crowded ones. While it is possible
for the system to perform under the control of one behavior
set, this may not lead to high quality performance. In this

VERAL methods for autonomous robotic control havgase two navigational strategies should be employed—one

een proposed, ranging from high-level planning methy navigating clear areas and one for navigating cluttered
ods—in which extensive world knowledge is used to formulatgeas The system begins with a strategy for navigating in
a detailed plan of action—to the more recent methods fefar areas (toward the left side of the figure). This provides
‘reactive control—in which a simple representation of theycejlent performance until the cluttered area is encountered.
robot’'s immediate environment is used to seIecF the next actiap this point, the system switches (based on its perception of
to be performed. However, most current robotics systems 3@ environment) to a strategy better suited for obstacle-filled
severely limited when performing in complex and dynamig.gions. Once the obstacle region is successfully navigated,
environments in the real world. It requires careful design anfle oy stem switches back to the navigational strategy suited to
tuning on the part of the human designer to develop the ComE%ar areas (toward the right side of the figure).

syst(_ams thaF dnvz;pcrl].robotﬁ, anfd evden 'then thgse SyStems global changes in navigational strategies allow the
run Into serious ditticu ties when face W'F e”"'ro_""_“e”@ stem to adapt to various regions within a single environment,
which are different 'from tho;e that the des.|g.ner anticipategh reby allowing more robust behavior. In addition, within
Furthermore, even if the designer COUI.d ant|C|pate and mo E confines of a particular strategy, local adjustments allow
all the relevant aspects of the operating environment of t e system to “fine-tune” itself to a specific environment.

robot, the dynamic nature of the real world would render par, : . .
or example, while the robotic system may have a particular

of this model obsolete. Clearly, the ability to adapt to Chang%?ateg which is useful in general cluttered environments
in the environment is crucial to adequate performance a| cf y ’

L [Stal adjustments may be necessary to adapt the strategy to
survivability in the real world.

the specific cluttered environment the robot is attempting to
navigate. Thus, the global changes suggest general behavior
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Noise-Persistence Noise-Gain Goal-Gain Object-Gain Sphere-of-Influence The researCh alSO ContribUtes tO Case_base reasoning and
Steps 70 Contacts 10 Dist 2,31 Obstacies 0.00 mution 1.06 To Gosl 1.000 machine learning in several ways. One, our system uses case-
based reasoning to suggest global modifications (behavior
selection) as well as to suggest more local modifications
- (behavior adaptation). The knowledge required for both kinds
pagnitude 100 Direotion 1370 of suggestions are stored in a case, in contrast with traditional
case-based reasoning systems in which cases are used only to
suggest solutions, and a separate library of adaptation rules is
used to adapt solutions. Two, the method represents a novel
variation on case-based reasoning for a new kind of task,
one that requires continuous, on-line performance (see also
[34] and [36]). The system must continuously evaluate its
performance, and continue to adapt the solution or seek a
new one based on the current environment. Furthermore, this
evaluation must be done using the simple perceptual features
available to a reactive control system, unlike the complex
thematic features or abstract world models used to retrieve
cases in many case-based reasoning systems. Finally, unlike
traditional case-based reasoning systems which rely on deep
reasoning and analysis (e.g., [17]), and unlike other machine
learning “augmentations” to reactive control systems which
fall back on nonreactive reasoning (e.g., [13]), our method
does not require the system to “stop and think;” the system
continues to perform reactively with very little performance
overhead as compared to a “pure” reactive control system.
The methods are fully implemented in ACBARR, A Case-
o BAsed Reactive Robotic system. The system has been evalu-
extremely successful, it is not used more than any other ) ) . o
7 L ated extensively; both qualitative and quantitative results from
behavior in the system, nor is it altered to become even . .
. everal simulations are presented below. ACBARR has been
more successful. In order to achieve more robust roboﬁc oo . . .
; ound to be robust in simulation, performing well in novel
control, we advocate the use tehavior assemblageso . o o .
. ) . . nvironments. Additionally, it is able to navigate through
represent appropriate collections of cooperating behaviors For p . . . .

. ) o . several “hard” environments, such as box canyons, in which
complex environmentspehavior switchingto dynamically | . ld perf v Such :
select behaviors appropriate for a given environment; ahd oY reactive systems WOLITC periorm poorly. SUCh environ-
behavior adaptatiorto adapt and fine-tune existin beha\}ior ents pose a chronic problem for all memory-less methods
d icall P | p ts. Th tg ! ?Zat rely entirely upon direct sensory information, not only

yhamically In novel environments. There are two types @b ,q potential-field-based methods used in schema-based
behavior adaptations that might be considered. One option I8 i ot
o i igation.
to have the system modify its current behavioral parameters
based on immediate past experience (behavior adaptation). Il. BACKGROUND AND RELATED RESEARCH
This is a local response to the problem. A more global solution _ _
is to have the system select completely new sets of behavidhalPerception and Reactive Control

parameters based on the current environment in which it findsReactive control [3], [10], [12], [19], [30] is concermed

itself (behavior switching). A robust system should be able {gith how to coordinate multiple motor behaviors. It is char-
adapt to its environment dynamically in both these ways. OHtterized by a tight coupling between perception and action
research incorporates both behavior adaptation and behavigth little or no intervening representation. This results in
switching into a reactive control framework. systems which do not perform detailed planning but are able
The research presented here contributes to reactive contgofunction in dynamic and complicated environments. “Pure”
for autonomous robots in the following ways. First, a methogactive control is characterized by a stimulus-response type
is presented for the use of behavioral parameters tailoredotforelationship with the world, not unlike the viewpoint held
particular environmental demands, rather than of single by the behaviorist psychologists, epitomized by Skinner [38].
multiple independent behaviors. Second, the system can selehtalistic (representational) structures are denounced and the
and adapt these behaviors dynamically without relying on tiebot reacts to the immediacy of sensory information in a very
user to select the “correct” behavioral parameters for ealgw-level noncognitive manner. Complex behaviors emerge as
navigation problem. Finally, the system exhibits considerabdecombination of simple low-level responses to the rich variety
flexibility over multiple environments. For example, as showaof stimuli the world affords.
below, it performs well in uncluttered worlds, highly cluttered There are many representative examples of this form of nav-
worlds, worlds with box canyons, and so on, without anigation. Brooks’ subsumption architecture has demonstrated
reconfiguration. robust navigation for mobile vehicles in dynamically chang-

