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Abstract—This article presents a new line of research inves-
tigating on-line adaptive reactive control mechanisms for au-
tonomous intelligent agents. We discuss a case-based method
for dynamic selection and modification of behavior assemblages
for a navigational system. The case-based reasoning module is
designed as an addition to a traditional reactive control system,
and provides more flexible performance in novel environments
without extensive high-level reasoning that would otherwise slow
the system down. The method is implemented in the ACBARR (A
Case-BAsed Reactive Robotic) system and evaluated through em-
pirical simulation of the system on several different environments,
including “box canyon” environments known to be problematic
for reactive control systems in general.

Index Terms—Case-based reasoning, reactive control, robot
navigation.

I. MOTIVATION

SEVERAL methods for autonomous robotic control have
been proposed, ranging from high-level planning meth-

ods—in which extensive world knowledge is used to formulate
a detailed plan of action—to the more recent methods for
“reactive control”—in which a simple representation of the
robot’s immediate environment is used to select the next action
to be performed. However, most current robotics systems are
severely limited when performing in complex and dynamic
environments in the real world. It requires careful design and
tuning on the part of the human designer to develop the control
systems that drive such robots, and even then these systems
run into serious difficulties when faced with environments
which are different from those that the designer anticipated.
Furthermore, even if the designer could anticipate and model
all the relevant aspects of the operating environment of the
robot, the dynamic nature of the real world would render parts
of this model obsolete. Clearly, the ability to adapt to changes
in the environment is crucial to adequate performance and
survivability in the real world.
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This article presents a case-based reasoning method for
on-line selection of robotic control behaviors, and on-line
adaptation of selected behaviors to the immediate demands of
the environment, within a reactive approach to autonomous
robotic control. The method allows an autonomous robot
to automatically select appropriate behaviors and to adapt
these behaviors dynamically based on the demands of the
environment, and results in a substantial improvement in per-
formance. In particular, the system makes use of both global
behavior changes when needed as well as local modifications
which act to optimize its behavior. Consider, for example, the
scenario shown in Fig. 1. This figure shows a simulated robot
navigating through a world which consists of both relatively
clear areas and relatively crowded ones. While it is possible
for the system to perform under the control of one behavior
set, this may not lead to high quality performance. In this
case, two navigational strategies should be employed—one
for navigating clear areas and one for navigating cluttered
areas. The system begins with a strategy for navigating in
clear areas (toward the left side of the figure). This provides
excellent performance until the cluttered area is encountered.
At this point, the system switches (based on its perception of
the environment) to a strategy better suited for obstacle-filled
regions. Once the obstacle region is successfully navigated,
the system switches back to the navigational strategy suited to
clear areas (toward the right side of the figure).

Such global changes in navigational strategies allow the
system to adapt to various regions within a single environment,
thereby allowing more robust behavior. In addition, within
the confines of a particular strategy, local adjustments allow
the system to “fine-tune” itself to a specific environment.
For example, while the robotic system may have a particular
strategy which is useful in general cluttered environments,
local adjustments may be necessary to adapt the strategy to
the specific cluttered environment the robot is attempting to
navigate. Thus, the global changes suggest general behavior
patterns which are then tuned via step-by-step adjustments.

While traditional reactive robotic control systems [3], [10],
[19], [30] have produced impressive results in the area of
generating intelligent robotic action, the behaviors available to
such a system are hard-wired and immutable. This approach
has some significant shortcomings. Hard-wired behaviors are
unable to handle environments which the initial programmer
did not foresee. They are also incapable of taking advantage
of navigational successes; even if a behavior has proven
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Fig. 1. Example of adaptive reactive control in a simulated robot.

extremely successful, it is not used more than any other
behavior in the system, nor is it altered to become even
more successful. In order to achieve more robust robotic
control, we advocate the use ofbehavior assemblages, to
represent appropriate collections of cooperating behaviors for
complex environments;behavior switchingto dynamically
select behaviors appropriate for a given environment; and
behavior adaptationto adapt and fine-tune existing behaviors
dynamically in novel environments. There are two types of
behavior adaptations that might be considered. One option is
to have the system modify its current behavioral parameters
based on immediate past experience (behavior adaptation).
This is a local response to the problem. A more global solution
is to have the system select completely new sets of behavioral
parameters based on the current environment in which it finds
itself (behavior switching). A robust system should be able to
adapt to its environment dynamically in both these ways. Our
research incorporates both behavior adaptation and behavior
switching into a reactive control framework.

The research presented here contributes to reactive control
for autonomous robots in the following ways. First, a method
is presented for the use of behavioral parameters tailored to
particular environmental demands, rather than of single or
multiple independent behaviors. Second, the system can select
and adapt these behaviors dynamically without relying on the
user to select the “correct” behavioral parameters for each
navigation problem. Finally, the system exhibits considerable
flexibility over multiple environments. For example, as shown
below, it performs well in uncluttered worlds, highly cluttered
worlds, worlds with box canyons, and so on, without any
reconfiguration.

The research also contributes to case-base reasoning and
machine learning in several ways. One, our system uses case-
based reasoning to suggest global modifications (behavior
selection) as well as to suggest more local modifications
(behavior adaptation). The knowledge required for both kinds
of suggestions are stored in a case, in contrast with traditional
case-based reasoning systems in which cases are used only to
suggest solutions, and a separate library of adaptation rules is
used to adapt solutions. Two, the method represents a novel
variation on case-based reasoning for a new kind of task,
one that requires continuous, on-line performance (see also
[34] and [36]). The system must continuously evaluate its
performance, and continue to adapt the solution or seek a
new one based on the current environment. Furthermore, this
evaluation must be done using the simple perceptual features
available to a reactive control system, unlike the complex
thematic features or abstract world models used to retrieve
cases in many case-based reasoning systems. Finally, unlike
traditional case-based reasoning systems which rely on deep
reasoning and analysis (e.g., [17]), and unlike other machine
learning “augmentations” to reactive control systems which
fall back on nonreactive reasoning (e.g., [13]), our method
does not require the system to “stop and think;” the system
continues to perform reactively with very little performance
overhead as compared to a “pure” reactive control system.

The methods are fully implemented in ACBARR, A Case-
BAsed Reactive Robotic system. The system has been evalu-
ated extensively; both qualitative and quantitative results from
several simulations are presented below. ACBARR has been
found to be robust in simulation, performing well in novel
environments. Additionally, it is able to navigate through
several “hard” environments, such as box canyons, in which
purely reactive systems would perform poorly. Such environ-
ments pose a chronic problem for all memory-less methods
that rely entirely upon direct sensory information, not only
for the potential-field-based methods used in schema-based
navigation.

II. BACKGROUND AND RELATED RESEARCH

A. Perception and Reactive Control

Reactive control [3], [10], [12], [19], [30] is concerned
with how to coordinate multiple motor behaviors. It is char-
acterized by a tight coupling between perception and action
with little or no intervening representation. This results in
systems which do not perform detailed planning but are able
to function in dynamic and complicated environments. “Pure”
reactive control is characterized by a stimulus-response type
of relationship with the world, not unlike the viewpoint held
by the behaviorist psychologists, epitomized by Skinner [38].
Mentalistic (representational) structures are denounced and the
robot reacts to the immediacy of sensory information in a very
low-level noncognitive manner. Complex behaviors emerge as
a combination of simple low-level responses to the rich variety
of stimuli the world affords.

