
COUNTERING MURPHY’S LAW:

THE USE OF ANTICIPATION AND IMPROVISATION

VIA AN EPISODIC MEMORY IN SUPPORT OF

INTELLIGENT ROBOT BEHAVIOR

A Dissertation
Presented to

the Academic Faculty

by

Yoichiro Endo

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Interactive Computing

College of Computing

Georgia Institute of Technology
December 2008

Copyright  2008 by Yoichiro Endo

COUNTERING MURPHY’S LAW:

THE USE OF ANTICIPATION AND IMPROVISATION

VIA AN EPISODIC MEMORY IN SUPPORT OF

INTELLIGENT ROBOT BEHAVIOR

Approved by:

Dr. Ronald C. Arkin, Advisor
School of Interactive Computing
College of Computing
Georgia Institute of Technology

 Dr. Ashwin Ram
School of Interactive Computing
College of Computing
Georgia Institute of Technology

Dr. Tucker Balch
School of Interactive Computing
College of Computing
Georgia Institute of Technology

 Dr. Steve M. Potter
The Wallace H. Coulter Department of
Biomedical Engineering
Georgia Institute of Technology

Dr. Frank Dellaert
School of Interactive Computing
College of Computing
Georgia Institute of Technology

 Date Approved: August 5, 2008

for my mother in Tokyo

iv

ACKNOWLEDGEMENTS

First and foremost, I owe an enormous debt of gratitude to my advisor, Dr. Ronald

Arkin. Without his insightful guidance, encouragements, thorough critiques, and patience,

this dissertation would never have been possible. His extensive knowledge of the robotics

field is astounding, and his outstanding professionalism is truly admirable. I would also like

to thank the rest of my thesis committee members: Dr. Tucker Balch, Dr. Frank Dellaert,

Dr. Steve M. Potter, and Dr. Ashwin Ram. Their constructive comments were particularly

helpful to shape my dissertation. I would like to thank my former advisor, Dr. Roger Quinn

at Case Western Reserve University, for introducing me to the fascinating field of robotics.

The 2001 Neuromorphic Engineering Workshop in Telluride was a very educational and

inspirational experience for me. At the workshop, Dr. Shih-Chii Liu from the Institute of

Neuroinformatics at Zurich introduced me to the concept of the “place cells” in the

hippocampus, becoming the starting point for this dissertation. Countless informative

discussions I had with my fellow robotics students at Georgia Tech were also extremely

valuable to my dissertation. In this regard, I would like to thank Michael Kaess, Zsolt Kira,

Keith O’Hara, Dr. Ananth Ranganathan, Dr. Alexander Stoytchev, Patrick Ulam, and Alan

Wagner. Finally, I would like to thank Natasha Dahmen for her emotional support through

these years.

 v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iv

LIST OF TABLES ix

LIST OF FIGURES xiii

LIST OF BOXED EXAMPLES xx

LIST OF SYMBOLS AND ABBREVIATIONS xxi

SUMMARY xxvi

CHAPTER

1 Introduction 1

1.1 Motivation 1

1.1.1 Anticipation 1

1.1.2 Improvisation 5

1.1.3 From Experience to Proactive Behavior 7

1.2 Research Questions 10

1.2.1 Primary Research Question 10

1.2.2 Subsidiary Questions 11

1.3 Contributions 13

1.4 Dissertation Overview 14

2 Background and Related Work 15

2.1 Biological Perspectives 15

2.1.1 Episodic Memory and Hippocampal Functions 15

2.1.2 The Somatic Marker Hypothesis 23

2.2 Anticipation 26

 vi

2.2.1 Anticipatory Systems 27

2.2.2 Anticipatory Behavioral Control 29

2.2.3 Hippocampally Inspired Approaches 30

2.3 Improvisation 35

2.3.1 Musical Improvisation 36

2.3.2 Computational Jazz Improvisation 37

2.3.3 Artificial Intelligence 39

2.4 Relevant Machine Learning Techniques 43

2.4.1 Temporal Difference Learning 43

2.4.2 Case-Based Reasoning 44

2.4.3 Instance-Based Learning 48

2.4.4 Partially Observable Markov Decision Process 50

2.4.5 Predictive State Representation 53

2.5 Summary 54

3 A Computational Model of Proactive Intelligent Behavior for Robots 58

3.1 Foundations 59

3.1.1 Temporal Abstraction of Ongoing Experience 59

3.1.2 Formation of Episodic Memories 65

3.1.3 Construction of Referents 70

3.2 Computation of Proactive Intelligent Behavior 73

3.2.1 Recollection 74

3.2.2 Event Matching 79

3.2.3 Behavior Selection 87

3.2.4 Validation 91

3.2.5 Recovery 93

 vii

3.3 Auxiliary Functions 97

3.3.1 Motivation Function 98

3.3.2 Reward Function 100

3.4 Discussion 104

3.4.1 Biological Relevance 104

3.4.2 Machine Learning Aspects 106

4 Implementation 109

4.1 AIR: Anticipatory-Improvisational Robot Architecture 109

4.1.1 I/O 109

4.1.2 Episodic Subsystem 113

4.1.3 Behavioral Subsystem 123

4.2 System Integration 125

4.2.1 Real Robot Configuration 126

4.2.2 Gazebo Configuration 129

4.2.3 USARSim Configuration 130

5 Evaluation 132

5.1 Efficiency of the Foundational Data Structure 132

5.1.1 Materials and Methods 134

5.1.2 Results 136

5.1.3 Discussion 137

5.2 Effectiveness of Somatic Markers 138

5.2.1 Materials and Methods 141

5.2.2 Results 146

5.2.3 Discussion 150

5.3 Promptness of Proactive Behavior Computation 151

 viii

5.3.1 Materials and Methods 152

5.3.2 Results 163

5.3.3 Discussion 170

6 Conclusions and Future Work 174

6.1 Summary of Work 174

6.1.1 Proactive Intelligence 175

6.1.2 AIR 177

6.2 Contributions 180

6.2.1 Contribution Summary 180

6.2.2 Discussion 184

6.3 Future Work 190

APPENDIX A: Derivation 192

APPENDIX B: Pseudocode 193

APPENDIX C: Data 214

REFERENCES 220

 ix

LIST OF TABLES

Page

Table 1: The measurements (z) at the nine instances, the predicted measurements (z'), the
error of z', and the outputs of the sampling function...64

Table 2: The perceptual information (z), behavioral information (b), and referent nodes (ω)
of the events in Episode 1. ...73

Table 3: The similarity values (ρE) and relevance of sample episodes..79

Table 4: The perceptual (z) and behavioral (b) information of Episode 1.................................81

Table 5: The perceptual (z) and behavioral (b) information of the current sequence.81

Table 6: The posterior probabilities of the current sequence. ...81

Table 7: The behavioral information of Episode 1. ..83

Table 8: Four cases of motion model computation. ...83

Table 9: The perceptual (z) and behavioral (b) information in Episode A.86

Table 10: The perceptual (z) and behavioral (b) information in Episode B.86

Table 11: The perceptual (z) and behavioral (b) information of the current sequence............86

Table 12: Event matching of the two episodes and their entropy values.86

Table 13: The similarity values (ρE), relevance, and entropy values (H) of sample episodes..87

Table 14: The utility values of the events in Episode 1..89

Table 15: The expected utility of executing bMF given episode EA..90

 x

Table 16: The expected utility of executing bMF given episode EB. ...90

Table 17: The expected utility of executing bSO given episode EC. ...90

Table 18: The timestamps of the events in Episode 1..93

Table 19: The utility values of sample episodes...94

Table 20: The perceptual information (z), behavioral information (b), referent nodes (ω), and
timestamps (T) of the events in Episode 1...96

Table 21: The perceptual information of the events in Episode 1. ... 101

Table 22: The member of Perception. ... 111

Table 23: The members of Reading. .. 112

Table 24: The members of Action. .. 113

Table 25: The members of Motivation. .. 114

Table 26: The members of Event... 117

Table 27: The member of Behavior. ... 117

Table 28: The members of Episode.. 118

Table 29: The member of Referent. .. 122

Table 30: The members of ReferentNode. .. 122

Table 31: A summary of the experiments in Chapter 5... 132

Table 32: A summary of reward arrangements for the gambling experiment conducted by
Bechara et al. [23]. ... 139

 xi

Table 33: Assigned associative reward values of predefined objects....................................... 144

Table 34: A summary of reward arrangements for the somatic marker experiment (cf. Table
32). ... 144

Table 35: The reward/punishment schedule types (Table 34) and corresponding box
locations (see Figure 46) for each test set. ... 146

Table 36: The number of episodes in the memory and the testing conditions...................... 162

Table 37: The predefined constants utilized in the experiments in Chapter 5....................... 214

Table 38: Numerical results for the limited transitions vs. full transitions (Figure 43)......... 215

Table 39: The constants and correlation coefficients of the trendlines for the limited
transitions vs. full transitions graph (Figure 43). .. 215

Table 40: Standard error measurements for the limited transitions vs. full transitions (Figure
43). ... 216

Table 41: Sequences of box choices made by the robot with somatic markers..................... 216