i

-

Fig. 1. Example of adaptive reactive control in a simulated robot.
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ing domains [10]. There is a deliberate avoidance of worleector representing the direction and speed at which the
modeling which is captured by the statement tiha world is robot is to move given current environmental conditions.
its own best moddll1]. Recently learning methods have beeSome of the available motor schemas for our robot include
introduced into this type of architecture to further increaddOVE-AHEAD (move in a general direction), MOVE-TO-
its flexibility (e.g., [27]). Payton has described a collection dBOAL (move toward a discernible goal), AVOID-STATIC-
motor responses that are termed “reflexive behaviors” [3@BSTACLE (move away from an observed obstacle), and
These behaviors react directly to sensory information yieldifgOISE (move randomly in a wandering fashion).
intelligent emergent behavior. Payton, Brooks, Kadanoff [18], Each of these schemas is realized as a separate asynchronous
and several other proponents of reactive control incorporate ttmmputing agent with parameters reflecting current world
concept ofarbitration. Multiple behaviors compete for controlknowledge. The output of each primitive motor schema is
of the vehicle with a winner-take-all mechanism deciding theombined using vector summation and normalization. This
result. Kaelbling has developed a reactive architecture [19] theitnple process can result in quite complex trajectories and
is an extension of Brooks’ work. The emphasis is on embeddedhaviors as illustrated in the simulations and experiments
systems for real-time control. A hierarchical competency levegported in other work (e.g., [3]).
for behaviors is established which is mediated by a high- To optimize system performance it is necessary to determine
level controller. She has additionally conducted research Wwhat parameter values should be used to accomplish a specific
learning in autonomous agents [20]. Firby has developedtask in a given environment. For instance, an exploration
different form of reactive control by utilizing modules callecbehavior can be observed by providing a relatively high gain
Reactive Action Packages which encapsulate tasks for a robatl persistence to the NOISE schema with an accompanying
[16]. Situation-driven execution via goal satisfaction is th&VOID-STATIC-OBSTACLE schema [3]. The task of deter-
predominant mode of operation. Agre and Chapman [1] hawening appropriatea priori parameter values is nontrivial in
used reactive control in the domain of game playing. Sevefaghly cluttered environments. For a given environment, this
behaviors are active at any time, controlling the strategies uggain determination process involves empirical evaluation of
by a video game penguin and its relationship with other objedtse system’s performance. The process is repeated until further
and entities in the world. changes result in no visible improvement. When structural en-
Reactive navigation in our system [3] addresses reactivionmental knowledge is available, this task becomes simpler
control in a manner that is significantly different than th@4], but for purely reactive systems with no knowledge of the
approaches described above. Arbitration is not used for awerld, highly complex environments can produce difficulty in
ordinating the multiple active agents; instead, potential fieldaching near optimal solutions.
formulations are employed to describe the reactions of theFurthermore, once this “best set” of parameter values is
robot to the world, and explicit representational knowledge established for a given world, it will likely be less efficient for
used to select and configure both the motor and perceptoavigation in a different environment. Figs. 2 and 3 illustrate
strategies used for reactive control. a scenario where this is true. Fig. 2 shows a trap, known as
Despite the assumptions of early work in reactive contra, “box canyon,” where a high AVOID-STATIC-OBSTACLE
representational knowledge is importafior robot naviga- sphere of influence is necessary to produce a successful path.
tion. The fundamental problem lies in representing what Eg. 3 shows a slightly different trap, a “quasi” box canyon,
appropriate for the task. Amarel’'s classic paper [2] showghere a high sphere of influence results in an inferior path.
the importance of appropriate knowledge representation fbhe relatively jagged paths in both of these sample runs were
problem solving using artificial intelligence. The question iggroduced by high levels of NOISE being used. This was
first, what needs to be represented for successful generseessary in order to free the robot from local minima it may
purpose mobile robot navigation, and, second, how it is #mcounter. Later in this article, it will be seen that our on-
be represented. Our answer to the first question is threefdide adaptive reactive control system smooths out the paths
motor behaviorshat are used to describe the set of interactiormaitonomously by lowering the influence of noise when it is
the robot can have with the worldyerceptual strategies not required.
that provide the required sensory information to the motor Finally, in a complex environment, it may be difficult to
behaviors, andvorld knowledggboth a priori and acquired) find one “best” set of parameter values; different values may
that is used to select (and reconfigure when necessary) ligeappropriate for different areas of the environment. It is,
motor behaviors and perceptual strategies that are neededhtyefore, important to develop methods by which the reactive
accomplish the robot’s goals. The following section answeesntrol system can select and adapt gain and other parametric
the question as to how to represent this knowledge. values automatically. The system presented here uses what we
call an adaptive reactive contromethod to select and adjust
the appropriate behavioral parameters to match the current task
Our system is based on the Autonomous Robot Architegnd environment.
ture (AuRA) [3]. In this system, each basic type of motor ) , )
behavior is represented bysahemaMotor schemas comprise C- Caseé-Based Reasoning and Machine Learning
a collection of individual motor behaviors each of which Machine learning is concerned with developing methods
reacts to sensory information gleaned from the environmentith which an intelligent system can improve its own
The output of each individual motor schema is a velocitgerformance by learning new conceptual characterizations

B. Motor Schemas
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Fig. 2. Box canyon runs: (a) sphere of influenee 10 and (b) sphere of influence- 35.

€Y (b)

Fig. 3. Quasibox canyon runs: (a) sphere of influeecel0 and (b) sphere of influence= 35.

of the domain, by learning new control strategies, bthe system could analyze the new situation (or its failure
learning or improving domain theories and world model$p perform in that situation) to determine how to proceed
and combinations of these. In robotic systems, these meth¢@ls [13], [29]; however, such an analysis is typically too
provide an agent with, for example, a means to learn a msjpw and requires extensive high-level knowledge about the
of its environment (e.g., [24]) or to learn control strategiesnvironment. A reactive control system requires a fast, on-
at a high level (e.g., [37]) or at the reactive level (e.g., [20line, adaptive process which allows the system to deal with the
[35], and [36]). Much of this work focuses on learning controhovel situation without having to perform a deep and extensive
behaviors; less emphasis has been placed, however, on flexdralysis of the situation. Such a process pays more attention
adaptation of learned (or pre-programmed) control behavidsthe easily available (but perhaps superficial) aspects of the
in different task environments. situation, and uses them to make quick decisions about perfor-
Even in situations anticipated by the designer, we cannmoince without falling back on slower, nonreactive techniques.
assume that the system will have an “optimal” control strateg¥hile such a system does not necessarily “learn” new control
(whether designed or learned) that is tailored to that situatistrategies, it does adapt to the environment dynamically during
Instead, the system will need to perform its task to the bebe performance task by selecting behavioral parameters, such
of its ability, based on control strategies that are flexibles momentum, that are appropriate for the environment. The
enough to provide reasonable performance in a wide rarigsue, then, becomes the kind of knowledge that the system
of situations. For our navigation task, this means that tmeeds to adapt its behaviors appropriately.
system must be able to fine-tune its behaviors and adapWhile others have worked on systems which integrate
to its environment during actual performance on a widearning and reactive control in order to learn the proper
range of problems in dynamic task environments. In principleehaviors (e.g., [13], [25], [28], and [29]), our approach is
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different in the sense that the systermist learning behavior example of early work in the application of CBR to nonreal-
sets for future use. Instead, our system is using a set of globale and nonreactive planning problems. However, learning
and local adaptations on existing behavior sets in order to tuzxed adaptation in CHEF is carried out through higher-level
(at both a gross and a fine level) the system’s performanceasoning, which requires a detailed model of the domain. This
The underlying philosophy is different—rather than attempt is exactly what reactive systems are trying to avoid. Another
learn a near-optimal behavior for a given environment (whidtfference between traditional CBR systems and ACBARR
then has to be generalized in some fashion if it is to be usefuf, that many (although not all) CBR systems perform “case
our approach is to have the system be flexible in the oadaptation,” a process in which cases are modified before being
line adapting of existing behavior sets to a wide variety @pplied to a new problem. ACBARR, on the other hand, does
situations. A given behavior may not be optimal (or even nearet modify its cases; instead, it uses cases to perform “adaptive
optimal) for any particular environment; instead, the adaptatioravigation” by adapting the reactive control parameters in use
technigues we describe allow it to be a “jack-of-all-trades” arlay the robotic controller.
adapt to the needs of each environment it faces. Furthermore, CHEF and similar systems have focussed on
Our approach to on-line adaptation is based on case-baptahning and not on execution-time control. Likewise, Ramsey
reasoning (CBR), which integrates aspects of inductive andd Grefenstette use case-based reasoning to seed a genetic
analytical reasoning and provides a method for adaptationalgorithm [36]; in their system, CBR is used to initialize a
novel situations [17], [21], [31], [39]. The intent behind CBRmachine learning algorithm and not for real-time adaptive
is to use a library otcasesto provide suggestions for actioncontrol of the navigational agent itself. Kopeikina, Brandau,
in new situations. Thus, cases in a CBR can, in principland Lemmon describe an application of CBR to real-time
be used to represent knowledge that is applicable to a braamhtrol [23]. Their system, though not intended for robotics,
class of problems. Hammond's CHEF program [17] is ais designed to handle the special issues of time-constrained
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processing and the need to represent cases that evolve Oy&jarr-matn-Loop {

time. Our gpproach, callgdontlnuous case-based réasoning /. Determine the current state of world +/

[34], combines the adaptive aspects of case-based reasoning/* and select a starting case */
‘environment = Examine-Environment ();

with the on-line, real-time aspects of reactive control; in movement = Examine-Movement ();

. . . . . . current-case = Select-Case (environment, movement);
particular, it uses cases to guide on-line adaptation of reactive
/* Main processing loop */

control parameters in a robotic system. Do {
' Iq general, the under!ylng assgmptlon in case.—bas.ed raSON- 1o (o onny = TRUE) { /+ Ifin “careful® mode +/
ing is that past cases will be applicable to new situations; what 7+ Analyze detected obstacle position and +/
worked in the past on a certain problem will more than likely 2: ff?;ﬁl”aiﬁearﬁfé’lf %?n%ﬁzcgog% tﬁﬁlgfirtga.*i/ ,
H H H. i * e system 1s still influence the subsequent *
work on anew problem WhIC.h is similar to the previous one. 7% reactive code. x/ 4 q
new-vector =
The quality of the solution wh|c_h a CBR program will generate D e-Best-Path-Vector (enviromment):
is dependent upon the following factors: robot . movement =
i , X Add-Vector (robot.movement, new-vector);
« set ofcasesin the system’s case library;
 representationof the cases; /; Thelnext lines represent “pure” reactive control */
- . . . .. . t - =
« ability to recognize that a new situation is like a previous O s ermine. Obatacle-Influence (environment);
H . robot .movement =
one Case retrleva)L Add-Vector (robot.movement, obstacle-vectors);
: H icti robot.movement =
* meth(_)ds forappllcatlon of an existing case to a new Add-Vector (robot.movement, random-noise-vector);
situation; Update-Robot-Position ()
. . . ate—nhobot—-rosition N
« ability to evaluatethe efficacy of the case, and to decide Ugdate—Spatial—Memory 0;
when a new or different case might be needed. /% This ends the reactive control portion */