There are many representative examples of this form of nav-
igation. Brooks’ subsumption architecture has demonstrated
robust navigation for mobile vehicles in dynamically chang-
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ing domains [10]. There is a deliberate avoidance of world
modeling which is captured by the statement thatthe world is
its own best model[11]. Recently learning methods have been
introduced into this type of architecture to further increase
its flexibility (e.g., [27]). Payton has described a collection of
motor responses that are termed “reflexive behaviors” [30].
These behaviors react directly to sensory information yielding
intelligent emergent behavior. Payton, Brooks, Kadanoff [18],
and several other proponents of reactive control incorporate the
concept ofarbitration. Multiple behaviors compete for control
of the vehicle with a winner-take-all mechanism deciding the
result. Kaelbling has developed a reactive architecture [19] that
is an extension of Brooks’ work. The emphasis is on embedded
systems for real-time control. A hierarchical competency level
for behaviors is established which is mediated by a high-
level controller. She has additionally conducted research in
learning in autonomous agents [20]. Firby has developed a
different form of reactive control by utilizing modules called
Reactive Action Packages which encapsulate tasks for a robot
[16]. Situation-driven execution via goal satisfaction is the
predominant mode of operation. Agre and Chapman [1] have
used reactive control in the domain of game playing. Several
behaviors are active at any time, controlling the strategies used
by a video game penguin and its relationship with other objects
and entities in the world.

Reactive navigation in our system [3] addresses reactive
control in a manner that is significantly different than the
approaches described above. Arbitration is not used for co-
ordinating the multiple active agents; instead, potential field
formulations are employed to describe the reactions of the
robot to the world, and explicit representational knowledge is
used to select and configure both the motor and perceptual
strategies used for reactive control.

Despite the assumptions of early work in reactive control,
representational knowledge is importantfor robot naviga-
tion. The fundamental problem lies in representing what is
appropriate for the task. Amarel’s classic paper [2] shows
the importance of appropriate knowledge representation for
problem solving using artificial intelligence. The question is,
first, what needs to be represented for successful general-
purpose mobile robot navigation, and, second, how it is to
be represented. Our answer to the first question is threefold:
motor behaviorsthat are used to describe the set of interactions
the robot can have with the world,perceptual strategies
that provide the required sensory information to the motor
behaviors, andworld knowledge(both a priori and acquired)
that is used to select (and reconfigure when necessary) the
motor behaviors and perceptual strategies that are needed to
accomplish the robot’s goals. The following section answers
the question as to how to represent this knowledge.

B. Motor Schemas

Our system is based on the Autonomous Robot Architec-
ture (AuRA) [3]. In this system, each basic type of motor
behavior is represented by aschema. Motor schemas comprise
a collection of individual motor behaviors each of which
reacts to sensory information gleaned from the environment.
The output of each individual motor schema is a velocity

vector representing the direction and speed at which the
robot is to move given current environmental conditions.
Some of the available motor schemas for our robot include
MOVE-AHEAD (move in a general direction), MOVE-TO-
GOAL (move toward a discernible goal), AVOID-STATIC-
OBSTACLE (move away from an observed obstacle), and
NOISE (move randomly in a wandering fashion).

Each of these schemas is realized as a separate asynchronous
computing agent with parameters reflecting current world
knowledge. The output of each primitive motor schema is
combined using vector summation and normalization. This
simple process can result in quite complex trajectories and
behaviors as illustrated in the simulations and experiments
reported in other work (e.g., [3]).

To optimize system performance it is necessary to determine
what parameter values should be used to accomplish a specific
task in a given environment. For instance, an exploration
behavior can be observed by providing a relatively high gain
and persistence to the NOISE schema with an accompanying
AVOID-STATIC-OBSTACLE schema [3]. The task of deter-
mining appropriatea priori parameter values is nontrivial in
highly cluttered environments. For a given environment, this
gain determination process involves empirical evaluation of
the system’s performance. The process is repeated until further
changes result in no visible improvement. When structural en-
vironmental knowledge is available, this task becomes simpler
[4], but for purely reactive systems with no knowledge of the
world, highly complex environments can produce difficulty in
reaching near optimal solutions.

Furthermore, once this “best set” of parameter values is
established for a given world, it will likely be less efficient for
navigation in a different environment. Figs. 2 and 3 illustrate
a scenario where this is true. Fig. 2 shows a trap, known as
a “box canyon,” where a high AVOID-STATIC-OBSTACLE
sphere of influence is necessary to produce a successful path.
Fig. 3 shows a slightly different trap, a “quasi” box canyon,
where a high sphere of influence results in an inferior path.
The relatively jagged paths in both of these sample runs were
produced by high levels of NOISE being used. This was
necessary in order to free the robot from local minima it may
encounter. Later in this article, it will be seen that our on-
line adaptive reactive control system smooths out the paths
autonomously by lowering the influence of noise when it is
not required.

Finally, in a complex environment, it may be difficult to
find one “best” set of parameter values; different values may
be appropriate for different areas of the environment. It is,
therefore, important to develop methods by which the reactive
control system can select and adapt gain and other parametric
values automatically. The system presented here uses what we
call an adaptive reactive controlmethod to select and adjust
the appropriate behavioral parameters to match the current task
and environment.

C. Case-Based Reasoning and Machine Learning

Machine learning is concerned with developing methods
with which an intelligent system can improve its own
performance by learning new conceptual characterizations
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(a) (b)

Fig. 2. Box canyon runs: (a) sphere of influence= 10 and (b) sphere of influence= 35.

(a) (b)

Fig. 3. Quasibox canyon runs: (a) sphere of influence= 10 and (b) sphere of influence= 35.

of the domain, by learning new control strategies, by
learning or improving domain theories and world models,
and combinations of these. In robotic systems, these methods
provide an agent with, for example, a means to learn a map
of its environment (e.g., [24]) or to learn control strategies
at a high level (e.g., [37]) or at the reactive level (e.g., [20],
[35], and [36]). Much of this work focuses on learning control
behaviors; less emphasis has been placed, however, on flexible
adaptation of learned (or pre-programmed) control behaviors
in different task environments.

Even in situations anticipated by the designer, we cannot
assume that the system will have an “optimal” control strategy
(whether designed or learned) that is tailored to that situation.
Instead, the system will need to perform its task to the best
of its ability, based on control strategies that are flexible
enough to provide reasonable performance in a wide range
of situations. For our navigation task, this means that the
system must be able to fine-tune its behaviors and adapt
to its environment during actual performance on a wide
range of problems in dynamic task environments. In principle,

the system could analyze the new situation (or its failure
to perform in that situation) to determine how to proceed
[9], [13], [29]; however, such an analysis is typically too
slow and requires extensive high-level knowledge about the
environment. A reactive control system requires a fast, on-
line, adaptive process which allows the system to deal with the
novel situation without having to perform a deep and extensive
analysis of the situation. Such a process pays more attention
to the easily available (but perhaps superficial) aspects of the
situation, and uses them to make quick decisions about perfor-
mance without falling back on slower, nonreactive techniques.
While such a system does not necessarily “learn” new control
strategies, it does adapt to the environment dynamically during
the performance task by selecting behavioral parameters, such
as momentum, that are appropriate for the environment. The
issue, then, becomes the kind of knowledge that the system
needs to adapt its behaviors appropriately.

While others have worked on systems which integrate
learning and reactive control in order to learn the proper
behaviors (e.g., [13], [25], [28], and [29]), our approach is
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Fig. 4. System architecture.

different in the sense that the system isnot learning behavior
sets for future use. Instead, our system is using a set of global
and local adaptations on existing behavior sets in order to tune
(at both a gross and a fine level) the system’s performance.
The underlying philosophy is different—rather than attempt to
learn a near-optimal behavior for a given environment (which
then has to be generalized in some fashion if it is to be useful),
our approach is to have the system be flexible in the on-
line adapting of existing behavior sets to a wide variety of
situations. A given behavior may not be optimal (or even near-
optimal) for any particular environment; instead, the adaptation
techniques we describe allow it to be a “jack-of-all-trades” and
adapt to the needs of each environment it faces.