Table 42: Sequences of box choices made by the robot without somatic markers............... 217

Table 43: The rate of the robot taking advantageous choices with respect to the number of
the trials (visit number) and the standard error measurements (S.E.M.) (Figure 47)............ 217

Table 44: The numerical values and the standard error measurements (S.E.M.) of the average
distribution of 20 consecutive box-visits over four box types (A, B, C, and D) by the robot
with somatic markers (Figure 48).. 217

Table 45: The numerical values and the standard error measurements (S.E.M.) of the average
distribution of 20 consecutive box-visits over four box types (A, B, C, and D) by the robot
without somatic markers (Figure 49).. 217

 xii

Table 46: The numerical values of the difference between the robot with somatic markers
and the robot without them in terms of its advantageous choices minus disadvantageous
ones (Figure 50). .. 218

Table 47: The numerical values of the average computation time required for the event-
matching process (and the standard error measurements) in the anticipatory experiment with
respect to the number of episodes in the memory (Figure 55) .. 218

Table 48: The numerical values of the average path length (and the standard error
measurements) in the anticipatory experiment with respect to the number of episodes in the
memory (Figure 56)... 218

Table 49: The numerical values of the average duration (and the standard error
measurements) in the anticipatory experiment with respect to the number of episodes in the
memory (Figure 57)... 219

Table 50: The numerical values of the average computation time required for event matching
and the average event-sampling interval in the improvisational experiment with respect to
the number of episodes in the memory (Figure 60)... 219

Table 51: The numerical values of the time to reach the goal location (duration) in the
improvisational experiment and their standard error measurements (Figure 59).................. 219

Table 52: The numerical values of the difference between the successful and unsuccessful
runs in terms of the excessive event-matching time (Figure 61).. 219

 xiii

LIST OF FIGURES

Page

Figure 1: The hippocampus in a human brain. 16

Figure 2: A rat brain (upper right) and the cross-section of the hippocampus with its
subdivisions (lower left). (Diagram reproduced from [183] and [121].) 22

Figure 3: Hippocampal area CA1 as a comparator: (a) Hasselmo’s model, (b) a simplified
diagram of the same concept. A mismatch between expected signals from hippocampus area
CA3 and the present sensory information from the entorhinal cortex (EC) is detected at
CA1. (Diagram reproduced from [67] and [117].) 22

Figure 4: Perception of a self-induced movement proposed by Held [69]. (Diagram
reproduced from [69].) 23

Figure 5: The amygdala in a human brain. 25

Figure 6: The pathways between the sensory cortical areas and the hippocampus. (Diagram
reproduced from [94].) 25

Figure 7: Rosen’s Anticipatory system where M = Model, E = Effector, and S = Object
System. (Diagram reproduced from [140].) 28

Figure 8: Hoffmann's anticipatory behavioral control (ABC) framework. (Diagram
reproduced from [70].) 29

Figure 9: A navigational system proposed by Schmajuk and Thieme. (Diagram reproduced
from [148].) 32

Figure 10: Tolman and Honzik’s maze used by Schmajuk and Thieme’s detour experiment.
(Diagram reproduced from [148].) 32

Figure 11: Mataric’s topologically organized distributed map [105] (top) and the
corresponding environment (bottom). (Diagram reproduced from [105].) 34

Figure 12: Simulated environment for Pengi. (Diagram reproduced from [5].) 41

 xiv

Figure 13: The process of “making tea” with Waffler. (Diagram reproduced from [8].) 42

Figure 14: Steps of case-based reasoning, proposed by Kolodner and Leake [89]. 45

Figure 15: An example of E-MOPs (episodic memory organization packets) in CYRUS [88],
This E-MOP in particular is shown to encapsulate particular diplomatic meetings that took
place. (Diagram reproduced from [88].) 46

Figure 16: Interpolations of a function using five data points via the nearest neighbor (left)
and locally weighted regression (right) algorithms. (Diagram reproduced from [143].) 50

Figure 17: Computational steps proposed by Cassandra et al. [42] to deal with partially
observable Markov decision process (POMDP) problems. The first step (state estimation) is
computed probabilistically. (Diagram reproduced from [42].) 52

Figure 18: Event sampling via perceptual segmentation of the experience. The robot’s
continuous experience (observation, behavior, and reward signals) is encapsulated into a
series of discrete events based on temporal changes in the reward signal. 62

Figure 19: A trace of a robot measuring the distance to a concave wall. 64

Figure 20: A graph of prediction errors and a corresponding robot path in a simulated
indoor environment. The robot has 10 sonar sensors onboard. Each spike in the graph
indicates the occurrence of a new event. 65

Figure 21: Production of episodes via purposive contextualization. Events are divided into
different episodes based on changes of the goals that the robot pursues. 67

Figure 22: Production of episodes via utilitarian contextualization. Events are divided into
different episodes based on how significantly the characteristics of the reward signal changes.
 68

Figure 23: (a) A general state machine with fully connected transitions. (b) Formation of an
episode with a unidirectional linear chain of events (from e0 to e6). 70

Figure 24: Construction of a referent from an episode based on behavioral instantiations. In
this case, three referent nodes are extracted since there were three behavioral instantiations
during this episode. The observation perceived before Behavior 1 is stored as the nodal
precondition of Node 1. The observation at the end of Behavior 1 is the nodal effect of

 xv

Node 1 as well as the nodal effect of Node 2. Similarly, the observation at the end of
Behavior 2 is the nodal effect of Node 2 as well as the nodal effect of Node 3. Finally, the
observation at the end of Behavior 3 is the nodal effect of Node 3. (See Box 2 for an
example with concrete numbers.) 72

Figure 25: A flow chart of the proactive behavior computation. 74

Figure 26: The probability mass function for the Poisson distribution. 84

Figure 27: Selection of an intermediate goal. Referent Node 2 is here identified as an active
node since the last known matched event resides within this nodal period. Hence, the nodal
effect of this active node (i.e., the perceptual state stored inside the last event of this nodal
period) is selected as the intermediate goal. 95

Figure 28: The AIR architecture: (a) the entire system, (b) the anticipatory processor module,
and (c) the improvisational reasoner module. (Note: gcur = goal (current), rcur = reward

(current), b = behavior, e = event, E = episode, C = past episodes, o′′′′ = predicted
observation, gint = goal (intermediate), relM̂ = relevant episodes that contain successfully

matched events, and Mrel = relevant episodes.) 110

Figure 29: An input data point specified in the spherical coordinate system. In this case, the

phi (ϕ) angle of the red ball is approximately 15°, and the theta (θ) angle is approximately
45°. 112

Figure 30: The egocentric Cartesian coordinate system and the motor commands. 113

Figure 31: The graphical user interface for the goal manager. 115

Figure 32: The graphical user interface for the reward manager. 116

Figure 33: An example of the text format used to store an episode. The timestamp of the
episode is first specified. In the second section, the information regarding the episodic
context is stored. The third section contains the information regarding the event sequence
(only one event is saved in this case), including the index, time, observation, behavior, and
reward of each event. 119

Figure 34: The graphical user interface for the anticipatory processor. 120

 xvi

Figure 35: The graphical user interface for the improvisational reasoner. 123

Figure 36: Coordination of the motor schemata. If the Stop schema, the sole schema in the
top layer, is activated, the output from the bottom layer (holding the rest of the motor
schemata) will be suppressed by the subsumptive-coordinator. Otherwise, the behavioral
output is a linear summation of the outputs from all active motor schemata in the bottom
layer, coordinated by the cooperative-coordinator. 125

Figure 37: Integration of AIR (Figure 28) into a complete robotic framework. 126

Figure 38: The real robot hardware configuration. 128

Figure 39: The data flow among AIR, HServer, and the robot/sensor. 128

Figure 40: Four images showing objects detected by the OpenCV classifier implemented
within HServer: (a) two baby-dolls, (b) the “Arc Flash and Shock Hazard” warning sign, (c)
the “High Voltage” danger sign, and (c) the “Construction Entrance” sign. 129

Figure 41: The data flow among AIR, HServer, and the emulated robot/sensor in Gazebo.
 130

Figure 42: The data flow among AIR, HServer, and the emulated robot/sensor in USARSim.
 131

Figure 43: The simulated indoor environment used in the first experiment. 135

Figure 44: The average computation time required for the event-matching process with
respect to the number of events in an episode. (See Table 38 in Appendix C for the
numerical values. Also in Appendix C, the constants and the correlation coefficients of the
trendlines are shown in Table 39, and the standard error measurements (too small to display
here) are reported in Table 40.) 137

Figure 45: The difference between the group with the somatic-marker circuital damages
(“Target Group”) and the group without the damage (“Normal Controls”) in terms of their
choices of cards. The vertical error bars indicate the values of standard error measurements.
(Diagram reproduced from [23].) 140

Figure 46: The difference between the group with the somatic-marker circuital damages
(“EVR-Type”) and the group without the damage (“Normal”) in terms of their

 xvii

advantageous choices minus disadvantageous ones. (See Footnote 13 for the descriptions of
other two groups.) The vertical error bars indicate the values of standard error
measurements (Diagram reproduced from [23].) 141