Our research, then, must be concerned with how cases are /% Ypdate environment and movement knowledge »/

environment = Examine-Environment ();

stored in memory, how they are indexed for retrieval, how to movement = Examine-Movement ();
handle the issue of partial case matches, and knowing when to  /* Test to see if a new case is nceded */

IF (New-Case-Needed (environment, movement)) {

adapt versus when to select a new case. In addition, a critical current-case = )
aspect of an adaptive system for robotic control is that the Select-Case (enviromment, movement);

H ; i ' i /* If a new case Is selected, set the parameter values */
adaptive process mugt not |nt.e.rfere with the system s reactive /% to'a random valuc between the B e e
response. Finally, unlike traditional CBR systems which rely FOR (each parameter-value in current-case) DD {

. : current-case.parameter-value =
on cases to suggest solutions (here, behaviors) but then rely on RANDOM (current-case.parameter-value.low-limit,
rules to adapt those cases, the ACBARR method uses cases } current-case.parameter-value.hi-linit);
for both purposes. }

/* Locally adjust parameter values based on current case */
Adjust-Parameter-Values (current-parameters,

Ill. TECHNICAL DETAILS: THE ACBARR SYSTEM current-case)

ACBARR is a combination of a schema-based reactive '@ UNTIL (goal-reached OR
number-steps > maximum-steps-allowed)

control system with a case-based reasoning module. Fig.}4 /* end ACBARR-MAIN-LOOP */
illustrates the system’s high-level architecture. Data about t
world is gathered by the ENVIRONMENTAL MONITOR, and

combined with the robot's status gathered by the INTERNAL , o ) ,
MONITOR which represents how well the robot is movin%;as to determine which index environment in the stored cases

in relation to the world. The system uses this environmentafSt maiches the current environment and the evaluator has to
information in several ways. The ADJUSTMENT MODULEOletermlne whether the case switch is appropriate.
adjusts the parameter values of the active motor schema basdd Order to understand the process more fully, we now
on the recommendations of the current case. The FAILURESSENt the details of how each of the com!oone.nts Of, the
IDENTIFIER monitors the feedback for a failure situation. If it*CBARR system operates. To frame the following discussion,
determines that the current schema assemblage is inadequife,[°P-level algorithm used by the system is presented in
the CASE SELECTOR chooses a better case from the casd- -
library, which suggests a new parameter set and associated ,
ranges for parameter adaptation. A. Reactive Control

A case within ACBARR'’s case library represents a param- The following motor schemas were used in this research:
eter set for the behavior assemblage which is well suited fore AVOID-STATIC-OBSTACLE: Repel from object with
a particular environment. It contains information both about variable gain and sphere of influence. Used for collision
the desired behaviors and about the environment in which it gvoidance

1S . .
Plg. 5. Top-level case retrieval and use algorithm.

should be applied, which acts as the index for that case. The 0 ford> S
behavior information contains the new limits for each schema O e =4 524 4@ forR<d<S:
gain value and how each is allowed to change while this caseis o S ford<R

active. The environmental section represents the environment
and movement status of the robot under which to apply this
set of gain behaviors. To switch to a case, the case selector where

Odirection = From center of obstacle toward robot
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S Adjustable sphere of influence (radial extent of parameters were determined empirically; while they may

force from center of obstacle). not be optimal, they have proven effective.
R Radius of obstacle. « MAXXED is a binary value representing whether a
G Adjustable gain. parameter value has stayed at its upper bound for a sig-
d Distance of robot to center of obstacle. nificant period of time. Notice that there is no equivalent
« MOVE-TO-GOAL: Attract to goal with variable gain. Set MINNED value. Empirical tests of the system indicated
high when heading for a particular goal. that parameters were more likely to need to be expanded

upwards rather than below a preset minimum.

¢ CLEAR-TO-GOAL is a hinary value which indicates if
the robot is facing the goal and there are no obstacles
between it and the goal along a straight line path.

e SENSES-GOAL is a binary value which represents
whether the goal is within the robot’'s perceptual range

Viagnitude ~ Adjustable gain value.

Vdirection Direction toward perceived goal.

¢ NOISE: Random wander with variable gain and persis-
tence! Used to overcome local maxima, minima, cycles,
and for exploration.

Numagnitude  Adjustable gain value. . with nothing between the goal and the robot. Unlike

Nairection  Randomdirection,  persists ~ for | EAR-TO-GOAL, the robot may or may not be
Npersistence St€PS. physically facing the proper direction to the goal.

Npersistence  Adjustable persistence value. « GOAL-NEARBY is a hinary value which indicates that

The reactive control system has been successfully demon- the robot senses the goal but there are obstacles between
strated in both simulation and real robot systems [3], [8]. the two.

In the simulation, the radius and center of each obstacle as GOAL-DIRECTION is a value, in radian angle measure,
well as the goal location are available from the simulated which represents the direction of the goal relative to the
environment model. In a real robot, the obstacle and goal current position and heading of the robot.

location information is determined from the input of several « GRANNY? is a binary variable which determines when
possible sensors including ultrasound, laser scanners, video particularly careful behavior should be employed. It re-
cameras, and odometry sensors. Previous research shows thatsults from long-term poor performance, which will indi-

the schema-based reactive control mechanism utilized in this cate that no known case is working.

work is particularly robust in the presence of uncertainty from 5.1 of the items on the above list is information which

changing environments and imperfect sensor input [3]. g readily available, either directly from the robot's sensors
or from a straightforward mathematical calculation of sensor
B. Environmental Information data. No higher level processing is required to produce this

Since one overall goal of this research was keep the mdgformation.
ifications to a “pure” reactive control system as simple as
possible, any environmental information represented in tke Movement Information

system must be obtainable through perceptual input duringaCBARR also needs information involving its performance.
the normal reactive control process. With this in mind, thepis js knowledge of how well the current case behaviors are
following environmental information is maintained: performing in terms of the robot’'s movement toward the goal
» CLUTTER is a metric of how many obstacles are affecposition. There are six situations to which ACBARR needs to

ing the robot, defined as the ratio of sensed obstacles tpay attention in order to evaluate its current progress:

preset clutter valuéln our tests, this value was sett0 5.0. « NO-MOVEMENT: The robot’s average step size has

Thus, five sensed obstacles would result in a clutter metric  gropped below a certain threshold

of 1.0. Ten obstacles would equate to a clutter of 2.0. To

aid in partial matching for case selection, a clutter value M < Thovement

can match to range of similar clutter values, defined to be

0.4, i.e., any two clutter values within 0.4 of each other where

are considered indistinguishable. For example, a case thats Step size averaged oVéfy;.p,s Steps.

specifies a clutter value of 1.4 would exactly match an, .. Movement threshold.

environment with seven obstacles (CLUTTER 14), « MOVEMENT-TOWARD-GOAL: The robot's step size
partially match one with eight obstacles (CLUTTER and rate of approach to the goal are both above some
1.6), but not match one with ten obstacles (CLUTTER