Our approach to on-line adaptation is based on case-based
reasoning (CBR), which integrates aspects of inductive and
analytical reasoning and provides a method for adaptation to
novel situations [17], [21], [31], [39]. The intent behind CBR
is to use a library ofcasesto provide suggestions for action
in new situations. Thus, cases in a CBR can, in principle,
be used to represent knowledge that is applicable to a broad
class of problems. Hammond’s CHEF program [17] is an

example of early work in the application of CBR to nonreal-
time and nonreactive planning problems. However, learning
and adaptation in CHEF is carried out through higher-level
reasoning, which requires a detailed model of the domain. This
is exactly what reactive systems are trying to avoid. Another
difference between traditional CBR systems and ACBARR
is that many (although not all) CBR systems perform “case
adaptation,” a process in which cases are modified before being
applied to a new problem. ACBARR, on the other hand, does
not modify its cases; instead, it uses cases to perform “adaptive
navigation” by adapting the reactive control parameters in use
by the robotic controller.

Furthermore, CHEF and similar systems have focussed on
planning and not on execution-time control. Likewise, Ramsey
and Grefenstette use case-based reasoning to seed a genetic
algorithm [36]; in their system, CBR is used to initialize a
machine learning algorithm and not for real-time adaptive
control of the navigational agent itself. Kopeikina, Brandau,
and Lemmon describe an application of CBR to real-time
control [23]. Their system, though not intended for robotics,
is designed to handle the special issues of time-constrained
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processing and the need to represent cases that evolve over
time. Our approach, calledcontinuous case-based reasoning
[34], combines the adaptive aspects of case-based reasoning
with the on-line, real-time aspects of reactive control; in
particular, it uses cases to guide on-line adaptation of reactive
control parameters in a robotic system.

In general, the underlying assumption in case-based reason-
ing is that past cases will be applicable to new situations; what
worked in the past on a certain problem will more than likely
work on a new problem which is similar to the previous one.
The quality of the solution which a CBR program will generate
is dependent upon the following factors:

• set of casesin the system’s case library;
• representationof the cases;
• ability to recognize that a new situation is like a previous

one (case retrieval);
• methods forapplication of an existing case to a new

situation;
• ability to evaluatethe efficacy of the case, and to decide

when a new or different case might be needed.

Our research, then, must be concerned with how cases are
stored in memory, how they are indexed for retrieval, how to
handle the issue of partial case matches, and knowing when to
adapt versus when to select a new case. In addition, a critical
aspect of an adaptive system for robotic control is that the
adaptive process must not interfere with the system’s reactive
response. Finally, unlike traditional CBR systems which rely
on cases to suggest solutions (here, behaviors) but then rely on
rules to adapt those cases, the ACBARR method uses cases
for both purposes.

III. T ECHNICAL DETAILS: THE ACBARR SYSTEM

ACBARR is a combination of a schema-based reactive
control system with a case-based reasoning module. Fig. 4
illustrates the system’s high-level architecture. Data about the
world is gathered by the ENVIRONMENTAL MONITOR, and
combined with the robot’s status gathered by the INTERNAL
MONITOR which represents how well the robot is moving
in relation to the world. The system uses this environmental
information in several ways. The ADJUSTMENT MODULE
adjusts the parameter values of the active motor schema based
on the recommendations of the current case. The FAILURE
IDENTIFIER monitors the feedback for a failure situation. If it
determines that the current schema assemblage is inadequate,
the CASE SELECTOR chooses a better case from the case
library, which suggests a new parameter set and associated
ranges for parameter adaptation.

A case within ACBARR’s case library represents a param-
eter set for the behavior assemblage which is well suited for
a particular environment. It contains information both about
the desired behaviors and about the environment in which it
should be applied, which acts as the index for that case. The
behavior information contains the new limits for each schema
gain value and how each is allowed to change while this case is
active. The environmental section represents the environment
and movement status of the robot under which to apply this
set of gain behaviors. To switch to a case, the case selector

Fig. 5. Top-level case retrieval and use algorithm.

has to determine which index environment in the stored cases
best matches the current environment and the evaluator has to
determine whether the case switch is appropriate.

In order to understand the process more fully, we now
present the details of how each of the components of the
ACBARR system operates. To frame the following discussion,
the top-level algorithm used by the system is presented in
Fig. 5.

A. Reactive Control

The following motor schemas were used in this research:

• AVOID-STATIC-OBSTACLE: Repel from object with
variable gain and sphere of influence. Used for collision
avoidance

for
for
for

From center of obstacle toward robot

where
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Adjustable sphere of influence (radial extent of
force from center of obstacle).
Radius of obstacle.
Adjustable gain.
Distance of robot to center of obstacle.

• MOVE-TO-GOAL: Attract to goal with variable gain. Set
high when heading for a particular goal.

Adjustable gain value.
Direction toward perceived goal.

• NOISE: Random wander with variable gain and persis-
tence.1 Used to overcome local maxima, minima, cycles,
and for exploration.

Adjustable gain value.
Random direction, persists for

steps.
Adjustable persistence value.

The reactive control system has been successfully demon-
strated in both simulation and real robot systems [3], [8].
In the simulation, the radius and center of each obstacle as
well as the goal location are available from the simulated
environment model. In a real robot, the obstacle and goal
location information is determined from the input of several
possible sensors including ultrasound, laser scanners, video
cameras, and odometry sensors. Previous research shows that
the schema-based reactive control mechanism utilized in this
work is particularly robust in the presence of uncertainty from
changing environments and imperfect sensor input [3].

B. Environmental Information

Since one overall goal of this research was keep the mod-
ifications to a “pure” reactive control system as simple as
possible, any environmental information represented in the
system must be obtainable through perceptual input during
the normal reactive control process. With this in mind, the
following environmental information is maintained:

• CLUTTER is a metric of how many obstacles are affect-
ing the robot, defined as the ratio of sensed obstacles to a
preset clutter value.2 In our tests, this value was set to 5.0.
Thus, five sensed obstacles would result in a clutter metric
of 1.0. Ten obstacles would equate to a clutter of 2.0. To
aid in partial matching for case selection, a clutter value
can match to range of similar clutter values, defined to be
0.4, i.e., any two clutter values within 0.4 of each other
are considered indistinguishable. For example, a case that
specifies a clutter value of 1.4 would exactly match an
environment with seven obstacles (CLUTTER 1.4),
partially match one with eight obstacles (CLUTTER
1.6), but not match one with ten obstacles (CLUTTER

2.0) along this particular match dimension. These

1Since noise is a random effect, a persistence value is needed to indicate
the amount of time a particular noise direction will be in effect.

2In a simulated environment, the exact number of obstacles can be known
by a robotic system. In an actual robot, the sensors may only sense one
obstacle if a number of obstacles are touching. Thus, several small touching
or even nearby obstacles may be considered one large obstacle. As a result, in
an implemented robotic system, the CLUTTER metric will have an estimated
value.

parameters were determined empirically; while they may
not be optimal, they have proven effective.

• MAXXED is a binary value representing whether a
parameter value has stayed at its upper bound for a sig-
nificant period of time. Notice that there is no equivalent
MINNED value. Empirical tests of the system indicated
that parameters were more likely to need to be expanded
upwards rather than below a preset minimum.

• CLEAR-TO-GOAL is a binary value which indicates if
the robot is facing the goal and there are no obstacles
between it and the goal along a straight line path.