Figure 47: An experimental area used in the somatic marker experiment using a real robot.
 144

Figure 48: The rate of the robot taking advantageous choices (Boxes C and D) with respect
to the number of trials. While there was no substantial distinction between the two
conditions in the beginning, at the end of the trials, the robot with somatic markers was
found to choose advantageous choices. On the other hand, the robot without somatic
markers was found to choose disadvantageous choices. The vertical error bars indicate the
values of standard error measurements. (See Table 43 in Appendix C for the numerical
values.) 148

Figure 49: The average distribution of 20 consecutive box-visits over four box types (A, B,
C, and D) by the robot with somatic markers. The vertical error bars indicate the values of
standard error measurements. (See Table 44 in Appendix C for the numerical values.) 148

Figure 50: The average distribution of 20 consecutive box-visits over four box types (A, B,
C, and D) by the robot without somatic markers. The vertical error bars indicate the values
of standard error measurements. (See Figure 43 in Appendix C for the numerical values.) 149

Figure 51: The difference between the robot with somatic markers and the robot without
them in terms of its advantageous choices minus disadvantageous ones. The vertical error
bars indicate the values of standard error measurements. (See Table 46 in Appendix C for
the numerical values.) 149

Figure 52: The simulated indoor environment used in the first part of the third experiment.
 153

Figure 53: The simulated outdoor environment used in the second part of the third
experiment: (a) a bird’s eye view of the area rendered in USARSim, and (b) the
corresponding map and its dimensions of the area. 157

Figure 54: The destinations and the (ideal) paths for four different episode types: (a) the
target-episode type, (b) the positive-episode type, (c) the negative-episode type, and (d) testing
episodes when successfully detoured. 160

 xviii

Figure 55: Screen captures of USARSim at the four landmark locations: (a) location A
(target), (b) location B (an intermediate point), (c) location C (crater), and (d) the south
center-ally entrance (blocked). 161

Figure 56: The average computation time required for the event-matching process in the
anticipatory experiment with respect to the number of episodes in the memory. When only
five recent episodes were used to compute the anticipatory behavior (limited-history), the
time to compute event matching stayed constantly low. However, when all episodes in the
memory were exploited (full-history), expectedly, the event-matching time increased linearly
with respect to the number of episodes. (See Table 47 in Appendix C for the numerical
values. The standard error measurements (too small to display here) are also reported in
Table 47.) 164

Figure 57: The average path length with respect to the number of episodes in the memory.
The vertical error bars indicate the standard error measurements. The path-length did not
significantly change regardless of how many episodes were used to compute the anticipatory
behavior. The vertical error bars denote the standard error measurements. (See Table 48 in
Appendix C for the numerical values.) 165

Figure 58: The average duration with respect to the number of episodes in the memory.
Overall, as in the path-length graph (Figure 57), the duration did not substantially change
regardless of how many episodes were used to compute the anticipatory behavior. The only
instance when a considerable difference was recorded was at the last trial for the full-history
case. The vertical error bars indicate the standard error measurements. (See Table 49 in
Appendix C for the numerical values.) 165

Figure 59: The number of successful runs (out of 12) with respect to the three experimental
conditions (Table 36). In all three conditions, the robot at half speed performed better than
the robot at full speed. Regardless of its speed, the robot in Condition I (three episodes in
the memory) performed better than the other two conditions (9 out of 12 for the full-speed
robot and 11 out of 12 for the half-speed robot). In Condition II (five episodes in the
memory), when the robot was at full speed, the number of the success runs became
substantially small (2 out of 12) while, for the half-speed robot, the number of the successful
runs was still high (9 out of 12). In Condition III, the robot performed worst among the
three conditions (0 out of 12 for the full-speed robot and 4 out of 12 for the half-speed
robot). 166

Figure 60: The time to reach the goal location (duration) in successful runs. As expected,
when the robot was driven at half speed, the duration was taken longer. The vertical error
bars indicate the standard error measurements. (See Table 51 in Appendix C for the
numerical values.) 167

 xix

Figure 61: The average computation time required for event matching and the average event-
sampling interval in the improvisational experiment with respect to the number of episodes
in the memory. Regardless of the robot’s speed, the average event-matching time was found
to exceed the average sampling interval of the training episodes. The vertical error bars
indicate the standard error measurements. (See Table 50 in Appendix C for the numerical
values.) 168

Figure 62: The difference between the successful and unsuccessful runs of the full-speed
robot in terms of the excessive event-matching time. When the time to compute the event-
matching process exceeded the average event-sampling interval of the episodes in the
memory, the performance was found to be overwhelmingly poor. (See Table 52 in Appendix
C for the numerical values.) 169

Figure 63: The probability mass function for the Poisson distribution (cf. Figure 26). 172

 xx

LIST OF BOXED EXAMPLES

Page

Box 1: A simple example of event sampling. 64

Box 2: An example of constructing a referent. 73

Box 3: An example of computing similarity values. 76

Box 4: An example of computing relevance of episodes. 79

Box 5: An example of the posterior probability computation. 81

Box 6: An example of the motion model computation. 83

Box 7: An example of event matching. 86

Box 8: An example of restricting relevant episodes based on entropy. 87

Box 9: An example of the utility computation. 89

Box 10: An example of selecting the optimal behavior. 90

Box 11: An example of validation. 93

Box 12: An example of selecting a primary referent. 94

Box 13: An example of selecting an intermediate goal. 96

Box 14: An example of selecting a current goal. 99

Box 15: An example of computing the predicted observation. 101

Box 16: An example of computing the current reward value. 103

 xxi

LIST OF SYMBOLS AND ABBREVIATIONS

b behavior

b
*
 optimal behavior

b
τ
 a sequence of executed behaviors up to instance τ

C a set of all episodes in the robot’s memory

dj:q the distance between event ej and event eq in terms of event numbers

d the average number of events being advanced in one computational cycle

E effector

E episode

EP episode formed via purposive contextualization

EU episode formed via utilitarian contextualization

e event

eq querying event

][
ˆ

Ee the matched event in E

g goal

gcur current goal

gint intermediate goal

H entropy

K the upper limit for the size of Mrel

M model

Mrel a set of relevant episodes being recalled

relM̂ a subset of Mrel whose events are legitimately matched

m the number of integrated sensor types

 xxii

n the number of events in an episode

O the asymptotic upper bound of computational complexity

o observation (perception)

ocur current observation

oend nodal effect

oinit nodal precondition

o[e] the observation signal in event e

oτ observation at instance τ

o
τ
 a sequence of observations up to instance τ

o′ predicted observation

r reward signal

rcur current reward

S object system

T timestamp

U utility

w weight

z sensor reading

z′ predicted sensor reading

α the learning rate in TD learning

β the number of instantiated motor schemata in b

∆
E
 the amount of delay in the current event progress

εm very small number

η the normalization factor in the recursive Bayesian filter

θH a threshold for selecting relevant episodes

 xxiii

θ zenith angle

∆θ a threshold for validating the event progress

θρ a threshold for selecting relevant episodes

ι associative rewarding state

κg a factor in the reward function weighting the similarity between ocur and gcur

κm a factor weighting the output of the transition model when behaviors mismatch

κo a factor in the reward function weighting the similarity between ocur and o′

κU a factor in utility computation weighting the influence of other events

κι a factor in the reward function weighting similarity between ocur and ι

λ the eligibility trace in TD learning

П a set of all possible motivations

π motivation

ρ
E
 similarity value

σ motor schema

ϕ azimuth angle

χ episodic context

ψ motivational magnitude

Ω referent

Ω* primary referent

ω referent node

ω* active referent node

2D two-dimensional

3D three-dimensional

AAAI association for the advancement of artificial intelligence

 xxiv

ABC anticipatory behavioral control

ACS anticipatory classifier system

AI artificial intelligence

AIR anticipatory-improvisational robot

ANOVA analysis of variance

AuRA autonomous robot architecture

CA1 cornu ammonis 1

CA3 cornu ammonis 3

CAIT computer-animated improvisational theater

CASYS computing anticipatory systems

CBR case-based reasoning

CPU central processing unit

CYRUS computerized Yale retrieval and updating system

EC entorhinal cortex

E-MOP episodic memory organization packet

GHz gigahertz

GPS global positioning system

HMM hidden Markov model

HRI human-robot interaction

HServer hardware server

IEEE institute of electrical and electronics engineers

IT information technology

JIG jazz improvisation generator

MDP Markov decision process

MHz megahertz

 xxv

MOP memory organization packet

MRI magnetic resonance imaging

NIST national institute of standards and technology

POMDP partially observable Markov decision process

PSR predictive state representation

RMS root mean square

RS reactive schema

SALT strategic arms limitation treaty

SLAM simultaneous localization and mapping

STRIPS Stanford research institute problem solver

TD temporal difference

TEC theory of event coding

URL uniform resource locator

USARSim unified system for automation and robot simulation

 xxvi

SUMMARY

Recently in robotics, substantial efforts have been invested on critical applications

such as military, nursing, and search-and-rescue. These applications are critical in a sense that

the robots may directly deal with human lives in life-or-death situations, and they are

therefore required to make highly intelligent decisions as rapidly as possible. The intelligence

we are looking for in this type of situations is proactiveness: the ability to anticipate and

improvise.