= 2.0) along this particular match dimension. These3GRANNY is a “careful” mode which adds an additional step to the stan-
dard reactive control process—in addition to calculating obstacle influences,
Lo . ) . ... the system, if in granny mode, also determines a direction in which lie fewer
Since noise is a random effect, a persistence value is needed to indiciigiacles. This helps the system avoid densely populated regions of obstacles,
the amount of time a particular noise direction will be in effect. much like the BALLOONING behavior; unlike BALLOONING, however, the
2In a simulated environment, the exact number of obstacles can be knogranny computation allows the robot to treat obstacles in less dense regions
by a robotic system. In an actual robot, the sensors may only sense amevhatever fashion is dictated by the current control behavior. The term
obstacle if a number of obstacles are touching. Thus, several small touchigganny” was selected in a light-hearted jest of the stereotypical grandmother
or even nearby obstacles may be considered one large obstacle. As a resulthim is ultraconservative, careful, and worried about safety. When in this
an implemented robotic system, the CLUTTER metric will have an estimatedode, the system will avoid densely populated regions of obstacles, giving
value. the appearance of being extremely careful about traveling in those areas.
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threshold ‘
LEnvunnmemal and Movement Information |
M 2 Timovement [ Parameter ,{ Value 1
P= % > Tprogress | clutter L 00
goal i wander ‘ 0.0
where maxxed 3 0!
H gistance Distance traveled oveHcps. | clear-to-goal flag Lo—n
Hyoal Decrease in distance to goal oVBLeps. rgoal_rlearb}, flag T ‘
Torogress Progress threshold. Meiecles ‘ 5 ‘
* NO-PROGRESS-WITH-OBSTACLES: The robot is i
moving but not toward the goal and the robot is within (Branny 0
the sphere of influence of one or more obstacles | no-movement flag -t
I movement-to-goal flag 1
M2 j_l;?zlévjmem no-progress-with-obstacles flag -1
P= ﬁ < Tprogress { no-progress-with-no-obstacles flag | -1
Ocount = Topstacles Behavioral Parameters
where Parameter Delta Limits i Range
Ocount Average number of obstacles over goal gain [000.05] | {0.05 2.0]
Hsteps steps. notse gain [-0.05 0.0] | [0.01 1.5] |
Topstacles Obstacle count threshold. noise persistence ~1000] | {1059}
* NO-PROGRESS-NO-OBSTACLES: The robot is moving | object gain [=0.01 —=0.01] | [1.03.0]
but not toward the goal and the robot is not within the | sensible distance (~1.00.0] | [2.05.0]

sphere of influence of any obstacle.

Bookkeeping Information

M= %10V€mem Parameter T\'alue
distance
P= It;—l Tprogress case number 20
goa,
N dnes K
Ocount < Tobstacles- £a5¢ goodness 0-9
average step size 0.5
¢ CIRCLES is a metric of hqw much the robot has recently dynamic obstacles 0
traveled over the same piece of ground. It is calculated — N
. . . initial distance to goal | 37.56
by consulting an internal, short-term, spatial memory —
(Section 1lI-D). The metric used in ACBARR is the | Obstacle danger 05
number of steps taken by the robot in a specific locale (a goal importance 1.0

five-by-five region of space centered at the robot) divided
by a constant value (10.0). These values were determirfdg & Sample ACBARR case.
empirically.

« WANDER is a measure of how efficient the robot’swith the center located at the robot’'s current position. If the
current path is, indicated by the ratio of the robot’s currentindows were static in location, it would be possible for the
path length over the actual distance between the initiebot to wander in circles between two windows and never

position and the goal. have this detected. This type of memory has also been utilized
in other systems based on the AuRA architecture to provide
D. Spatial Memory information about spatial occupancy of recently visited areas

ACBARR employs a primitive short-term spatial memor)[4] [8]-
mechanism in order to recognize whether or not the robot is
running in circles. In our use here, the memory is primitive- C2se Representation
as a matter of choice. It was designed to keep the overhead\ case entry in ACBARR consists of three parts. The first
of ACBARR’s additions to pure reactive control as small agart represents the types of environments in which the case
possible. As a compromise, ACBARR’s spatial memory onlig applicable, and is used to determine which case to switch
keeps track of the robot’s travels within a smalindow of to. The second part details how the various parameter values
the entire world, representing a small geographic area. Aan change and what their limits are, and is used to apply new
long as the robot remains within the same window, its steparameter values and to adapt them. The third part contains
are tracked. If the robot moves out of the window, a nelWwookkeeping information about the case, including information
window is established and the old one is forgotten. A windovabout past experiences with the case.
while fixed in size, is not fixed in relation to location in the A sample case is shown in Fig. 6. The first section of the
world. When a new window is established, it is always donease contains information about the types of environment that
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this behavior is well suited for. This is a combination of thbe those which existed in the simulation run which resulted in
environment knowledge along with the movement informatiom. specific case being formed.

For the values, an entry ofl indicates that the system
does not care about this parameter; 0 indicates FALSE, an&: ‘1T
represents TRUE. This case is best suited for a nonclutteredPrior to creating the case library, the pure reactive robotic
environment. The robot should be making progress toward tpigulator was first run several hundred times. By abstracting
goal and not wandering or running in circles. The case shodfém the successful test runs, we gained insight into the
not be used if the system is in “granny” mode and attemptirwgrious types of behavior different environments would call
to find the best path through a set of obstacles (by appealiigg. This initial attempt to conceptualize the various schemas
to an additional level of processing above the pure reactit@sulted in ten navigational strategies being identified, each
and pure sensor data in order to detect regions of clear spabéjng represented as a case in the format discussed éarlier:

he Case Library

The case should also not be used if the system has maxxet)
on a parameter value. The WANDER parameter of 0.0 will
match with any situation where WANDER has a value of 0.0
through 1.0 (WANDER always matches to a range of values2)
from the floor of WANDER to the floor plus one), i.e., the
current performance is of sufficiently high quality. Finally, the
case doesn't care if the goal can be sensed directly or noB)
nor does it care about the other three movement flags. If these
conditions are satisfied, the system will switch to this case
(unless the evaluate-per-step strategy is in place and the new
case is the current case), and use the behavioral parameters
recommended by the second section of the case. Additionally,
the system will continue to adapt these parameters as long as
the case is in use. 5)
The second section of a case contains the information
describing the bounds on each parameter value in the system.
Each value is associated with two numeric ranges. The first
describes the limits for the changes which the system is
allowed to make on each value. In the sample case, nois6)
persistence has a limit on changes ofL[0 0.0]. The system
is, therefore, allowed to alter the noise persistence value by
a number from—1.0 to 0.0. If a constant change is desired,
then the endpoints of the range simply need to be equal. The
rest of the data for each value is the range which that value is
allowed to change. For noise persistence, this range is [1.0
5.0]. The system is allowed to change the value of noise
persistence by a real number fronl.0 to 0.0, as long as the
value remains between 1.0 and 5.0. These two ranges, then,
represent behavior which will successively decrease the value
until it reaches its lower bound; behavior such as this would
be acceptable in an open field. In addition to noise persistence)
this section of a case contains the adjustment range and delta
values for the other important values contained in the included
motor schemas (see Section IlI-A). 8)
The third section contains bookkeeping information about
the case. In the example, this indicates that this is case 20
which has a goodness rating of 90%. The average step size
was 0.5, there were no dynamic obstacles, and that the system
was initially 37.56 distance units from the goal. Finally, the
obstacle danger was 0.5, and the goal importance is 1.0. These
last two values are intended to allow the system to navigate ir9)
environments where, for example, some obstacles are more
dangerous than others and need to be treated in a special
manner. While the current ACBARR implementation ignores
this, it is included in the case description for future extensions
In particular, the information would be useful if ACBARR was;;

CLEAR-FIELD: In an open environment, the system
should pay little attention to obstacles, increase the goal
gain, and lower the noise gain and noise persistence.
BALLOONING: When there are relatively few obsta-
cles, the system attempts to swing around them in a
wide way (increase obstacle gain).

SQUEEZING: When there are many obstacles, the
system attempts to find a path by squeezing between
obstacles (lower obstacle gain, increase goal gain).
HUGGING: When there are many obstacles and the
system is currently faced with an obstacle directly in its
path, it attempts to stay close to the side of the obstacle
as it makes its way around it.

SHOOTING: Regardless of the number and size of the
obstacles surrounding the robot, if the system sees its
goal and there are no sensed obstacles in the way,
it adopts an extreme version of the CLEAR-FIELD
strategy and goes directly to it.

WALL-CRAWLING: If there is an obstacle the system
cannot seem to get around by HUGGING, it checks
to see if it is actually in front of a wall. The system
considers to be trapped by a wall if HUGGING has
failed® and if the incoming vectors from the obstacles
are localized in front of it. In this situation, the system
determines which direction the shorter side of the wall
lies by looking at the vectors coming at it from each side
of a centerline straight ahead, and travels for a distance
in that direction. Since the system is limited to sensory
data which would be available to a reactive system, this
heuristic is not foolproof.

RANDOM: The system raises the noise gain and goal
gain, leaves the obstacle gain at a medium level, and
wanders in an exploratory fashion.

GRANNY: After Hgieps, the system reconsiders the
environment by appealing to an additional level of
processing above the pure reactive control level. It
concentrates on the location of the obstacles currently
influencing it and attempts to discover a direction which
offers the best success possibilities while deviating the
least from the goal direction.