• SENSES-GOAL is a binary value which represents
whether the goal is within the robot’s perceptual range
with nothing between the goal and the robot. Unlike
CLEAR-TO-GOAL, the robot may or may not be
physically facing the proper direction to the goal.

• GOAL-NEARBY is a binary value which indicates that
the robot senses the goal but there are obstacles between
the two.

• GOAL-DIRECTION is a value, in radian angle measure,
which represents the direction of the goal relative to the
current position and heading of the robot.

• GRANNY3 is a binary variable which determines when
particularly careful behavior should be employed. It re-
sults from long-term poor performance, which will indi-
cate that no known case is working.

Each of the items on the above list is information which
is readily available, either directly from the robot’s sensors
or from a straightforward mathematical calculation of sensor
data. No higher level processing is required to produce this
information.

C. Movement Information

ACBARR also needs information involving its performance.
This is knowledge of how well the current case behaviors are
performing in terms of the robot’s movement toward the goal
position. There are six situations to which ACBARR needs to
pay attention in order to evaluate its current progress:

• NO-MOVEMENT: The robot’s average step size has
dropped below a certain threshold

where

Step size averaged over steps.
Movement threshold.

• MOVEMENT-TOWARD-GOAL: The robot’s step size
and rate of approach to the goal are both above some

3GRANNY is a “careful” mode which adds an additional step to the stan-
dard reactive control process—in addition to calculating obstacle influences,
the system, if in granny mode, also determines a direction in which lie fewer
obstacles. This helps the system avoid densely populated regions of obstacles,
much like the BALLOONING behavior; unlike BALLOONING, however, the
granny computation allows the robot to treat obstacles in less dense regions
in whatever fashion is dictated by the current control behavior. The term
“granny” was selected in a light-hearted jest of the stereotypical grandmother
who is ultraconservative, careful, and worried about safety. When in this
mode, the system will avoid densely populated regions of obstacles, giving
the appearance of being extremely careful about traveling in those areas.
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threshold

where

Distance traveled over .
Decrease in distance to goal over .
Progress threshold.

• NO-PROGRESS-WITH-OBSTACLES: The robot is
moving but not toward the goal and the robot is within
the sphere of influence of one or more obstacles

where

Average number of obstacles over
steps.

Obstacle count threshold.

• NO-PROGRESS-NO-OBSTACLES: The robot is moving
but not toward the goal and the robot is not within the
sphere of influence of any obstacle.

• CIRCLES is a metric of how much the robot has recently
traveled over the same piece of ground. It is calculated
by consulting an internal, short-term, spatial memory
(Section III-D). The metric used in ACBARR is the
number of steps taken by the robot in a specific locale (a
five-by-five region of space centered at the robot) divided
by a constant value (10.0). These values were determined
empirically.

• WANDER is a measure of how efficient the robot’s
current path is, indicated by the ratio of the robot’s current
path length over the actual distance between the initial
position and the goal.

D. Spatial Memory

ACBARR employs a primitive short-term spatial memory
mechanism in order to recognize whether or not the robot is
running in circles. In our use here, the memory is primitive
as a matter of choice. It was designed to keep the overhead
of ACBARR’s additions to pure reactive control as small as
possible. As a compromise, ACBARR’s spatial memory only
keeps track of the robot’s travels within a smallwindow of
the entire world, representing a small geographic area. As
long as the robot remains within the same window, its steps
are tracked. If the robot moves out of the window, a new
window is established and the old one is forgotten. A window,
while fixed in size, is not fixed in relation to location in the
world. When a new window is established, it is always done

Fig. 6. Sample ACBARR case.

with the center located at the robot’s current position. If the
windows were static in location, it would be possible for the
robot to wander in circles between two windows and never
have this detected. This type of memory has also been utilized
in other systems based on the AuRA architecture to provide
information about spatial occupancy of recently visited areas
[4], [8].

E. Case Representation

A case entry in ACBARR consists of three parts. The first
part represents the types of environments in which the case
is applicable, and is used to determine which case to switch
to. The second part details how the various parameter values
can change and what their limits are, and is used to apply new
parameter values and to adapt them. The third part contains
bookkeeping information about the case, including information
about past experiences with the case.

A sample case is shown in Fig. 6. The first section of the
case contains information about the types of environment that
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this behavior is well suited for. This is a combination of the
environment knowledge along with the movement information.
For the values, an entry of 1 indicates that the system
does not care about this parameter; 0 indicates FALSE, and 1
represents TRUE. This case is best suited for a noncluttered
environment. The robot should be making progress toward the
goal and not wandering or running in circles. The case should
not be used if the system is in “granny” mode and attempting
to find the best path through a set of obstacles (by appealing
to an additional level of processing above the pure reactive
and pure sensor data in order to detect regions of clear space).
The case should also not be used if the system has maxxed
on a parameter value. The WANDER parameter of 0.0 will
match with any situation where WANDER has a value of 0.0
through 1.0 (WANDER always matches to a range of values
from the floor of WANDER to the floor plus one), i.e., the
current performance is of sufficiently high quality. Finally, the
case doesn’t care if the goal can be sensed directly or not,
nor does it care about the other three movement flags. If these
conditions are satisfied, the system will switch to this case
(unless the evaluate-per-step strategy is in place and the new
case is the current case), and use the behavioral parameters
recommended by the second section of the case. Additionally,
the system will continue to adapt these parameters as long as
the case is in use.

The second section of a case contains the information
describing the bounds on each parameter value in the system.
Each value is associated with two numeric ranges. The first
describes the limits for the changes which the system is
allowed to make on each value. In the sample case, noise
persistence has a limit on changes of [1.0 0.0]. The system
is, therefore, allowed to alter the noise persistence value by
a number from 1.0 to 0.0. If a constant change is desired,
then the endpoints of the range simply need to be equal. The
rest of the data for each value is the range which that value is
allowed to change. For noise persistence, this range is [1.0
5.0]. The system is allowed to change the value of noise
persistence by a real number from1.0 to 0.0, as long as the
value remains between 1.0 and 5.0. These two ranges, then,
represent behavior which will successively decrease the value
until it reaches its lower bound; behavior such as this would
be acceptable in an open field. In addition to noise persistence,
this section of a case contains the adjustment range and delta
values for the other important values contained in the included
motor schemas (see Section III-A).

The third section contains bookkeeping information about
the case. In the example, this indicates that this is case 20
which has a goodness rating of 90%. The average step size
was 0.5, there were no dynamic obstacles, and that the system
was initially 37.56 distance units from the goal. Finally, the
obstacle danger was 0.5, and the goal importance is 1.0. These
last two values are intended to allow the system to navigate in
environments where, for example, some obstacles are more
dangerous than others and need to be treated in a special
manner. While the current ACBARR implementation ignores
this, it is included in the case description for future extensions.
In particular, the information would be useful if ACBARR was
able to learn new cases, since the values listed above would

be those which existed in the simulation run which resulted in
a specific case being formed.

F. The Case Library

Prior to creating the case library, the pure reactive robotic
simulator was first run several hundred times. By abstracting
from the successful test runs, we gained insight into the
various types of behavior different environments would call
for. This initial attempt to conceptualize the various schemas
resulted in ten navigational strategies being identified, each
being represented as a case in the format discussed earlier:4

1) CLEAR-FIELD: In an open environment, the system
should pay little attention to obstacles, increase the goal
gain, and lower the noise gain and noise persistence.

2) BALLOONING: When there are relatively few obsta-
cles, the system attempts to swing around them in a
wide way (increase obstacle gain).