Anticipation here means that the robot can assess the current situation, predict the

future consequence of the situation, and execute an action to have desired outcome based on

the determined assessment and prediction. On the other hand, improvisation is performed

when the consequence of the situation is not fully known. In other words, it is the ability to

deal with a novel situation based on knowledge or skill being acquired before.

In this dissertation, we introduce a biologically inspired computational model of

proactive intelligent behavior for robots. Integrating multiple levels of machine learning

techniques such as temporal difference learning, instance-based learning, and partially

observable Markov decision process, aggregated episodic memories are processed in order to

accomplish anticipation as well as improvisation. How this model can be implemented

within a software architectural framework and integrated into a physically realized robotic

system is also explained. The experimental results using a real robot and high fidelity 3D

simulators are then presented in order to help us understand how extended experience of a

robot influences its ability to behave proactively.

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

1.1.1 Anticipation

“If there is any way to do it wrong, he’ll find it”; in 1949, an engineer working on the

USAF MX981 Project cursed at a technician after discovering his wrong wiring in their

mechanical sled, according to United States Air Force historian Ted Bear [22]. The engineer

was Capt. Edward A. Murphy. Bear further reports that, by using the sled, the team was

investigating the effect of massive force applied on a human body during abrupt braking.

Despite the dangerous nature of the project, by constantly reminding themselves about Capt.

Murphy’s curse, the team was able to complete the project successfully without a major

accident. This curse is known today as Murphy’s Law: anything that can go wrong will go wrong [1].

The moral of this story is not so much about the pessimism, but it is about

anticipation. Anticipation is to foresee and deal with in advance [1]. The success of MX981 was due

to the team’s ability to anticipate: assessing the current situation, predicting the future

consequence of the situation, and executing an action to have a desired outcome based on

the assessment and prediction.

Anticipation is also a key to the intelligence of robots. To clarify, the robot here refers

to a self-contained autonomous mobile robot that is capable of making its own decisions in

order to achieve an overall goal that has been assigned to it. It is true that robots today do

not yet play a major role in our daily life. However, they are being viewed as the latest

technology that could provide convenience to our lives. Like washing machines,

automobiles, microwaves, personal computers, and cellular phones, if robots become

 2

affordable to consumers, they should be soon working in our living space. As a starter, over

two million vacuum cleaning robots, Roomba from iRobot, have been already sold

worldwide [47]. As robots start working together with humans, it is unavoidable that some

of them would occasionally have to make crucial decisions that affect the safety of people

(e.g., in nursing, passenger transportation, search-and-rescue, etc.). As we learned from Capt.

Murphy’s case, the ability to anticipate is indeed vital in these types of situations.

Since Pavlov [125] conducted a study on classical conditioning (animals’ anticipatory

physiological response to certain environmental stimuli) more than a hundred years ago,

animals’ ability to anticipate has fascinated countless researchers. An annual conference

called Computing Anticipatory Systems or CASYS has been discussing the topic of anticipation

exclusively for more than a decade. It has attracted researchers from a variety of fields such

as biology, psychology, physiology, engineering, artificial intelligence, robotics, economy, and

music. The European Commission has recently funded a three-year research project (Mind

RACES: from Reactive to Anticipatory Cognitive Embodied Systems [56]) to investigate the role of

anticipation in cognition; some of the results were presented at the AAAI Fall Symposium on

Anticipatory Cognitive Embodied Systems in 2005. (Note that our paper [53], which introduced

the basic framework of our computational model described in Chapter 3, was also published

in this conference.) There is also a workshop called Anticipatory Behavior in Adaptive Learning

Systems or ABiALS, in which the behavioral aspect of anticipation is discussed annually. In

other words, there is a substantially large community interested in anticipation today.

Why are these researchers interested in anticipation? From a scientific point of view,

not only is it a fascinating task to uncover the underlying principle of how an animal’s

prescience shapes its behavior, it also seems to have been understood as a key to explain why

we behave the way we behave. From an engineering point of view, developing systems that

 3

incorporate such a principle seems to be considered useful to advance our everyday lives.

More specifically, Rosen [143], one of the most prominent researchers in anticipatory

systems, described that “an anticipatory behavior is one in which a change of state in the

present occurs as a function of some predicted future state,” and “the agency through which

the prediction is made must be, in the broadest sense, a model.” For example, suppose that a

GPS navigation system is currently instructing a driver to continue the current road,

Peachtree Street, for another 200 meters and make a left turn at North Avenue; the final

destination is the Georgia Tech campus. In this case, turning to the left (at North Avenue) can

be considered an anticipatory behavior if we view the route specified in a map as a model

and the Georgia Tech campus as a predicted future state. In other words, the change of state

(from Peachtree Street to North Avenue) occurs in response to the future state (the Georgia

Tech campus). Furthermore, if the driver takes a certain preparatory action for the left turn

before even seeing North Avenue (e.g., starting the left blinker, changing the lane to the

leftmost one, slowing down the speed, etc.), this can be also considered an anticipatory

behavior; the predicted future state is, in this case, North Avenue, and the model is a

sequence of actions developed from the driver’s own experience. Note that our

computational model developed in this dissertation (Chapter 3) deals with this experience-

based anticipation. Experience-based anticipation also allows the driver to print out a paper

copy of the route (from Google Maps, MapQuest, etc.) before starting the trip just in case

the GPS signal becomes disrupted (as it perhaps did before).

Instead of reacting to an ongoing event, by starting to respond to an event that has

not yet happened, anticipation provides us with more time to prepare for that event.

Naturally, such a response should be more advantageous than simply reacting as it could

save time to complete the overall task and/or yield a more advantageous outcome.

 4

Furthermore, the advantage of experience-based anticipation is that, unlike map-based

anticipation, it can handle non-navigational behaviors (e.g., turning on a blinker, printing out

a route, etc.). Hence, if it is appropriately applied, a robot with experience-based anticipation

can effectively complete tasks that are typically beyond the scope of the conventional

navigational domain.

For example, suppose that an experience-based anticipatory robot is working in a

restaurant as a server, and a regular customer just came in. Based on the previous

interactions with the customer, the robot can prepare the customer’s favorite beverage even

before he/she is seated. Thus, the customer would not have to wait for the drink to arrive,

and the robot can save an extra trip to take the drink order. Similarly, based on the

experience in the past, an elderly assistance robot at home can prepare the elder’s favorite

breakfast before he/she wakes up, bring a daily newspaper to the table before he/she

arrives, turn on his/her favorite TV show before he/she starts walking towards the living

room, and so on. Furthermore, to find survivors in a collapsed building, a search-and-rescue

robot can start inspecting the part of the rubble where survivors are most likely buried based

on the similar experience in the past.

It should be also noted that experience-based anticipation is applicable to non-

robotic intelligent systems as well. For example, a company printer may automatically send

an email to the IT department before running out the paper, so that it can be restocked

before inconveniencing the users. Similarly, an inventory system in a retail store may

automatically order merchandises from factories before they become out of stock. A similar

concept can be also applied to a much larger system. For example, if a severe heat wave is

forecasted in a city, a local power company may automatically request regional or even

distant power plants to increase their capacities before an electrical power outage occurs in

 5

the city (i.e., a “smart grid” [106]).

1.1.2 Improvisation

Another important issue in terms of robots dealing with the real world is the

question of what they should do if their anticipation fails. On April 13, 1970, one of two

oxygen tanks exploded when the Apollo 13 spacecraft was on its way to the moon. The

mission to land on the moon was aborted, and all of the three crewmembers had to evacuate

into the cockpit of the lunar module at that time. The lunar module was primarily designed

to land on the lunar surface, but what the NASA engineers did not anticipate was to use the

lunar module as a lifeboat when only half of the oxygen in the spacecraft was available. The

crew was facing CO2 poisoning in the cockpit. Nevertheless, the NASA engineers were able

to save the lives of the crew by coming up with an improvised solution; an ad-hoc air

purifier was constructed using materials available in the spacecraft (oversized lithium

hydroxide canisters, duct tape, cardboard paper taken out from a manual, and plastic sheet

removed from thermal undergarments) [103]. Improvisation, which is to make, invent, or arrange

offhand [1], is also crucial to the intelligence of robots perhaps especially when their

anticipation fails.