MAXXED: If a value has remained at its maximum
level for a period of time, the system increases the
maximum by somes value.

4The representations of all ten cases are available in [33].

5This is implemented through a built-in bias of the case-selection algo-
hm—it does not allow re-selection of the case which produced the need for

able to learn new cases, since the values listed above woullghse switch.
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10) REPULSION: In certain situations, the system considers Nev-Case-Needed {

i i i IF (environment.wander > WANDER_LIMIT) OR
moving away from the goal for a period of time. _If, for {Zn:;rgmm_senses_goal o auE) or
example, the system senses the goal and there is a large (environment.clear-to-goal = TRUE) OR
obstacle between the two, it may decide to “back away” (it o S

. . : ELSE
for a distance before attempting to get to the goal. This return KEEP-OLD-CASE:
is accomplished by setting the goal gain to a negative b /% end New-Case-Needed «/
amount. Fig. 7. New case decision algorithm.

G. Indexing and Case Selection robot’s movement over a limited area of terrain. If the robot

Due to the number of existing cases, there is little need foliginot making progress out of an area, failure can be assumed.
sophisticated indexing scheme. As a result, ACBARR employsUnless specified otherwise, ACBARR uses the failure-
aflat memory modedf the case library [22]. Cases are locatedriven strategy for case switching; the algorithm used for
by a sequential search of the memory for index matcheahis is shown in Fig. 7. This design decision was based on
Although generally an inefficient method, this suffices for thextensive empirical evaluation of both strategies. As shown in
current system without significant slow-down. If ACBARRSection IV-D, the failure-driven strategy achieves respectable
was extended to include several dozen or possibly hundredsedults with little overhead. However, both strategies are
cases, a better indexing scheme (such as the use of a redungaailable in the system to allow the user to specify the strategy
discrimination network) would need to be implemented. Witbf choice.
the present number of cases, however, the flat memory mode®) Case Matching:An important issue in ACBARR, and
provides advantages which a more complex indexing scheineeed in any case-based reasoning system, is that of selecting
would lose. Most importantly, it ensures that for a casie best case from the case library. The algorithm used by the
retrieval request, the entire memory space is searched. Téystem for this selection is shown in Fig. 8. Once ACBARR
enables the best match to be found each time. Secondly, bfa& decided to look for a new case, it uses a GOODNESS-OF-
addition of new cases is more straightforward with this fortMATCH metric to find the case that best matches the current
of indexing than with any other scheme. environment. In the flat indexing scheme, this is done using a

There are no restrictions placed on the relationship betwemiatching algorithm that compares the current environment, as
cases and known environments. Multiple cases may be stopeiceived by the robot, to each known case. If corresponding
for the same environment, and a case may apply to multipigernal values in the two are equal, the GOODNESS-OF-
environments. Both of these scenarios are handled by tMATCH value is incremented by 1.0. Near matches are
system. handled through partial credit. If, for example, the current

1) When to Select a New Casé&: important issue in case- environment is very cluttered and the case being considered is
based reactive control is determining when to switch cas@sst moderately cluttered, the GOODNESS-OF-MATCH value
The simplest method is to look for a new case evEiy.,s is incremented by 0.5. Finally, a special case occurs when the
steps, and to switch cases if the current case does not matgtrent environment has the CLEAR-TO-GOAL flag set to 1
the environmental conditions as well as one of the other casa®l so does the case being compared. In this situation, 3.0 is
in the case library. In the extreme, WwitHg.ps = 1, this added to the match value. The system, therefore, “looks for”
method ensures that the best case will always be in platle situation of having a clear path to the goal and attempts to
and the system will always use the best available navigatiomaiploit this. After all cases have been examined, the one with
strategy. However, the strategy of reevaluating the systentfe best match is chosen. Although this is a relatively simple
performance every.,s steps is pessimistic (iHg.ps is Matching algorithm, it works well in ACBARR due to the
small). It assumes that the environment will vary in fewdimited number of cases. The case representation also contains
than Hy.eps Steps, so that the cost incurred in searching feufficient information if the indexing algorithm ever needs to
a new case will be justified even if the current case does ragt extended in complexiyDue to the numerical nature of
obviously appear to be failing. the matching procedure, the GOODNESS-OF-MATCH metric

A second method is to evaluate the need for a new cas®n capture both partial and total matches. If no total match
only if the current case is failing in some manner. Thits found which has a high GOODNESS-OF-MATCH rating, a
is an optimistic strategy. It assumes that a given case partial match will be chosen.

“good enough” as long as it does not actually fail. In order It is possible that the “best” case found for retrieval is the
for this method to be effective, the system needs a gosdme case being used currently. If this is the situation, there
heuristic to determine when the current case is not leadiage two possibilities. One, the retrieval mechanism may not be
to good performance. ACBARR makes use of its STM anghpturing some nuance of the environment which is causing
environmental knowledge to check for failing cases. There diee current case to fail. If this is true, the proper course of
two criteria for failing. The first is excessive wandering byaction is to not allow the system to select a new case which is
the robot, as determined by the WANDER parameter in thilee same as the current case. The other possibility is that the
environment data. If the value of this parameter rises above a
given threshold, the system tries to find a new case. The secondror example, the current indexing match algorithm does not make use
failure criterion is the condition of running around in circles-Of the DONT-CARE value in a parameter =a mismatch is considered equal
in quality to a parameter match with a DONT-CARE. An extended indexing
This is kept track of by the spatial memory which tracks tha&gorithm might make use of this distinction.
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Select-Case { Adjust-Parameter-Values (parameters, case) {
best-case = current-case; .
best-case-match = -1.0; /* Alter each parameter in the case */

. ) FOR (each parameter in case) DO {
/* Do a flat memory scan of all the cases in the librarv %/

/= looking for a case better than the current best case %/ /% Alrer the parameters by a random amount */
FOR (each-case in CaseLibrary) DO { /* as determined by the delta limits »/
goodness = 0.0; parameters.parameter-value =
parameters.parameter-value +
/* Examine each environmental factor for =/ RANDOM(case.parameter-value.delta-low,
/* a match: add to match goodness value */ case.parameter-value.delta-h1);
FOR (each-factor in environment) DO {
/% MATCH is a function which tests =/ /* Ensure that the modification leaves =/
/+ the quality of match between =/ /* the gain within the define limits */
/#+ each-factor and each-case factor. */ IF parameters.parameter-value >
/* [t returns a value from 0.5 to 3.0 */ case.parameter-value.hi-limit
/* depending on specific factor and quality of match. */ parameters.parameter-value =
goodness = goodness + Ccase.parameter-value.hi-limit

ELSE IF parameters.parameter-value <
case.parameter-value.low-limit
parameters.parameter-value =

MATCH(each-factor, each-case.factor)

}

/* Fxamine each movement factor for a match: */ case.parameter-value.low-limit;
/* add to match goodness value ¢/ }
FOR (each-factor in movement) DO { }  /* end Adjust-Parameters-Values */

/= Since movement factors have a limited value set. =/

7% no MATCH function is needed. */ Fig. 9. Parameter adaptation algorithm.

IF (each-factor = each-case.factor)
goodness = goodness + 1.0;

/* If the case being examined is better «/

/# than the best case found so far and the is */ in parameter values occurs, ACBARR makes use of the case
/* not the current case. make 1t the »/ L . .
/+ new best case. */ for step-by-step modifications. Each case contains a set of
IF (Egzzgszz;,Zeji;::i::z:g‘)‘? modifications which can be performed on the parameters in
best-case = each-case; the system, as well as the minimum and maximum values
est-case—matc = o0 ess; . . .
} & of each. During each system step, ACBARR will adjust the
} L Seleer ¢ , current parameter values by a value within the delta range
- < cr-(ase . . . .
J /e end Select-Case « for that parameter, as defined in the case. If this adjustment
Fig. 8. Case selection algorithm. produces a new parameter value which is outside the limits

defined by the case, the parameter value is then set to the limit.
reason that the case is currently failing is that not enougtme algorithm which guides these step-by-step adjustments is
time has been given to allow the case to succeed. If thiRown in Fig. 9.
is true, the proper course of action would be to allow the
system to select the same case it is dealing with as the “new”
case and continue processing. After considering both of these
alternatives, in theory and with implementation, we decided IV. EVALUATION
on the first course of action. Failures in the ACBARR system
are typically serious; if a case leads to a failure situation, theln order to evaluate the proposed methods, we performed
chances are good that the case needs to be replaced. Thugxtgnsive simulations with the ACBARR system to evaluate
the same case is retrieved as the best match, the case seldéstgrerformance both qualitatively and quantitatively. Qual-

will choose the second best match as the new Ease. itative results were obtained using predefined environments
o that represented problems that are known to be difficult for
H. Case Application reactive control systems. Quantitative results were obtained