3) SQUEEZING: When there are many obstacles, the
system attempts to find a path by squeezing between
obstacles (lower obstacle gain, increase goal gain).

4) HUGGING: When there are many obstacles and the
system is currently faced with an obstacle directly in its
path, it attempts to stay close to the side of the obstacle
as it makes its way around it.

5) SHOOTING: Regardless of the number and size of the
obstacles surrounding the robot, if the system sees its
goal and there are no sensed obstacles in the way,
it adopts an extreme version of the CLEAR-FIELD
strategy and goes directly to it.

6) WALL-CRAWLING: If there is an obstacle the system
cannot seem to get around by HUGGING, it checks
to see if it is actually in front of a wall. The system
considers to be trapped by a wall if HUGGING has
failed5 and if the incoming vectors from the obstacles
are localized in front of it. In this situation, the system
determines which direction the shorter side of the wall
lies by looking at the vectors coming at it from each side
of a centerline straight ahead, and travels for a distance
in that direction. Since the system is limited to sensory
data which would be available to a reactive system, this
heuristic is not foolproof.

7) RANDOM: The system raises the noise gain and goal
gain, leaves the obstacle gain at a medium level, and
wanders in an exploratory fashion.

8) GRANNY: After , the system reconsiders the
environment by appealing to an additional level of
processing above the pure reactive control level. It
concentrates on the location of the obstacles currently
influencing it and attempts to discover a direction which
offers the best success possibilities while deviating the
least from the goal direction.

9) MAXXED: If a value has remained at its maximum
level for a period of time, the system increases the
maximum by some value.

4The representations of all ten cases are available in [33].
5This is implemented through a built-in bias of the case-selection algo-

rithm—it does not allow re-selection of the case which produced the need for
a case switch.
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10) REPULSION: In certain situations, the system considers
moving away from the goal for a period of time. If, for
example, the system senses the goal and there is a large
obstacle between the two, it may decide to “back away”
for a distance before attempting to get to the goal. This
is accomplished by setting the goal gain to a negative
amount.

G. Indexing and Case Selection

Due to the number of existing cases, there is little need for a
sophisticated indexing scheme. As a result, ACBARR employs
a flat memory modelof the case library [22]. Cases are located
by a sequential search of the memory for index matches.
Although generally an inefficient method, this suffices for the
current system without significant slow-down. If ACBARR
was extended to include several dozen or possibly hundreds of
cases, a better indexing scheme (such as the use of a redundant
discrimination network) would need to be implemented. With
the present number of cases, however, the flat memory model
provides advantages which a more complex indexing scheme
would lose. Most importantly, it ensures that for a case
retrieval request, the entire memory space is searched. This
enables the best match to be found each time. Secondly, the
addition of new cases is more straightforward with this form
of indexing than with any other scheme.

There are no restrictions placed on the relationship between
cases and known environments. Multiple cases may be stored
for the same environment, and a case may apply to multiple
environments. Both of these scenarios are handled by the
system.

1) When to Select a New Case:A important issue in case-
based reactive control is determining when to switch cases.
The simplest method is to look for a new case every
steps, and to switch cases if the current case does not match
the environmental conditions as well as one of the other cases
in the case library. In the extreme, with , this
method ensures that the best case will always be in place,
and the system will always use the best available navigational
strategy. However, the strategy of reevaluating the system’s
performance every steps is pessimistic (if is
small). It assumes that the environment will vary in fewer
than steps, so that the cost incurred in searching for
a new case will be justified even if the current case does not
obviously appear to be failing.

A second method is to evaluate the need for a new case
only if the current case is failing in some manner. This
is an optimistic strategy. It assumes that a given case is
“good enough” as long as it does not actually fail. In order
for this method to be effective, the system needs a good
heuristic to determine when the current case is not leading
to good performance. ACBARR makes use of its STM and
environmental knowledge to check for failing cases. There are
two criteria for failing. The first is excessive wandering by
the robot, as determined by the WANDER parameter in the
environment data. If the value of this parameter rises above a
given threshold, the system tries to find a new case. The second
failure criterion is the condition of running around in circles.
This is kept track of by the spatial memory which tracks the

Fig. 7. New case decision algorithm.

robot’s movement over a limited area of terrain. If the robot
is not making progress out of an area, failure can be assumed.

Unless specified otherwise, ACBARR uses the failure-
driven strategy for case switching; the algorithm used for
this is shown in Fig. 7. This design decision was based on
extensive empirical evaluation of both strategies. As shown in
Section IV-D, the failure-driven strategy achieves respectable
results with little overhead. However, both strategies are
available in the system to allow the user to specify the strategy
of choice.

2) Case Matching:An important issue in ACBARR, and
indeed in any case-based reasoning system, is that of selecting
the best case from the case library. The algorithm used by the
system for this selection is shown in Fig. 8. Once ACBARR
has decided to look for a new case, it uses a GOODNESS-OF-
MATCH metric to find the case that best matches the current
environment. In the flat indexing scheme, this is done using a
matching algorithm that compares the current environment, as
perceived by the robot, to each known case. If corresponding
internal values in the two are equal, the GOODNESS-OF-
MATCH value is incremented by 1.0. Near matches are
handled through partial credit. If, for example, the current
environment is very cluttered and the case being considered is
just moderately cluttered, the GOODNESS-OF-MATCH value
is incremented by 0.5. Finally, a special case occurs when the
current environment has the CLEAR-TO-GOAL flag set to 1
and so does the case being compared. In this situation, 3.0 is
added to the match value. The system, therefore, “looks for”
the situation of having a clear path to the goal and attempts to
exploit this. After all cases have been examined, the one with
the best match is chosen. Although this is a relatively simple
matching algorithm, it works well in ACBARR due to the
limited number of cases. The case representation also contains
sufficient information if the indexing algorithm ever needs to
be extended in complexity.6 Due to the numerical nature of
the matching procedure, the GOODNESS-OF-MATCH metric
can capture both partial and total matches. If no total match
is found which has a high GOODNESS-OF-MATCH rating, a
partial match will be chosen.

It is possible that the “best” case found for retrieval is the
same case being used currently. If this is the situation, there
are two possibilities. One, the retrieval mechanism may not be
capturing some nuance of the environment which is causing
the current case to fail. If this is true, the proper course of
action is to not allow the system to select a new case which is
the same as the current case. The other possibility is that the

6For example, the current indexing match algorithm does not make use
of the DONT-CARE value in a parameter—a mismatch is considered equal
in quality to a parameter match with a DONT-CARE. An extended indexing
algorithm might make use of this distinction.
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Fig. 8. Case selection algorithm.

reason that the case is currently failing is that not enough
time has been given to allow the case to succeed. If this
is true, the proper course of action would be to allow the
system to select the same case it is dealing with as the “new”
case and continue processing. After considering both of these
alternatives, in theory and with implementation, we decided
on the first course of action. Failures in the ACBARR system
are typically serious; if a case leads to a failure situation, the
chances are good that the case needs to be replaced. Thus, if
the same case is retrieved as the best match, the case selector
will choose the second best match as the new case.7

H. Case Application

Upon successful case retrieval, each current parameter value
(which includes all the gain values, the sphere of influence,
and the noise persistence value) in use by the system are set
to a random value within the range defined by the case for
that particular parameter value.8 Once this global alteration

7If the system is running under the control strategy of evaluating the need
to switch cases after a certain number of steps (see Section III-G-1), this
restriction is lifted.