More specifically, anticipation is useful for a robot when it is performing some

routine task; a model developed though the experience in the past can be thus

straightforwardly utilized to suggest appropriate current actions. On the other hand,

improvisation becomes useful when the robot is in a situation that is not fully covered by the

model (i.e., outside the normal routines). Even with this incomplete knowledge, however,

improvisation allows the robot to come up with a solution, so that it can still complete the

original task without substantial delay. Note that improvisation is different from

planning/re-planning. As noted by Agre [4], planning is performed when the information

 6

regarding the world is already known; on the other hand, improvisation is performed when

the characteristics of the world are not necessarily fully understood. For example, recall the

GPS-based navigation scenario in the previous section. Suppose that Peachtree Street is

totally blocked. Based on the latest traffic update, the GPS device may automatically reroute

the path to detour around Peachtree Street. This rerouting is, however, not an example of

improvisation. It is an example of re-planning, or it can be considered a form of anticipation

since the model still had a complete knowledge (map) of the world to suggest how to reach

the predicted future state (the Georgia Tech campus). On the other hand, suppose that

Peachtree Street is again totally blocked, the GPS signal is now disrupted, and the paper

copy of the route only shows the original path (via Peachtree Street). Suppose also that the

driver knew the pencil-shaped tallest building in the midtown is the Bank of America Plaza

located on North Avenue. Without taking Peachtree Street, if the driver could reach North

Avenue by constantly steering the car towards this tallest building and, from there, arrive at

the Georgia Tech campus by referring to the paper copy of the route, the driver is

considered to have performed improvisation. Note that our computational model developed

in this dissertation (Chapter 3) also deals with improvisation. Furthermore, similar to

experience-based anticipation, improvisational behavior is determined based on the

knowledge of the world developed from the robot’s own experience (i.e., experience-based

improvisation).

Improvisation is thus important for a robot because it enables the robot to solve a

time-sensitive problem without complete knowledge of the world. Experience-based

improvisation is important for a robot because, like experience-based anticipation, the tasks

it can perform are not limited to just navigation. For example, in case of the server robot in a

restaurant, suppose that the robot is serving a table with a group of four. Suppose also that a

 7

friend of the group just walked into the restaurant and decided to join the group even

though the table can seat only four. Based on the experience of rearranging tables in the

past, the robot with experience-based improvisation should be able to bring a nearby empty

chair to accommodate this fifth person. In the case of elderly assistance, if the elder

expresses an excruciating pain in his/her stomach while watching TV, the experience-based

improvisational robot should be able to call a doctor (or alarm neighbors) just as it did when,

for example, the same or another elder had a severe chest pain previously. Similarly, if the

search-and-rescue robot found itself stuck between obstacles, it should be able to

automatically call for assistance from a human rescue worker or another rescue robot (or

even disassemble its own body part that is responsible for its being stuck).

Furthermore, as in experience-based anticipation, experience-based improvisation is

also applicable to non-robotic intelligent systems. In case of the office printer, suppose that

the printer found itself being out of commission due to jammed paper. Experience-based

improvisation allows the printer to forward the unfinished print queue to a nearby printer

automatically, so that it can be printed regardless without delay. Similarly, suppose that a web

server is experiencing severe overload after, for instance, its managed hostname appeared on

several popular online newspapers or diaries (blogs). Via experience-based improvisation, the

server should automatically be able to transfer the web contents to some high-end server,

request temporary web hosting, and pay a fee to the host if applicable. In case of an

inventory system with an automatic restocking (anticipatory) capability, if a certain brand of

merchandise was found to be discontinued, based on past experience, the system should

place an order for a similar product for a different brand automatically.

1.1.3 From Experience to Proactive Behavior

As mentioned above, anticipation is for acting advantageously in familiar (routine)

 8

situations whereas improvisation is for dealing with novel situations. While it is certainly

useful to have a robot that is capable of exploiting both means, the question is how to realize

such a robot. In other words, how can we make a robot behave proactively, that is, to act in

an anticipatory and/or improvisational manner? In this research, we seek clues from how

our own brains work. Like a human infant, a brand-new robot, unwrapped from a shipping

box, may not be ready yet to perform anticipation or improvisation. However, after having

interactions with the real world for a certain period of time, we conjecture that the robot

should eventually be able to figure out how to anticipate and/or improvise by reasoning

about the current situation based on relevant episodes1 that it has experienced in the past.

Naturally, in order for the robot to recall relevant episodes, they have to be stored in some

form of memory. In particular, we are interested in an episodic memory, a form of memory that

contains information associated with a particular episode of experience, and it is stored in a

way that the episode can be traced back and recalled later in time [184]. Given a sufficient

framework to process a current episode of experience, store it in an episodic memory, and

recall and utilize relevant past episodes for an ongoing situation, our primary hypothesis is

that long exposure to the real world and interactions with it should help a robot improve its

ability to anticipate. In other words, it provides better assessments of the current situation,

formulates better predictions of the future consequences of the situation, and executes better

actions based on the assessment and prediction. Furthermore, even if anticipation fails, the

accumulated experiences should also help the robot perform a better improvisation. Of

course, at first, we would have to identify what common denominator the processes of

1 Here, episode is loosely defined as an event that is distinctive and separate although part of a larger series [1]. This will be
further elaborated in Chapters 2 and 3.

 9

anticipation and improvisation share in terms of recollection and exploitation of past

experience. Nevertheless, our main objective in this research is to study how the lifelong

experience of a robot influences its ability to anticipate as well as the way it improvises its

actions. We pay special attention to episodic memory, since we view that it is an essential

mediator between experience and such intelligent behavior.

In order for a robot to encode a current episode of experience in an episodic

memory, we would first need to determine what information should be extracted and be

remembered in order for it to be utilized for anticipation and improvisation in the future.

One of the factors that have to be considered is its storage space. In jazz music, for example,

there seems to be “a lifetime of preparation and knowledge behind every idea that an

improviser performs” [26]. When robots become part of our daily life in the future, they

could be activated for an extended period (perhaps for years). Accordingly, the volume of

information a robot goes through in its lifetime would be massive. On the other hand, the

amount of information the robot can store is always limited because of hardware constraints

(e.g., capacity of a memory chip, physical space available for installing memory chips, etc.).

Thus, the information to be extracted from a current episode of experience should be very

small while it still retains knowledge that is essential for future anticipation/improvisation.

Moreover, in addition to what to store, we also need to consider how to store, recall,

and utilize episodes since it would likely affect the search time upon

anticipation/improvisation. For example, in order to recall relevant episodes promptly for a

current situation, how should past episodes be organized in the memory of a robot? Should

similar episodes be grouped together? If so, what does it mean for episodes to be similar?

Would it mean to have a similar goal or a similar outcome? Integration of emotion and/or

motivation could also be exploited in this context. In our brains, for example, the

 10

information being extracted from an episode of experience appears to be labeled with an

emotionally induced marker (referred to as a somatic marker) upon storage, and such markers

seem to help us make advantageous decisions [45]. Of course, the obvious question is

whether this model can or should be applied to a robot. Thus, whether a somatic marker

could help a robot achieve better anticipation and/or improvisation is also examined in this

research.

Finally, whether using a somatic marker or not, one particular scheme of recollection

and exploitation of episodic memories would likely produce faster anticipation and/or

improvisation than other schemes. In this case, however, it is possible to compromise the

quality of the anticipation/improvisation by rushing into a quick solution. Thus, the possible

trade-off between promptness and quality of anticipation/improvisation is also explored in

this research.

1.2 Research Questions

The research problems discussed in the previous section are here restated as the

primary research question and the subsidiary questions of this dissertation. Our research is

carried out in a way that it can help us determine these questions.

1.2.1 Primary Research Question

How does lifelong experience of a robot influence its ability to anticipate as well as the way it

improvises its actions?

In other words, this research seeks to determine how extended experience of a robot

affects its ability to behave proactively. In this dissertation, this primary research question is

investigated by exploring a series of subsidiary questions presented below.

 11

1.2.2 Subsidiary Questions

To help address the issues posed by the primary research question, the following five

subsidiary questions are forwarded. This research is carried out in a way that it leads to

answers to these questions.

Subsidiary Question 1

What common denominator do the processes of anticipation and improvisation for a robot share in

terms of recollection and exploitation of past experience?

An assumption here is that the processes of computing anticipation and

improvisation do share certain commonalities. In this research, we seek to identify

specifically what these are. In particular, this issue is addressed in our computational model

of proactive intelligent behavior for robots (Chapter 3), in which the algorithmic processes

involved in computation of both anticipation and improvisation are explained.

Subsidiary Question 2

What information should a robot extract from a current episode of experience to be remembered in

order for it to be utilized upon anticipation and improvisation in the future?

To compute proactive behavior for a robot, we are interested in utilizing episodic

memory that stores a particular episode of experience, which can be later retrieved and

recounted in accordance with how it unfolded [184, 185]. This question is posed to identify

exactly what should be stored in an episodic memory. This question is first explored in the

literature review in Chapter 2 (Section 2.1.1) in which related work on episodic memory is

examined. It is further addressed in our computational model (Chapter 3) in which the role

of episodic memory in computing proactive behavior is discussed.

 12

Subsidiary Question 3

How should past episodes of experience be organized in the memory of a robot in order for them to

be utilized upon anticipation and improvisation?

While the previous question addresses what information should be stored in episodic

memory, this question addresses how it should be stored. We are interested in the

organizational structure of the memory. In the literature review, after examining related work

on episodic memory (Section 2.1.1), existing memory-based problem-solving techniques

(case-based reasoning and instance-based learning) and their memory structures are

discussed (Sections 2.4.2 and 2.4.3). This question is further addressed in our computational

model (Chapter 3) into which episodic memory is incorporated as its foundational data

structure. The efficiency of this data structure is examined in one of the experiments in

Chapter 5 (Section 5.1).