Upon successful case retrieval, each current parameter va#gig several randomly generated environments with different
(which includes all the gain values, the sphere of influenc@ensities and configurations of obstacles.
and the noise persistence value) in use by the system are set
to a random value within the range defined by the case for
that particular parameter val§eOnce this global alteration A. Simulation Environment

7If the system is running under the control strategy of evaluating the need ; : - . . .
to switch cases after a certain number of steps (see Section IlI-G-1), thisThe test environment for this research is written in C using

restriction is lifted. the X Windows graphics package. The simulator has been
8Several other possibilities exist instead of random setting of these inital useful tool for other research in the Mobile Robot Lab at
values. For example, an average of the allowed range may be used, ei@@orgia Tech, including [5], [8], [14], [26], and [32], among

limit of the range could be the initial value, or the value in the range closesi R It ted in this si lati - th
to the current value might have been chosen. A random selection was decifl Gers' esults generated In this simulation environment have

on to minimize the effect of the different types of ranges and allowable dekk@utinely been demonstrated on actual mobile robots (e.g., [3]
ranges which may be used. Consider a range with an associated delta rafqg [6]—[8]). Except for minor changes, the present simulator
which allows only upward movement of the parameter’s value. Setting the . -

initial value to an average or to the high point of the range would have e the same one used in these projects.

effect that a wide portion of the range is never considered. The random naturdn order to facilitate our research, the simulation environ-
of the initial parameter setting provides the system with some insurance t‘f‘ﬁbnt was extended to include both a graphical interface and

such anomalies do not occur consistently. If a specific parameter valugtalst h de. Th hical d I to vi I luat
desired in a given application, a case may be encoded with that value at RiCN mode. € graphical mode allows us 1o visually evaluate

endpoints of the allowable range. the progress of a simulated robot while it runs through a
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predeflned Worl(?. The batCh mOde faCIIIty a”OWS US to run Noise-Persistence Noise—Gain Goal-Gain Object-Gain Sphere-of-Influence
several simulations to gather statistics on the SyStem’s aVErage | ... 120 ‘contacts 20 beot 0.00 mevacies 0.00 botion 1.00 To Goal 0.990
performance over a range of environments. The simulation
system also includes a world generator that creates random
worlds with a starting point, a goal, and a set of obstacles. The [~

number of obstacles generated is controlled by dbstacle Magnitude 1.00 Direction 1.072
densityrequested. For instance, a world with obstacle density |“"™ " °

50% will have one-half of the total world area covered by

obstacles. To simplify the area calculation, overlap of obstacles
is not allowed in the random worlds.

.

B. Qualitative Evaluation

Reactive control systems have difficulty with local minima.
For example, in a box canyon situation, the system, without a
global picture of the entire world, does not have the knowledge
to “back out” of the canyon and go around it. This has been
referred to as the “fly-at-a-window” problem [3]. Usually, a
high level of random noise is used to try to kick the system
out of the box canyon. However, apart from being inefficient
and unpredictable, this method suffers from the problem that
such a high level of noise deteriorates performance in other
environments, such as “quasi” box canyons where the system
could squeeze through the obstacles if obstacle avoidance and
noise were suitably low. The adaptive strategies encodedgd 19, Box canyon—ACBARR performance.
ACBARR's cases can handle both types of situations without
any reconfiguration of the system. ACBARR adapts to its
current environment dynamically, using an appropriate level | MotseFersistence Hoisqtain  Goolilain  Obdeck-fein Sehepe-of-Influcnce
of noise, obstacle avoidance, and so on. The same method canj, =" e ensies A men LB o el 252
also handle other difficult environments, such as “walls.” <

1) Performance EvaluationFigs. 10-12 illustrate sam-
ple runs that demonstrate the qualitative improvement in [ —— """
ACBARR, as compared with the unenhanced reactive control | curene case 2
system shown in Figs. 2 and 3. The ACBARR system did
not fail to find the goal in any test run. Paths chosen in
no clutter to low cluttered environments were particularly
efficient. ACBARR was able to successfully navigate the
standard box canyon problem (Fig. 10), the quasibox canyon
problem (a box canyon with an exit, Fig. 11), and the wall
environment (Fig. 12).

2) Method Evaluation:In addition to evaluating the per-
formance of the ACBARR system as a whole, sevetah-
tion studies[15] were also performed in which the system
was tested without one or more of its components in or-
der to evaluate their impact. These studies lend insight into
why the method of global and local changes employed by
ACBARR produces the overall behavior which it exhibits. The
system consists of two additions to “pure” reactive control
systems—the local adjustments and the global changes. By
removing either of these, both, or neither, we create four
scenarios. We can then test each of the variations in t8g 11 Quasibox canyon—ACBARR performance.

9The simulation window displays the current obstacles as circles, each with
varying radius (an example was shown in Fig. 1). As the robot navigates tiigme environment to judge performance and thereby judge the

world, a line is drawn indicating the robot’s progress from start to goal. At [ et .
the top of the window is a set of numbers displaying the current contr{'}pnmbuuon of each addition. We chose the box canyon envi-

values. These values are updated each time the ADJUSTMENT MoDultenment for this portion of the evaluation since it represents
is called (see Fig. 4). This display also indicates the number of steps, tojﬁalfamy difficult, yet realistic world.
(o)

distance traveled, distance to goal, and number of obstacle contacts. Be ig. 13 sh h , £ he b
the numerical display is a set of five line graphs that provide a history of the 9. shows the system's performance on the box canyon

control values as they are adjusted throughout the run. world with neither local adjustments nor global cases avail-
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Noise—Persistence Noise-Gain Goal-Gain Object-Gain Sphere-of-Influence Noise—Persistence Noise-Gain Goal-Gain Object-Gain Sphere-of-Influence
1 0.45 . 4,65 1 1.15 1.57 4.89 2
Steps 115 Contacts 12 Tust 2,98 Obstacles 0.00 Mation 1.00 To Goal 1.007 Steps 2940 Contacts O Dist 4.34 Dbstacles 0,00 Motion 0.80 To Goal 0.61d
L Sl
—
Magnitude 1,00 Direction 0.777 Magnitude 1,00 Direction 0,044
Current case 2

Fig. 12. Wall environment—ACBARR performance. Fig. 14. Box canyon—No cases, but adjustments are permitted.
Noise-Persistence Noiseu-ﬂ;oin Gaaliﬁgén 0bJet:1t~5l;0ain Sphere-of -Influence Noise—Persistence Noise-Gain  Goal-Gain Ochczt*SGair\ Sphere-of -InFluence
. . . . . .50

Steps 260 Contacts 0 Dist 38.58 Obstacles 4.40 Motion 0.48 Yo Goal 0.032 Steps 140 Contacts 30 Dist 1.21 Obstacles 0.00 Motion 1.00 To Goal 1.006
I —
— —

Magnitude 0.39 Direction -0.510 Magnitude 1.00 Direction 0,325

Current case 2

Fig. 13. Box canyon—No cases, no adjustments allowed. Fig. 15. Box canyon—Cases, but no adjustments are permitted.

able to the system. As can be seen, the robot achievesl@ral adjustments allowed. The goal is achieved but with a
equilibrium pointand stays there. Fig. 14 shows the resultather nonoptimal path. In particular, the system is unable
of the system being run on the same world, this time witto adjust its step-by-step performance to avoid running off
adjustments permitted. The goal is reached, although the ptita visible screen. Thus, a lot of wasted motion is generated.
is wasteful. Finally, Fig. 15 presents ACBARR’s handling oNotice that the robot is unable to adjust its performance as it
the box canyon with the case library available but with neeapproaches the wall and comes too close to the obstacles.
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Also, the overall path is more jagged than that which is T T r

generated by the complete system. Comparing these results | i
with those of Fig. 10, which shows the complete ACBARR o
system’s performance, we can see that the system achieves

its goal with a fairly good path with the benefits of both 1000

adjustments and case knowledge. The cases provide global
performance benefits (which explains why adjustments alone