8Several other possibilities exist instead of random setting of these initial
values. For example, an average of the allowed range may be used, either
limit of the range could be the initial value, or the value in the range closest
to the current value might have been chosen. A random selection was decided
on to minimize the effect of the different types of ranges and allowable delta
ranges which may be used. Consider a range with an associated delta range
which allows only upward movement of the parameter’s value. Setting the
initial value to an average or to the high point of the range would have the
effect that a wide portion of the range is never considered. The random nature
of the initial parameter setting provides the system with some insurance that
such anomalies do not occur consistently. If a specific parameter value is
desired in a given application, a case may be encoded with that value at both
endpoints of the allowable range.

Fig. 9. Parameter adaptation algorithm.

in parameter values occurs, ACBARR makes use of the case
for step-by-step modifications. Each case contains a set of
modifications which can be performed on the parameters in
the system, as well as the minimum and maximum values
of each. During each system step, ACBARR will adjust the
current parameter values by a value within the delta range
for that parameter, as defined in the case. If this adjustment
produces a new parameter value which is outside the limits
defined by the case, the parameter value is then set to the limit.
The algorithm which guides these step-by-step adjustments is
shown in Fig. 9.

IV. EVALUATION

In order to evaluate the proposed methods, we performed
extensive simulations with the ACBARR system to evaluate
its performance both qualitatively and quantitatively. Qual-
itative results were obtained using predefined environments
that represented problems that are known to be difficult for
reactive control systems. Quantitative results were obtained
using several randomly generated environments with different
densities and configurations of obstacles.

A. Simulation Environment

The test environment for this research is written in C using
the X Windows graphics package. The simulator has been
a useful tool for other research in the Mobile Robot Lab at
Georgia Tech, including [5], [8], [14], [26], and [32], among
others. Results generated in this simulation environment have
routinely been demonstrated on actual mobile robots (e.g., [3]
and [6]–[8]). Except for minor changes, the present simulator
is the same one used in these projects.

In order to facilitate our research, the simulation environ-
ment was extended to include both a graphical interface and
batch mode. The graphical mode allows us to visually evaluate
the progress of a simulated robot while it runs through a
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predefined world.9 The batch mode facility allows us to run
several simulations to gather statistics on the system’s average
performance over a range of environments. The simulation
system also includes a world generator that creates random
worlds with a starting point, a goal, and a set of obstacles. The
number of obstacles generated is controlled by theobstacle
densityrequested. For instance, a world with obstacle density
50% will have one-half of the total world area covered by
obstacles. To simplify the area calculation, overlap of obstacles
is not allowed in the random worlds.

B. Qualitative Evaluation

Reactive control systems have difficulty with local minima.
For example, in a box canyon situation, the system, without a
global picture of the entire world, does not have the knowledge
to “back out” of the canyon and go around it. This has been
referred to as the “fly-at-a-window” problem [3]. Usually, a
high level of random noise is used to try to kick the system
out of the box canyon. However, apart from being inefficient
and unpredictable, this method suffers from the problem that
such a high level of noise deteriorates performance in other
environments, such as “quasi” box canyons where the system
could squeeze through the obstacles if obstacle avoidance and
noise were suitably low. The adaptive strategies encoded in
ACBARR’s cases can handle both types of situations without
any reconfiguration of the system. ACBARR adapts to its
current environment dynamically, using an appropriate level
of noise, obstacle avoidance, and so on. The same method can
also handle other difficult environments, such as “walls.”

1) Performance Evaluation:Figs. 10–12 illustrate sam-
ple runs that demonstrate the qualitative improvement in
ACBARR, as compared with the unenhanced reactive control
system shown in Figs. 2 and 3. The ACBARR system did
not fail to find the goal in any test run. Paths chosen in
no clutter to low cluttered environments were particularly
efficient. ACBARR was able to successfully navigate the
standard box canyon problem (Fig. 10), the quasibox canyon
problem (a box canyon with an exit, Fig. 11), and the wall
environment (Fig. 12).

2) Method Evaluation:In addition to evaluating the per-
formance of the ACBARR system as a whole, severalabla-
tion studies[15] were also performed in which the system
was tested without one or more of its components in or-
der to evaluate their impact. These studies lend insight into
why the method of global and local changes employed by
ACBARR produces the overall behavior which it exhibits. The
system consists of two additions to “pure” reactive control
systems—the local adjustments and the global changes. By
removing either of these, both, or neither, we create four
scenarios. We can then test each of the variations in the

9The simulation window displays the current obstacles as circles, each with
varying radius (an example was shown in Fig. 1). As the robot navigates this
world, a line is drawn indicating the robot’s progress from start to goal. At
the top of the window is a set of numbers displaying the current control
values. These values are updated each time the ADJUSTMENT MODULE
is called (see Fig. 4). This display also indicates the number of steps, total
distance traveled, distance to goal, and number of obstacle contacts. Below
the numerical display is a set of five line graphs that provide a history of the
control values as they are adjusted throughout the run.

Fig. 10. Box canyon—ACBARR performance.

Fig. 11. Quasibox canyon—ACBARR performance.

same environment to judge performance and thereby judge the
contribution of each addition. We chose the box canyon envi-
ronment for this portion of the evaluation since it represents
a fairly difficult, yet realistic world.

Fig. 13 shows the system’s performance on the box canyon
world with neither local adjustments nor global cases avail-
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Fig. 12. Wall environment—ACBARR performance.

Fig. 13. Box canyon—No cases, no adjustments allowed.

able to the system. As can be seen, the robot achieves an
equilibrium point and stays there. Fig. 14 shows the results
of the system being run on the same world, this time with
adjustments permitted. The goal is reached, although the path
is wasteful. Finally, Fig. 15 presents ACBARR’s handling of
the box canyon with the case library available but with no

Fig. 14. Box canyon—No cases, but adjustments are permitted.

Fig. 15. Box canyon—Cases, but no adjustments are permitted.

local adjustments allowed. The goal is achieved but with a
rather nonoptimal path. In particular, the system is unable
to adjust its step-by-step performance to avoid running off
the visible screen. Thus, a lot of wasted motion is generated.
Notice that the robot is unable to adjust its performance as it
reapproaches the wall and comes too close to the obstacles.
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Also, the overall path is more jagged than that which is
generated by the complete system. Comparing these results
with those of Fig. 10, which shows the complete ACBARR
system’s performance, we can see that the system achieves
its goal with a fairly good path with the benefits of both
adjustments and case knowledge. The cases provide global
performance benefits (which explains why adjustments alone
produce such an inefficient path in Fig. 14), while the step-
by-step adjustments provide “fine-tuning” at a local level,
resulting in much smoother paths (explaining the nature of
the path seen in Fig. 15).

C. Quantitative Evaluation

Several simulations were performed in batch mode to eval-
uate the improvement in performance yielded by our case-
based method for on-line adaptation. The simulator has the
potential for an almost unlimited number of environments
with various sizes, numbers and configurations of obstacles.
The clutteredness of an environment can be characterized by
its obstacle density, which is the fraction of available space
that is occupied by obstacles. We created 300 random worlds,
100 worlds for each of the three obstacle density levels.
These density levels reflected an easy world (10%), a medium
cluttered world (25%), and a difficult, fairly cluttered world
(50%). Across the 100 worlds were ones where there were
many small obstacles making up the density percentage as
well as worlds where the indicated density was the result of
a few large obstacles. These 300 different environments were
an attempt to subject ACBARR to a wide range of possible
worlds. Finally, since each run of the system varies from the
others due to the randomness of the noise parameters, we ran
each simulation a total of five times and averaged the results.