Subsidiary Question 4

Does a memory with integrated somatic markers help a robot achieve better anticipation and/or

improvisation than without them?

As mentioned above, the human brain, there seems to be a certain neural mechanism

to integrate emotionally induced signals into episodic memories [45]. We hypothesize that

the notion of somatic markers indeed helps compute better proactive behavior. In this

research, the concept of somatic markers is first examined in the related literature review in

Chapter 2 (Section 2.1.2). The role of somatic markers in terms of proactive behavior

computation is then discussed in our computational model (Chapter 3), in which a model of

somatic markers is integrated into the foundational data structure. Finally, the effectiveness

of somatic markers in terms of proactive behavior computation is examined in Chapter 5

(Section 5.2).

 13

Subsidiary Question 5

What is the trade-off between promptness and the quality of anticipation/improvisation that a robot

performs?

While the previous questions attempt to uncover the constitution of the mechanism

that allows transformation of extended experience of a robot into its proactive behavior, this

question seeks to determine the characteristics of the behavior produced by the mechanism.

In particular, the relationship between promptness of the proactive behavior computation

and the quality of the behavior is examined in Chapter 5 (Section 5.3).

1.3 Contributions

As noted above, by exploring the primary research question, this research helps us

understand the nature of the relationship between the extended experience of a robot and its

ability to anticipate as well as improvise. In particular, the computational model of proactive

intelligent behavior for robots presented in Chapter 3 unveils the commonalities between the

processes of anticipation and improvisation (Subsidiary Question 1), identifies what and how

information should be stored in episodic memories (Subsidiary Questions 2 and 3), and

clarifies the role of somatic markers (Subsidiary Question 4). Furthermore, the experiments

in Chapter 5 elucidate the characteristics of proactive behavior with respect to the

organizational structure of the episodic memory (Subsidiary Question 3), somatic markers

(Subsidiary Question 4), and the promptness of computing (Subsidiary Question 5).

In addition, other specific contributions include:

• A computational model of proactive intelligent behavior for robots (Chapter 3).

• An experimental result verifying the computational model (Chapter 5).

• An efficient world representation that reduces the POMDP (partially observable Markov

 14

decision process) computation load (Section 3.1).

• A robotic system capable of performing proactive navigational tasks without pose

sensors (Chapter 5).

• The first robotic implementation of the new hippocampal hypothesis by Eichenbaum et

al. [51] (Section 3.1).

• A novel evaluation method for robotic somatic markers (Section 5.2).

• A novel robotic system that performs practical (non-artistic) improvisation (Section 5.3).

• A novel way to hybridize CBR (case-based reasoning) and POMDP (Section 3.2).

These are all further elaborated in Chapter 6 (Section 6.2).

1.4 Dissertation Overview

This dissertation is comprised of six chapters. Background and related research are

first reviewed in Chapter 2. In particular, relevant work in the biological sciences, studies on

anticipation and improvisation, and relevant machine learning techniques are reviewed. The

main thesis of this dissertation, a computational model of proactive intelligent behavior for

robots, is introduced in Chapter 3. The implementation and evaluation of the computational

model are then described in Chapters 4 and 5, respectively. Finally, conclusions and future

work are discussed in Chapter 6.

 15

CHAPTER 2

BACKGROUND AND RELATED WORK

This dissertation appertains to a variety of academic disciplines. Those researches

that are relevant to the main computational model, described in Chapter 3, are reviewed in

this chapter. At first, inspirational research in the field of biology that serves as the

foundation of this computational model is discussed. The second and third sections examine

related work on anticipatory and improvisational robots, respectively. Relevant machine

learning techniques that are employed or mentioned in Chapter 3 are also reviewed at the

final section of this chapter.

2.1 Biological Perspectives

The main computational model of this dissertation was inspired by how a

mammalian brain works. The biological findings that became foundation of this model are

reviewed in this section. In particular, the studies related to episodic memories, hippocampal

functions, and the somatic marker hypothesis are discussed.

2.1.1 Episodic Memory and Hippocampal Functions

As discussed in Chapter 1, the primary goal of this dissertation is to understand how

extended experience of a robot affects its ability to behave proactively. Hence, we pay special

attention to episodic memory as it is expected to provide a robot with a means to store its

experience. More specifically, the term “episodic memory” was first coined by Tulving [184]

to describe a type of memory storing one’s firsthand experience. This memory may retain

spatial or non-spatial cues [141]. For example, a distance to a coffee mug can be a spatial cue

while an aroma of coffee can be a non-spatial one. Once stored in memory, the information

 16

can be subsequently retrieved, and the experience can be recounted in accordance with how

it actually proceeded [185]. This property can be then utilized to assess the current situation

and anticipate what may happen next [197].

Attributing to Tulving’s work [184], episodic memory is often contrasted with

semantic memory. While both are considered declarative memory [50], which is the type of

memory that allows recollection of “everyday facts and events” [48], semantic memory refers

to the type of memory retaining general knowledge of the world, stored independently from

the animal’s experience (e.g., “Tokyo is the capital of Japan”, etc.).

HippocampusHippocampus

Figure 1: The hippocampus in a human brain.

It is commonly acknowledged that formation of episodic memories is primarily

carried out by the hippocampus [161, 165, 200], an element that exists in the interior of a

mammalian brain (Figure 1). Each mammalian brain holds a pair of hippocampi (left and

right) in its medial temporal lobe. The shape of the human hippocampus resembles a

 17

seahorse, after which this part of the brain was named. Hippocampi have been studied by

numerous researchers due to their distinctive functions associated with memory and spatial

navigation. In addition, it is also speculated that this part of the brain is responsible for

detecting novelty in arriving sensory information.

Memory Function

Our main computational model presented in Chapter 3 deals with formation of

episodic memories inspired by how the mammalian hippocampi accomplish this process.

One of the most notable studies on the hippocampal memory function was conducted by

Scoville and Milner [156] on patient H. M., whose hippocampal formation and its

surroundings were mostly removed by a surgical procedure in order to treat his chronic

neurological disorder. The removal of the region resulted in H. M.’s inability to convert

short-term memory into long-term memory. In addition, H. M. lost two years’ worth of the

memory prior to his surgery. In other words, even though his old memories acquired before

two-year prior to the surgery were intact, and he was able to form a new memory for a brief

moment (due to functional short-term memory), H. M. was no longer able to remember any

of interactions with the world since the removal of the hippocampal region. Hence,

attributable to Scoville and Milner’s work on H. M. and subsequent studies including scans

of monkeys’ brains using MRI [166], the hippocampus is widely regarded as a region that

converts short-term memory into long-term memory as well as aiding the recall of episodic

memories.

Cognitive Map

Another recognized functionality of the hippocampus is regarding spatial navigation.

For example, London taxi drivers, who routinely endure extensive navigational tasks, were

 18

found to possess significantly larger posterior hippocampi than average people [105]. A

seminal study on the hippocampal role on navigation was conducted by O’Keefe and Nadel

[123], who discovered that certain cells in a rat’s hippocampus excite whenever the animal is

in a familiar environment. The discovery of these cells, known as place cells, has led O’Keefe

and Nadel to speculate that a cognitive map is constructed in a hippocampus. Cognitive map is

a term first coined by Tolman [180] who claimed that animals are capable of remembering

spatial information of the environment regardless of the presence of a reinforcer (e.g., food).

Tolman’s view was controversial at that time as it challenged the en vogue school of

psychology (behaviorists) attempting to understand animal behaviors only through the

connections between stimuli and responses, rejecting any internal representation such as a

“map” [27]. While Tolman did not elaborate how a cognitive map is constructed in an

animal’s brain (except to say that some “nervous system” in the brain had to be responsible

for it [180]), O’Keefe and Nadel [123] conjectured that a cognitive map is expressed in a

two-dimensional Euclidean space. To examine their supposition, a computational model has

been developed by Burgess et al. (including O’Keefe himself) [34]. In this model, one of the

most prominent components is a path-integrator. In other words, a dead-reckoning

mechanism is employed in order to convert the egocentric view that an animal perceives into

the unified two-dimensional (geocentric) framework with which the cognitive map

supposedly works. Burgess et al. [36] further hypothesized that, between the two hippocampi

in a human brain, the right hippocampus in particular could be dealing with the processing

of geocentric spatial information. Many other researchers have also proposed hippocampal

computational models that utilize path-integration (e.g., [66, 111, 138, 139, 144, 160]), and

some have even tested it on real mobile robots successfully [35, 114]. A few of the models

[60, 140] were shown to solve the Morris water-maze problem. Here, the Morris water-maze

 19

problem [117] is a type of experiment in which an animal (typically a rat) released in an

opaque water pool attempts to arrive at a target platform hidden under the water. Although

the target is invisible from the animal’s view above the surface, if suitably trained, the animal

can find the goal faster than untrained ones. The hippocampus is indeed considered

responsible for dealing with such a task [118]. According to the experiment with real rats [61,

73], the place cells of those animals do fire actively when they reach the underwater target.