Boo.
produce such an inefficient path in Fig. 14), while the step-
by-step adjustments provide “fine-tuning” at a local level, 2
resulting in much smoother paths (explaining the nature of § e
the path seen in Fig. 15).
40
C. Quantitative Evaluation x
Several simulations were performed in batch mode to eval- x0r

uate the improvement in performance yielded by our case-
based method for on-line adaptation. The simulator has the
potential for an almost unlimited number of environments 10% Cluter 2% Ot 50% Cluter
with various sizes, numbers and configurations of obstacles.
The clutteredness of an environment can be characterized™ sy 16- Number of robot steps required to reach goal.
its obstacle densitywhich is the fraction of available space
that is occupied by obstacles. We created 300 random worldgstems. REACTIVE-50 performed reasonably well on 50%
100 worlds for each of the three obstacle density levelduttered worlds as well as less cluttered worlds, but the
These density levels reflected an easy world (10%), a medidt@BARR systems were about twice as good (specifically,
cluttered world (25%), and a difficult, fairly cluttered worldthe REACTIVE-50 paths were on an average 2.15 times as
(50%). Across the 100 worlds were ones where there wdoag as the ACBARR-S paths in 50% cluttered worlds). A
many small obstacles making up the density percentagetéasst analysis showed that the improvement of ACBARR-S
well as worlds where the indicated density was the result over REACTIVE-50 is statistically significanft(499) =
a few large obstacles. These 300 different environments we®69, p < 0.01).
an attempt to subject ACBARR to a wide range of possible The results show that ACBARR’s methods allow it to
worlds. Finally, since each run of the system varies from thperform well on less cluttered worlds, and are flexible enough
others due to the randomness of the noise parameters, wetcagarry over to highly cluttered worlds without significant
each simulation a total of five times and averaged the resuliegradation in performance. It remains as good as or better
The results are depicted in Figs. 16-19. In the graphban a purely reactive system tailored to each type of envi-
ACBARR-F is the ACBARR system utilizing a evaluate-onronment. Intuitively, this is to be expected since ACBARR is
failure case switching strategy, ACBARR-S is the same systathle to switch strategies and select the appropriate parameter
with the evaluate-per-step strategy, and REACTIVE-10 an@lues (which are typically fixed in a purely reactive system)
REACTIVE-50 are systems utilizing “pure” reactive controlfor different situations.
The nonadaptive reactive systems were hand-configured to b&) Distance: Another useful metric for evaluating the per-
efficient at navigating in environments with 10% clutter (théormance of the system is the ratio of the actual distance
REACTIVE-10 system) and 50% clutter (the REACTIVE-5Qraveled during the navigational task (the “path length”) to the
system) respectively; however, as the results demonstrate, thegight-line distance between the start position and the goal.
were less flexible than the ACBARR systems and did ndtis metric gives us an idea of how much “wasted motion” the
perform as well in environments for which they were notystem performed. Ideally, this value should be 1.0 in a world
explicitly intended. The improvements were analyzed usimgth no obstacles. Obviously, if the environment is cluttered,
statistical methods and shown to be statistically significant.the ratio will in general be greater than 1.0, no matter how
1) Number of Robot Stepsthe steps metric illustrates thegood the navigational system is.
speedup in the actual number of robot steps required to reacths shown in Fig. 17, in the 10% cluttered worlds, all four
the goal. The number of steps taken by the various systemsasiants performed the task with little wasted motion, although
depicted in Fig. 16. The two ACBARR variants are almodioth ACBARR systems were slightly better than the better
identical, with ACBARR-S edging out ACBARR-F in theof the reactive control systems. When we consider the 25%
50% cluttered world. The two REACTIVE systems had theluttered worlds, however, we see that REACTIVE-10, the
worst performance, as shown in the figure. REACTIVE-1feactive system that was configured for 10% worlds, is begin-
performed well in worlds with 10% clutter, for which itning to lose in this area, navigating along paths which were
was designed, but deteriorated significantly on highly clubver three times the length they needed to be. REACTIVE-
tered words. For 50% cluttered worlds, this system follows0 performs better but still not as well as the ACBARR
paths of over 1125 steps on average as compared with fystems. In the 50% cluttered worlds, REACTIVE-10 reached
approximately 40- to 95-step paths found by the ACBARMhe goal along paths which were almost ten times as long as
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X ACBARRF -o—
2 ACBARR-S ~+-
Reactive-10 ---
Reactive-50 -

path / distance

10% Clutter 25% Clutter

worlds

50% Clutter

Fig. 17. Robot path length to goal over actual distance to goal.

they needed to be. REACTIVE-50, which was hand-coded for
such environments, performed better, but still does not match
the performance of the ACBARR-S system (specifically, the
REACTIVE-50 paths were on an average 1.55 times as
long as the ACBARR-S paths). A-test analysis showed
that this improvement is statistically significa(t(499) =
20.58, p < 0.01). Notice also that at this level of obstacle
density, ACBARR-F is worse than ACBARR-S. Potential case
switching on every step allows ACBARR-S to find shorter
paths than ACBARR-F can.

3) Time per Step:The time per step metric is another in-
teresting metric since it allows us to evaluate the overhead of
the extra processing in the ACBARR systems. We measured
the average time the systems took in order to make each step
of the journey. As intuition would predict, Fig. 18 shows that
ACBARR-S took the longest amount of time per step. This is
due to the performance evaluation and potential case switching

time per step (seconds)

Fig. 18.
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taking place at each step. ACBARR-F was the second slowest,
with the two REACTIVE systems being the fastest. While the 1% Clter il 0% Cter
differences seem minute, if a navigational task were to ta‘g% 19. Total time for robot to move to goal
hundreds to thousands of steps, the cumulative effect of case '
retrieval, evaluation, and switching could begin to have an
impact on overall system time in a simulated system. This the real world. In a simulated environment, perception
effect is evaluated in the following experiment. and movement are instantaneous. However, in the real world,
4) Time to Completion:The time metric illustrates the sensing is at least an order of magnitude slower than the
speedup in the total navigational time, as measured BEZBARR computations (which are on the order of 5 ms to
the actual time taken to reach the goal (Fig. 19). In thEH) ms per cycle, as shown in Fig. 18). Physical movement
10% worlds, although all four systems performed well, thef the robot is also relatively slow. The results show that
REACTIVE-10 system took the least time to get to the goahe computation overhead, in contrast, is much less than an
This advantage of the REACTIVE-10 system breaks dowsrder of magnitude (specifically, in simulation, ACBARR-S
in more cluttered worlds, where the additional processinigkes on an average 1.78 times as long as REACTIVE-50 in
performed by the ACBARR systems begins to pay off. Th80% cluttered worlds to navigate from the starting point to
REACTIVE-50 system was designed for highly clutterethe goal;#(499) = 22.30, p < 0.01). Since ACBARR'’s paths
worlds and performs somewhat better than the ACBAR&e considerably shorter (Fig. 17) and require less robot steps
systems in these worlds as well as less cluttered worlds. (Fig. 16), the processing overhead in ACBARR is negligible
It should be noted, however, that the simulated time metrmompared to the improved performance that results from the
is not a realistic indicator of performance of a physical robdietter navigational paths that are created.
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D. Discussion compared with, the actual quantitative improvement shown
Considering the graphs together allows us to draw cof the graphs depends on the particular parameter settin_gs
clusions about the overall performance of ACBARR as sedged for the reactive systems. However, one of the beneljlts
against the reactive control system which it augments. Bdth OUr approach is flexibility, in the sense that the system’s
ACBARR versions take some time to “ponder” each movlarameters do not need to be reconfigured in different envi-
they are going to make. If perception and movement aygnments. As is evident from the graphs, ACBARR performs
instantaneous and there are few obstacles, a purely reacfiyfémely well across a wide range of environments, from
system may be able to navigate to the goal in less overdgfatively uncluttered to highly cluttered, with a wide range of
time than the ACBARR systems. However, its path wilppstacle configurations, from random to box canyons to walls.
be a little more jagged than the ACBARR systems, and For example, over the entire set of experiments summarized
will use more steps to reach the goal. If the path qualif§f Fi9- 16, REACTIVE-50 took an average of 223% as many
or the actual number of steps taken is of importance, tREPS @ ACBARR-S to navigate the same environment; this
ACBARR systems are better even at lower obstacle densitifgProvement is realized over the entire range of environ-

This is the case with physical robots in which perception afgeNts _tested. Similarly,o from Fgg. 17, the paths found by
movement time far outweigh the computation time required fREACTIVE-50 were 55% to 60% longer than those found

adapt schema parameters (although this article presents chACBARR'S'

simulation results). Furthermore, the computations necessary V. LIMITATIONS AND FUTURE WORK
to derive the next step can be performed while the robotis
executing the motions for the previous step. A. Distribution of Cases Used by ACBARR