The results are depicted in Figs. 16–19. In the graphs,
ACBARR-F is the ACBARR system utilizing a evaluate-on-
failure case switching strategy, ACBARR-S is the same system
with the evaluate-per-step strategy, and REACTIVE-10 and
REACTIVE-50 are systems utilizing “pure” reactive control.
The nonadaptive reactive systems were hand-configured to be
efficient at navigating in environments with 10% clutter (the
REACTIVE-10 system) and 50% clutter (the REACTIVE-50
system) respectively; however, as the results demonstrate, they
were less flexible than the ACBARR systems and did not
perform as well in environments for which they were not
explicitly intended. The improvements were analyzed using
statistical methods and shown to be statistically significant.

1) Number of Robot Steps:The steps metric illustrates the
speedup in the actual number of robot steps required to reach
the goal. The number of steps taken by the various systems is
depicted in Fig. 16. The two ACBARR variants are almost
identical, with ACBARR-S edging out ACBARR-F in the
50% cluttered world. The two REACTIVE systems had the
worst performance, as shown in the figure. REACTIVE-10
performed well in worlds with 10% clutter, for which it
was designed, but deteriorated significantly on highly clut-
tered words. For 50% cluttered worlds, this system follows
paths of over 1125 steps on average as compared with the
approximately 40- to 95-step paths found by the ACBARR

Fig. 16. Number of robot steps required to reach goal.

systems. REACTIVE-50 performed reasonably well on 50%
cluttered worlds as well as less cluttered worlds, but the
ACBARR systems were about twice as good (specifically,
the REACTIVE-50 paths were on an average 2.15 times as
long as the ACBARR-S paths in 50% cluttered worlds). A
-test analysis showed that the improvement of ACBARR-S

over REACTIVE-50 is statistically significant
.

The results show that ACBARR’s methods allow it to
perform well on less cluttered worlds, and are flexible enough
to carry over to highly cluttered worlds without significant
degradation in performance. It remains as good as or better
than a purely reactive system tailored to each type of envi-
ronment. Intuitively, this is to be expected since ACBARR is
able to switch strategies and select the appropriate parameter
values (which are typically fixed in a purely reactive system)
for different situations.

2) Distance: Another useful metric for evaluating the per-
formance of the system is the ratio of the actual distance
traveled during the navigational task (the “path length”) to the
straight-line distance between the start position and the goal.
This metric gives us an idea of how much “wasted motion” the
system performed. Ideally, this value should be 1.0 in a world
with no obstacles. Obviously, if the environment is cluttered,
the ratio will in general be greater than 1.0, no matter how
good the navigational system is.

As shown in Fig. 17, in the 10% cluttered worlds, all four
variants performed the task with little wasted motion, although
both ACBARR systems were slightly better than the better
of the reactive control systems. When we consider the 25%
cluttered worlds, however, we see that REACTIVE-10, the
reactive system that was configured for 10% worlds, is begin-
ning to lose in this area, navigating along paths which were
over three times the length they needed to be. REACTIVE-
50 performs better but still not as well as the ACBARR
systems. In the 50% cluttered worlds, REACTIVE-10 reached
the goal along paths which were almost ten times as long as
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Fig. 17. Robot path length to goal over actual distance to goal.

they needed to be. REACTIVE-50, which was hand-coded for
such environments, performed better, but still does not match
the performance of the ACBARR-S system (specifically, the
REACTIVE-50 paths were on an average 1.55 times as
long as the ACBARR-S paths). A-test analysis showed
that this improvement is statistically significant

. Notice also that at this level of obstacle
density, ACBARR-F is worse than ACBARR-S. Potential case
switching on every step allows ACBARR-S to find shorter
paths than ACBARR-F can.

3) Time per Step:The time per step metric is another in-
teresting metric since it allows us to evaluate the overhead of
the extra processing in the ACBARR systems. We measured
the average time the systems took in order to make each step
of the journey. As intuition would predict, Fig. 18 shows that
ACBARR-S took the longest amount of time per step. This is
due to the performance evaluation and potential case switching
taking place at each step. ACBARR-F was the second slowest,
with the two REACTIVE systems being the fastest. While the
differences seem minute, if a navigational task were to take
hundreds to thousands of steps, the cumulative effect of case
retrieval, evaluation, and switching could begin to have an
impact on overall system time in a simulated system. This
effect is evaluated in the following experiment.

4) Time to Completion:The time metric illustrates the
speedup in the total navigational time, as measured by
the actual time taken to reach the goal (Fig. 19). In the
10% worlds, although all four systems performed well, the
REACTIVE-10 system took the least time to get to the goal.
This advantage of the REACTIVE-10 system breaks down
in more cluttered worlds, where the additional processing
performed by the ACBARR systems begins to pay off. The
REACTIVE-50 system was designed for highly cluttered
worlds and performs somewhat better than the ACBARR
systems in these worlds as well as less cluttered worlds.

It should be noted, however, that the simulated time metric
is not a realistic indicator of performance of a physical robot

Fig. 18. Time per robot step.

Fig. 19. Total time for robot to move to goal.

in the real world. In a simulated environment, perception
and movement are instantaneous. However, in the real world,
sensing is at least an order of magnitude slower than the
ACBARR computations (which are on the order of 5 ms to
10 ms per cycle, as shown in Fig. 18). Physical movement
of the robot is also relatively slow. The results show that
the computation overhead, in contrast, is much less than an
order of magnitude (specifically, in simulation, ACBARR-S
takes on an average 1.78 times as long as REACTIVE-50 in
50% cluttered worlds to navigate from the starting point to
the goal; ). Since ACBARR’s paths
are considerably shorter (Fig. 17) and require less robot steps
(Fig. 16), the processing overhead in ACBARR is negligible
compared to the improved performance that results from the
better navigational paths that are created.
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D. Discussion

Considering the graphs together allows us to draw con-
clusions about the overall performance of ACBARR as seen
against the reactive control system which it augments. Both
ACBARR versions take some time to “ponder” each move
they are going to make. If perception and movement are
instantaneous and there are few obstacles, a purely reactive
system may be able to navigate to the goal in less overall
time than the ACBARR systems. However, its path will
be a little more jagged than the ACBARR systems, and it
will use more steps to reach the goal. If the path quality
or the actual number of steps taken is of importance, the
ACBARR systems are better even at lower obstacle densities.
This is the case with physical robots in which perception and
movement time far outweigh the computation time required to
adapt schema parameters (although this article presents only
simulation results). Furthermore, the computations necessary
to derive the next step can be performed while the robot is
executing the motions for the previous step.

The benefits of the extra time per step taken by the
ACBARR systems are revealed in more cluttered environ-
ments. The paths created by the ACBARR systems in cluttered
worlds are much shorter than the purely reactive systems, and
they require fewer time steps to complete the navigation task.
Notice that, in these worlds, ACBARR-F is slightly faster than
ACBARR-S; both systems are faster than REACTIVE-10,
though not quite as fast as REACTIVE-50.

The most convincing evidence for the case-based ACBARR
systems can be seen in the highly cluttered worlds. Compared
to ACBARR-F and ACBARR-S, the REACTIVE-10 system
performs extremely badly in 50% cluttered worlds, being
beaten in length of path, time to completion, and number
of steps required. Also, it is in this class of worlds that
ACBARR-S’s higher time per step value begins to benefit the
system even in a simulated environment. While it is possible
to design a purely reactive system (REACTIVE-50) that will
perform better along the simulated time metric, ACBARR
outperforms that system along the distance and steps metrics.
To compare the two ACBARR case-switching strategies, note
that while ACBARR-F continues to perform respectably in
highly cluttered worlds, ACBARR-S manages to complete the
navigational task in less time, creating a better path, while
using fewer steps.