Note that Endo and Arkin [54] has also developed a computational model of a

hippocampally-inspired cognitive map, in which the SLAM (simultaneous localization and

mapping) aspect of the computation was investigated. This computational model is a

precursor to the main computational model presented in Chapter 3. Note that our

computational models do not convert the egocentric view that a robot perceives into a two-

dimensional geocentric map because they are founded on an alternative hypothesis that

rejects the notion of a two-dimensional geocentric cognitive map. The details of this

alternative hypothesis, viewing the hippocampus as where the spatial information is

represented in term of discrete episodic memories, are explained in the next subsection.

Memory Space

As discussed above, many have hypothesized that the hippocampus is able to

construct two-dimensional geocentric cognitive maps. However, this premise has been

challenged by several scientists who further studied the hippocampi of rats [121]. For

example, while O’Keefe [122] attested that the sole function of a rat’s hippocampus has

everything to do with “processing and storage of spatial information,” the experiment by

Bunsey and Eichenbaum [33] showed that the hippocampus also responds to non-spatial

cues such as odor. Eichenbaum and his colleagues [49, 51, 158] further argued that the

hippocampus does not project spatial information in an unified world framework. Instead,

 20

they proposed that it constructs a “memory space” where the spatial information is

represented in term of discrete episodic memories, which are further interconnected to each

other. Our main computational model presented in Chapter 3 is founded upon this notion

of data structure where an episodic memory is considered “a sequence of event representations,

with each event characterized by a particular combination of spatial and nonspatial stimuli

and behavioral actions” [51]. Incidentally, this concept of event is in accordance with the

theory of event coding (TEC) proposed by cognitive psychologists Hommel et al. [74].

According to TEC, when perceptual information is stored in the memory, corresponding

behavioral information is also integrated into the framework, forming a joint representation.

Such a representational structure, according to the theory, facilitates the animal to behave in

an anticipatory fashion. Indeed, in our computational model of proactive intelligent behavior

for robots (Chapter 3), this representation of event that encapsulates both perception and

behavior is considered one of the constituents of an episode, which is utilized to compute

anticipatory (as well as improvisational) behavior.

To examine the notion of hippocampus constructing a “memory space”, Wood et al.

[198] conducted a T-maze experiment using rats in which the hippocampal activities of the

rats were monitored through attached electrodes. There, the firing patterns were found to

correlate more with the context of episodes (e.g., whether to turn left or right at the

junction) than with the geographical location itself, contradicting the assertion of the other

hippocampal school of thought that a “self” position is localized relative to a 2D

geographical map. Furthermore, based on an experiment using rats with hippocampal

lesions, Fortin et al. [58] concluded that the hippocampus indeed plays a crucial role in

forming an episodic memory comprised of a sequence of events.

 21

Novelty Detection

Novelty detection is also a prominent function that the hippocampus seems to

possess [50], and it is also one of the functionalities implemented in our computational

model of proactive intelligent behavior for robots (Chapter 3). For example, monkeys with

hippocampal lesions were found not to be able to distinguish between a familiar object and a

novel object when presented sequentially with a fixed delay [165]. Similar conclusions have

been also drawn from experiments using rats [75] and humans [131, 187].

Exactly which component of hippocampus is responsible for detecting novelty in the

sensory information is still debated among scientists even though it is generally agreed that

areas CA1 and CA3 (Figure 2) bear such a responsibility [68]. For example, some researchers

[69, 119] hypothesized that CA1 acts in the role of a comparator. More specifically, based on

a recalled memory arrived from CA3, in CA1, the current sensory signals are predicted and

compared against the actual signals arrived from the entorhinal cortex (Figure 3). On the

other hand, other researchers [97, 192] suggested that such a comparator is in fact

implemented in CA3. It should be noted that, while the empirical data collected from rat

experiments [59] suggest that recollection of past experience is administered largely by the

hippocampus, for humans, other regions in the brain such as the frontal and parietal lobes

are also believed to be involved in the memory recollection process [37, 186]. When human

infants deal with novel situations, it has been speculated that amygdalae play a significant

role as well [155].

 22

Hippocampus

Entorhinal Entorhinal

CortexCortex

CA1CA1

CA3CA3

Dentate Dentate

GyrusGyrus
Hippocampus

Entorhinal Entorhinal

CortexCortex

CA1CA1

CA3CA3

Dentate Dentate

GyrusGyrus

Figure 2: A rat brain (upper right) and the cross-section of the hippocampus with its subdivisions
(lower left). (Diagram reproduced from [188] and [123].)

 (a)

CA1CA1CA1CA1

(b)

Figure 3: Hippocampal area CA1 as a comparator: (a) Hasselmo’s model, (b) a simplified diagram of
the same concept. A mismatch between expected signals from hippocampus area CA3 and the present
sensory information from the entorhinal cortex (EC) is detected at CA1. (Diagram reproduced from
[69] and [119].)

 23

Regardless of whether such a comparator exists in CA1 or CA3, the concept of

comparing the actual sensory signals and expected signals produced from recalled memory

has been studied for several decades. For example, Held [71] proposed that, when an animal

attempts to make an action, the actual sensory signals induced by the self-movement

(referred to as re-afferent signals, first coined by von Holst [194]) are compared against the

predicted ones, which are internally produced based on previous experiences (Figure 4). In

other words, consequences of the animal’s self-movements are constantly predicted and

compared against the actual sensory signals, and the result of the comparison is regarded as

“perception”. Tolman [181] referred to this concept as “means-end-expectation” or “sign-

gestalt-expectation”.

Figure 4: Perception of a self-induced movement proposed by Held
[71]. (Diagram reproduced from [71].)

2.1.2 The Somatic Marker Hypothesis

As discussed in Chapter 1, in order to understand the nature of the relationship

between extended experience of the robot and its ability to attain proactive behavior, one of

the subsidiary research questions was set up to determine whether somatic markers can help a

robot towards this goal. The somatic marker hypothesis, proposed by Damasio [45],

 24

describes the role of emotion on decision-making. When an animal (mammal) interacts with

the world, emotional cues in the environment (e.g., loud noise, snake, fearful facial

expression, etc.) are discerned by amygdalae [3, 95, 96, 199], elements in the medial temporal

lobe that reside adjacent to hippocampi (Figure 5). Damasio [45] conjectured that some of

the responses triggered by emotional cues arrive at the somatosensory cortex, an area in the

parietal lobe where physical sensations such as touch, pain, and pleasure are registered.

These emotional responses are converted into somatosensory signals conceivably through

the bodily pathway [96] (i.e., via the hypothalamus (hormonal) and/or brainstem/spine

(neural)) or direct wiring within the brain [46].

The significance of emotionally induced somatosensory signals is that they can be

incorporated into episodic memories. More specifically, before a memory is composed in the

hippocampus, sensory signals from the somatosensory cortex as well as other types of

sensory signals from different cortical areas are assembled at a transitional cortex2 and form

a single integrated representation [96, 166] (Figure 6). Damasio [45] referred to this

assortment of the sensory signals as dispositional representation and the emotionally induced

somatosensory signals encapsulated in a dispositional representation as somatic marker. His

chief premise is that, by being embedded in the memories, the somatic markers helps an

animal selecting an action that is expected to yield the most preferable outcome based on

similar situations encountered before.

2 The perirhinal and parahippocampal areas as well as the entorhinal cortex [96, 166].

 25

Amygdala

Hippocampus

Amygdala

Hippocampus

Figure 5: The amygdala in a human brain.

Visual

Cortex

Auditory

Cortex

Somatic

Cortex

Hippocampus

Transition Cortex

Visual

Cortex

Auditory

Cortex

Somatic

Cortex

Hippocampus

Transition Cortex

Figure 6: The pathways between the sensory cortical areas and the
hippocampus. (Diagram reproduced from [96].)

Damasio [46] presumed that, in humans, such anticipatory decision-making guided

by previous emotional episodes is orchestrated by the prefrontal cortex. For example,

 26

Bechara et al. [23] conducted a gambling experiment using patients whose ventromedial

prefrontal cortices had been damaged. The subjects were asked to draw cards from two

types of decks. Each card was denoted with an amount of money that could be either a gain

(reward) or loss (punishment) to the subjects. The first type of the decks consisted of a

mixture of mild reward cards and severe punishment cards. The second type of the decks

was comprised of only minor reward and moderate punishment cards, but it was set up to

yield a more profitable net-gain in the end than the first type. After a number of trials, the

normal subjects had successfully learned to pick the cards from the second type of the decks

in order to maximize their long-term profit. However, the patients with damaged

ventromedial prefrontal cortices could not learn to do so. A subsequent skin conductance

response (SCR) study [24] indicated that an anticipated monetary loss influences the human

body physiologically the same way as an actual monetary loss does. Furthermore, in a similar

experiment [19], damages to other components in “the somatic marker circuitry” such as the

insular/somatosensory cortex or amygdala were also found to disrupt making

lucrative/anticipatory judgments.

Note that the functionality of somatic markers is also approximated by our

computational model developed in Chapter 3. As the embedded somatosensory signals were

shown to help an animal determine the expected utility of its current action, in our model,

reward signals encoded within an episodic memory are also designed to help compute the

expected utility of its current action.