The benefits of the extra time per step taken by thein our empirical tests, we noticed an interesting result
ACBARR systems are revealed in more cluttered environat is worth mentioning. When using the failure-driven case
ments. The paths created by the ACBARR systems in clutteregaluation and switching method, the system would gen-
worlds are much shorter than the purely reactive systems, aitdlly use only a subset of its stored possible strategies
they require fewer time steps to complete the navigation tagluring test runs. We studied this behavior further by running
Notice that, in these worlds, ACBARR-F is slightly faster thamore extensive simulations on various random worlds with
ACBARR-S; both systems are faster than REACTIVE-1(3CBARR-S. We found that out of our ten cases, only five were
though not quite as fast as REACTIVE-50. ever used: WALL-CRAWLING, HUGGING, CLEAR-FIELD,

The most convincing evidence for the case-based ACBARBHOOTING, and BALLOONING. Part of the reason for this
systems can be seen in the highly cluttered worlds. Compaisdmethodological; the cases were added incrementally as
to ACBARR-F and ACBARR-S, the REACTIVE-10 systemnew situations were discovered which warranted new behavior
performs extremely badly in 50% cluttered worlds, beingatterns. We began with only two cases, BALLOONING and
beaten in length of path, time to completion, and numb&QUEEZING, and built the library up from that point. The
of steps required. Also, it is in this class of worlds thaproblem, then, is that some of our later cases made earlier cases
ACBARR-S’s higher time per step value begins to benefit trmiperfluous. For example, the MAXXED cases was added to
system even in a simulated environment. While it is possibleCBARR to handle a specific environmental problem. Later,
to design a purely reactive system (REACTIVE-50) that wilvhen WALL-CRAWLING was added, MAXXED ceased to
perform better along the simulated time metric, ACBARRe used as often as it was earlier.
outperforms that system along the distance and steps metricsThe solution to the methodological problem is to go back
To compare the two ACBARR case-switching strategies, nag@d revise the case library to exclude redundancies. However,
that while ACBARR-F continues to perform respectably iit is still likely that the system would use some of its cases
highly cluttered worlds, ACBARR-S manages to complete thaore often than others. There are two reasons for this. First,
navigational task in less time, creating a better path, whileCBARR-F only switches cases if the current case is failing
using fewer steps. in some way. This means that the best available strategy is

The above results are statistically significant and consisterdt always in place. If the current case is “good enough,”
with the commonly held belief that more analysis will leadhe system will not bother to switch to a better one. For
to a better result. If the result is better enough so that ékample, if the system initially chooses to make use of the
counteracts the additional overhead, the extra analysis is woBbEAR-FIELD case, it will continue to do so until there is
it. This brings up an interesting point with regards to futura clear failure. In order to determine whether this was indeed
enhancements of the system. As the case library grows ahd explanation for this behavior, we compared this with the
becomes more complex, the amount of time needed to perfoafternative case switching method in which the need for a
a case switch will also increase. This means that the dispanigw case is evaluated evelf.,,s Steps. Many more cases are
between the two case switching strategies in terms of timélized if this method is used. The second explanation for why
needed per step will increase. We predict that future versiomsly a subset of strategies were being used is the robustness
of the system with more complex cases will cause the evaluaté-several of the strategies involved. In particular, CLEAR-
on-failure strategy to become the clear method of choice. FIELD, HUGGING, and WALL-CRAWLING are especially

It should be noted that while ACBARR does improveobust and can account for the majority of behaviors noted
performance over the nonadaptive reactive systems that it vimshe system. The only way to force ACBARR to reconsider
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all its cases is to seH.ps t0 1, in other words, to use thethe system needs to be able to add new cases to an already
ACBARR-S method. This results in higher overhead whickexisting library; for some applications, it may be desirable
as discussed earlier, only pays off in very highly cluttereid produce a system which could learn all of its cases from

environments. scratch. We are currently developing a system which is capable
) ) of automatic case learning through navigational experiences
B. Single Strategy or Multiple Cases? (see [35]); related work by other researchers was discussed in

In our research, we assumed that a set of strategies wo§kkction II-C.
be needed to deal with the range of problem situations that are
possible in the ACBARR world. However, it is possible thal'
a single reactive control strategy could be developed whichAnother area of future work involves the actual implemen-
would be able to handle the same range of situations whitgtion of the ACBARR system on a real robot. The work to
ACBARR can handle. The issue, then, is: why add additiong@te has been restricted to the simulator. The transfer to a
processing to the system? There are several reasons. Firgehysical robot should not be difficult, in part because AuRA is
would require considerable effort to develop such a strateg@jfeady implemented on a physical system and previous results
and no such strategy has been proposed thus far. ACBARRM the simulated environment have been shown to transfer
enables a system to produce respectable performances Vgtiphysical robots. Every effort was made in the system so
less than optimal cases. Second, if such a strategy becdh®¥ it performed in a way suitable for both a simulated world
available, it could easily be added to ACBARR's case librar@nd the real world. Part of the remaining challenge is to find
If the evaluate-on-failure strategy were employed, then trsifficiently varied domains to test these ideas effectively using
powerful strategy would stay in place until it failed (if itthe robot.
failed). Third, since worlds are dynamic, even if a good
strategy that covered a wide range of situations was found,
the system might need to switch to a different strategy in The objective of our research effort is to develop mech-
an unexpected situation. Finally, ACBARR can provide @hisms for learning and adaptation that can be used by an
framework to test the effectiveness of any such strategy. ielligent agent to learn from its experiences in a complex and
fairly robust strategy could be developed and then added to fh&amic environment, and to develop corresponding mech-
ACBARR system, which would then be allowed to operate ignisms for planning and action in such environments that
hundreds of simulated worlds. These simulations could th8Hpport such learning and adaptation. The methods presented
be examined to see if there were any environmental situatidisthis article were developed as part of this ongoing effort,
which caused the strategy being tested to be switched @ﬁ_\d focus Specifically on the issue of adaptive reactive control.
This information would then guide the researcher, if he éfase-based reasoning allows a reactive system derive the
she wished, to further improve the strategy. Thus our C|ai|h(,anefits of higher-level reasoning without sacrificing the real-
which is supported by the evidence we have discussed, is tHgte response and fast performance. It allows the system to
ACBARR adds robusthess and method0|ogica| power to aﬁgapt to its environment dynamically, resulting in ﬂEXIblhty in
pure reactive control system, regardless of its level of existifgrformance across a wide range of environmental conditions.

Implementation on a Physical System

VI. CONCLUSION

behavior. Thus, combining case selection and behavioral adaptation
based on environmental demands with traditional reactive
C. The Case Library robotic control systems should theoretically lead to better

An important research issue at this point is where the Jegrformance, and the empirical data supports this claim as
of cases in the library comes from. For now, these cases 4@/l o _ _
coded by hand. This is not the optimal solution for two reasons. The methods presented in this article are fully implemented
One, it allows human biases to enter the process. To illustriien€ ACBARR system. By adding basic environmental data
this point, consider our own experiences. At first, we believd@ the system, we have realized substantial improvements in
that BALLOONING and SQUEEZING were relatively robust it pgrformance without sacrificing the mherem benefits of
general-purpose strategies. As pointed out earlier, howeviactive control. Although the ACBARR system is not a pure
these did not turn out to be the strategies used most often/Bfctive control system as normally defined, it combines the
the system. Luckily, there is enough variety within the handpest fegtures of that paradigm with the bene_flts. of case-based
created cases to allow the system a relatively comprehensig@soning. The performance of the system is tightly coupled
selection, and the empirical evaluations demonstrate that #h the adequacy of the cases in its library. As pointed out,
set of cases we have identified is indeed a good one. Yet, tH& cases currently in use have proven to be extremely robust,
nagging question remains: Is there a behavior even more rogiéking failure in new environments less likely. This results in
which we have overlooked? A second potential problem is tAfBARR being a highly efficient, adaptive control system.

a completely novel situation unseen by the human teacher may
not be handled in the best way. There is still the possibility
that ACBARR will fail in certain environments, although [1] P. Agre and D. Chapman, “Pengi: An implementation of a theory of

no such failures were identified in the extensive empirical aggVitZB% in Proc. Sixth Nat. Conf. Artificial Intelligencel987, pp.
testing. If the system had the ability to learn its own Case%Q] S. Amarél, “On representations of problems of reasoning about actions,”

this potential problem could be alleviated. At the very least, Mach. Intell, vol. 3, 1968. Reprinted ifReadings in Artificial Intelli-
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