The above results are statistically significant and consistent
with the commonly held belief that more analysis will lead
to a better result. If the result is better enough so that it
counteracts the additional overhead, the extra analysis is worth
it. This brings up an interesting point with regards to future
enhancements of the system. As the case library grows and
becomes more complex, the amount of time needed to perform
a case switch will also increase. This means that the disparity
between the two case switching strategies in terms of time
needed per step will increase. We predict that future versions
of the system with more complex cases will cause the evaluate-
on-failure strategy to become the clear method of choice.

It should be noted that while ACBARR does improve
performance over the nonadaptive reactive systems that it was

compared with, the actual quantitative improvement shown
in the graphs depends on the particular parameter settings
used for the reactive systems. However, one of the benefits
of our approach is flexibility, in the sense that the system’s
parameters do not need to be reconfigured in different envi-
ronments. As is evident from the graphs, ACBARR performs
extremely well across a wide range of environments, from
relatively uncluttered to highly cluttered, with a wide range of
obstacle configurations, from random to box canyons to walls.
For example, over the entire set of experiments summarized
in Fig. 16, REACTIVE-50 took an average of 223% as many
steps as ACBARR-S to navigate the same environment; this
improvement is realized over the entire range of environ-
ments tested. Similarly, from Fig. 17, the paths found by
REACTIVE-50 were 55% to 60% longer than those found
by ACBARR-S.

V. LIMITATIONS AND FUTURE WORK

A. Distribution of Cases Used by ACBARR

In our empirical tests, we noticed an interesting result
that is worth mentioning. When using the failure-driven case
evaluation and switching method, the system would gen-
erally use only a subset of its stored possible strategies
during test runs. We studied this behavior further by running
more extensive simulations on various random worlds with
ACBARR-S. We found that out of our ten cases, only five were
ever used: WALL-CRAWLING, HUGGING, CLEAR-FIELD,
SHOOTING, and BALLOONING. Part of the reason for this
is methodological; the cases were added incrementally as
new situations were discovered which warranted new behavior
patterns. We began with only two cases, BALLOONING and
SQUEEZING, and built the library up from that point. The
problem, then, is that some of our later cases made earlier cases
superfluous. For example, the MAXXED cases was added to
ACBARR to handle a specific environmental problem. Later,
when WALL-CRAWLING was added, MAXXED ceased to
be used as often as it was earlier.

The solution to the methodological problem is to go back
and revise the case library to exclude redundancies. However,
it is still likely that the system would use some of its cases
more often than others. There are two reasons for this. First,
ACBARR-F only switches cases if the current case is failing
in some way. This means that the best available strategy is
not always in place. If the current case is “good enough,”
the system will not bother to switch to a better one. For
example, if the system initially chooses to make use of the
CLEAR-FIELD case, it will continue to do so until there is
a clear failure. In order to determine whether this was indeed
the explanation for this behavior, we compared this with the
alternative case switching method in which the need for a
new case is evaluated every steps. Many more cases are
utilized if this method is used. The second explanation for why
only a subset of strategies were being used is the robustness
of several of the strategies involved. In particular, CLEAR-
FIELD, HUGGING, and WALL-CRAWLING are especially
robust and can account for the majority of behaviors noted
in the system. The only way to force ACBARR to reconsider
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all its cases is to set to 1, in other words, to use the
ACBARR-S method. This results in higher overhead which,
as discussed earlier, only pays off in very highly cluttered
environments.

B. Single Strategy or Multiple Cases?

In our research, we assumed that a set of strategies would
be needed to deal with the range of problem situations that are
possible in the ACBARR world. However, it is possible that
a single reactive control strategy could be developed which
would be able to handle the same range of situations which
ACBARR can handle. The issue, then, is: why add additional
processing to the system? There are several reasons. First, it
would require considerable effort to develop such a strategy,
and no such strategy has been proposed thus far. ACBARR
enables a system to produce respectable performances with
less than optimal cases. Second, if such a strategy became
available, it could easily be added to ACBARR’s case library.
If the evaluate-on-failure strategy were employed, then this
powerful strategy would stay in place until it failed (if it
failed). Third, since worlds are dynamic, even if a good
strategy that covered a wide range of situations was found,
the system might need to switch to a different strategy in
an unexpected situation. Finally, ACBARR can provide a
framework to test the effectiveness of any such strategy. A
fairly robust strategy could be developed and then added to the
ACBARR system, which would then be allowed to operate in
hundreds of simulated worlds. These simulations could then
be examined to see if there were any environmental situations
which caused the strategy being tested to be switched out.
This information would then guide the researcher, if he or
she wished, to further improve the strategy. Thus our claim,
which is supported by the evidence we have discussed, is that
ACBARR adds robustness and methodological power to any
pure reactive control system, regardless of its level of existing
behavior.

C. The Case Library

An important research issue at this point is where the set
of cases in the library comes from. For now, these cases are
coded by hand. This is not the optimal solution for two reasons.
One, it allows human biases to enter the process. To illustrate
this point, consider our own experiences. At first, we believed
that BALLOONING and SQUEEZING were relatively robust,
general-purpose strategies. As pointed out earlier, however,
these did not turn out to be the strategies used most often by
the system. Luckily, there is enough variety within the hand-
created cases to allow the system a relatively comprehensive
selection, and the empirical evaluations demonstrate that the
set of cases we have identified is indeed a good one. Yet, the
nagging question remains: Is there a behavior even more robust
which we have overlooked? A second potential problem is that
a completely novel situation unseen by the human teacher may
not be handled in the best way. There is still the possibility
that ACBARR will fail in certain environments, although
no such failures were identified in the extensive empirical
testing. If the system had the ability to learn its own cases,
this potential problem could be alleviated. At the very least,

the system needs to be able to add new cases to an already
existing library; for some applications, it may be desirable
to produce a system which could learn all of its cases from
scratch. We are currently developing a system which is capable
of automatic case learning through navigational experiences
(see [35]); related work by other researchers was discussed in
Section II-C.

D. Implementation on a Physical System

Another area of future work involves the actual implemen-
tation of the ACBARR system on a real robot. The work to
date has been restricted to the simulator. The transfer to a
physical robot should not be difficult, in part because AuRA is
already implemented on a physical system and previous results
from the simulated environment have been shown to transfer
to physical robots. Every effort was made in the system so
that it performed in a way suitable for both a simulated world
and the real world. Part of the remaining challenge is to find
sufficiently varied domains to test these ideas effectively using
the robot.

VI. CONCLUSION

The objective of our research effort is to develop mech-
anisms for learning and adaptation that can be used by an
intelligent agent to learn from its experiences in a complex and
dynamic environment, and to develop corresponding mech-
anisms for planning and action in such environments that
support such learning and adaptation. The methods presented
in this article were developed as part of this ongoing effort,
and focus specifically on the issue of adaptive reactive control.
Case-based reasoning allows a reactive system derive the
benefits of higher-level reasoning without sacrificing the real-
time response and fast performance. It allows the system to
adapt to its environment dynamically, resulting in flexibility in
performance across a wide range of environmental conditions.
Thus, combining case selection and behavioral adaptation
based on environmental demands with traditional reactive
robotic control systems should theoretically lead to better
performance, and the empirical data supports this claim as
well.

The methods presented in this article are fully implemented
in the ACBARR system. By adding basic environmental data
to the system, we have realized substantial improvements in
its performance without sacrificing the inherent benefits of
reactive control. Although the ACBARR system is not a pure
reactive control system as normally defined, it combines the
best features of that paradigm with the benefits of case-based
reasoning. The performance of the system is tightly coupled
with the adequacy of the cases in its library. As pointed out,
the cases currently in use have proven to be extremely robust,
making failure in new environments less likely. This results in
ACBARR being a highly efficient, adaptive control system.
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