2.2 Anticipation

As discussed in Chapter 1, the primary research question of this dissertation is to

understand how lifelong experience of a robot influences its ability to anticipate as well as

 27

the way it improvises its actions. In this section, we review issues related to anticipatory

behavior. Anticipation is defined, here, as one’s ability to assess the current state, predict the

future consequence of the situation, and execute an action to have a desired outcome based

on the determined assessment and prediction. Anticipation has been studied by a number of

researchers in a variety of fields such as biology, psychology, physiology, engineering,

artificial intelligence, robotics, economy, and music. For example, classical conditioning in

physiology, concerning the relationship between environmental stimulus and anticipatory

behavioral response, has been investigated for more than a century [125]. Recently, the

European Commission funded a three-year research project called Mind RACES: from

Reactive to Anticipatory Cognitive Embodied Systems, in which certain aspects of anticipatory

systems such as behavior, perception, learning and emotion were investigated [56, 79]. The

project has yielded several dozen papers, almost half of which were related to behavioral

aspects of anticipation (e.g., [18, 41, 78, 86, 126, 127]). In this section, some noteworthy

research on anticipation that is especially relevant to the main computational model of this

dissertation is reviewed.

2.2.1 Anticipatory Systems

In terms of understanding anticipation in physically realized systems, Rosen [143]

laid out a foundational framework for anticipatory systems. The diagram in Figure 7 depicts

the concept of an anticipatory system proposed by Rosen. The labels S, M, and E in the

figure are for object system, model, and effector, respectively. More specifically, S represents the

main system (e.g., microorganism, animal, regional economy, etc.) that has to be controlled,

so that it can arrive at some desirable state. M is a model of the target system and is capable

of foretelling in what state it is going to be next given a current condition. E is an effector

 28

that interacts with either the target system itself or the surrounding environment in order to

influence the outcome. According to Rosen [143], the functionality of an anticipatory system

is supposed to: (a) do nothing if the model predicts that the target system is likely to stay in a

“desirable” course; or (b) activate the effector to correct the “trajectory” of the target system

if the model warns that an undesirable outcome is imminent. A prominent property of

anticipation systems is that, unlike a reactive system, which executes actions simply as a

response to currently observing stimuli, it reacts to a state that is expected to happen in the

future.

M

S

EEnvironment

1

22

3

M

S

EEnvironment

1

22

3

Figure 7: Rosen’s Anticipatory system where M = Model, E =

Effector, and S = Object System. (Diagram reproduced from [143].)

Note that, in our computational model of proactive intelligent behavior for robots

(Chapter 3), the notions of robot, episodic memory, and behavior correspond to Rosen’s S, M, and

E, respectively. In other words, based on the world model stored in episodic memory (M),

appropriate behaviors (E) that are expected to lead the robot (S) to the most rewarding

situation are executed.

 29

2.2.2 Anticipatory Behavioral Control

A conceptual framework for anticipatory behavioral control (ABC) was proposed by

Hoffmann [72]. The ABC framework is based on a mixture of findings from the field of

psychology such as James [77] and Tolman [181]. For example, it assumes that the

relationship between action and effect is more relevant to how animals behave in the

environment than a mere stimulus-response relationship, the notion attested to by the

behaviorists. For example, when an animal moves closer to an object, the image of the

object will appear to be looming. The ABC framework asserts that the animal’s brain

automatically predicts this looming image as soon as the animal starts moving towards the

object. If the prediction is correct, the association between the action (moving closer) and

the effect (looming image) is further strengthened (Figure 8). This action-effect association is

remembered in terms of a situational context. It should be noted that this concept, which

Tolman [181] referred to as “means-end-expectation”, is comparable to Held’s concept of

perception via re-afferent signals [71] as discussed above (Section 2.1.1).

SituationalSituational

ContextsContexts

ToTo--BeBe--

AttainedAttained

EffectEffect

VoluntaryVoluntary

ActionAction
EffectEffectComparisonComparison

Primary formation of reinforced Primary formation of reinforced

actionaction--effect associationseffect associations

Secondary differentiation of actionSecondary differentiation of action--effect relations effect relations

in dependence on initial conditionsin dependence on initial conditions

SituationalSituational

ContextsContexts

ToTo--BeBe--

AttainedAttained

EffectEffect

VoluntaryVoluntary

ActionAction
EffectEffectComparisonComparison

Primary formation of reinforced Primary formation of reinforced

actionaction--effect associationseffect associations

Secondary differentiation of actionSecondary differentiation of action--effect relations effect relations

in dependence on initial conditionsin dependence on initial conditions

Figure 8: Hoffmann's anticipatory behavioral control (ABC) framework. (Diagram
reproduced from [72].)

 30

Based on the ABC framework, Stolzmann [167] developed a machine learning

algorithm called anticipatory classifier system (ACS). An ACS builds a model of the environment

by incrementally learning condition-action-effect relationships from experience, assuming

that the state space is fully observable and the state transitions are deterministic. With an

experiment using a simulated robot, Stolzmann [168] demonstrated that an ACS permits

latent learning (i.e., relationships among environmental stimuli can be learned before a

reinforcer is presented). By incorporating reinforcement learning formulae, ACS was further

adapted by Butz and his colleagues [39, 40] to attain optimal policies in Markov decision

process (MDP) problems.

Note that our computational model of proactive intelligent behavior for robots

(Chapter 3) does not explicitly incorporate the ABC framework as it is. Rather, in our model,

the ABC framework is implicitly integrated into the representation of an episodic memory.

More specifically, an episodic memory stores a series of action-perception pairs in

accordance with what the robot experienced. Hence, by executing an action specified in

episodic memory, the consequent perception can be deduced by tracing the contents of the

episodic memory. Indeed, our computational model exploits this property to attain

anticipatory behavior.

2.2.3 Hippocampally Inspired Approaches

As the main computational model of this dissertation (Chapter 3) was inspired by

how a mammalian hippocampus functions, numerous systems have been developed by

researchers that were also influenced by the noble findings from the hippocampi studies.

While many of those researchers were interested in developing high fidelity models of the

hippocampal formation itself, some of them have attempted to frame their research in terms

of its anticipatory behavioral implication.

 31

Recall, for example, that one of the presumed hippocampal functions is novelty

detection. Based on a recalled memory, current sensory signals are predicted and compared

against actual ones. Schmajuk’s hippocampal model [150-152, 193] was designed to

reproduce such an anticipatory property and implemented within a navigational system using

a neural network (Figure 9). In this system, a simulated animal either searches (random

movement) or approaches a motivationally driven goal object. By referring to the “cognitive

map” that encodes the topology of the environment, it attempts to predict what is going to

be perceived before moving into the next distinct location. If the prediction fails, the

cognitive map is updated, and the simulated animal moves towards a random direction. If

the prediction turns out to be correct, it moves towards the goal (if visible) or a closest

distinct location that is presumably in the shortest path to the goal. Schmajuk and Thieme

[152] claimed that their navigational system can solve Tolman and Honzik’s detour problem

[182] (Figure 10). More specifically, even when an obstacle (blockage b in the figure) is

suddenly introduced in the middle of an accustomed route in the maze, if sufficiently trained,

the simulated rat can take an optimal route (1 → 5 → 6 → 7 → 4 → 8) instead of the non-

optimal one (1 → 2 → 3).

 32

Figure 9: A navigational system proposed by Schmajuk and Thieme.
(Diagram reproduced from [152].)

Start Goal1

2

3

5 6 7

4 8

a b

Start Goal1

2

3

5 6 7

4 8

a b

Start Goal1

2

3

5 6 7

4 8

a b

Figure 10: Tolman and Honzik’s maze used by Schmajuk and Thieme’s
detour experiment. (Diagram reproduced from [152].)

 33

From a high-level perspective, this approach is related to our computational model

(Chapter 3) as the process of building a model of the world is driven by prediction. The

difference is that, in Schmajuk’s approach, the model (cognitive map) represents a topology

of the environment while, in our approach, the model (episode) represents a temporal

sequence of events that a robot has experienced. While both models can be utilized to solve

navigational tasks, by encoding spatial information explicitly, Schmajuk’s approach can

perform spatial reasoning such as finding an optimal alternative route when a regular path is

blocked. On the other hand, in our approach, while reflexive detouring can be invoked by

the improvisation process (as demonstrated in one of the experiments in Chapter 5 (Section

5.3)), the optimal path is not guaranteed since the model is based on experience, not

topology. However, the advantage of this approach is that the task is not limited to spatial

navigation. It can also be applied for non-spatial tasks. It should be noted that Tolman and

Honzik [182] did not conclude that real rats possess the reflexive detour ability to determine

an optimal alternative route in response to a sudden obstruction. In fact, their experiment

failed to show conclusively that the rats are able to find an optimal detour route when a

regular path becomes unexpectedly impassable.

Mataric [107] proposed a topologically organized distributed map for a mobile robot,

which was also inspired by how the hippocampus of a rat operates [108]. Each node in the

topological network represents a landmark (Figure 11), and nodes can communicate among

themselves through spreading activation. It is anticipatory in a sense that, when a goal object

is given, each node can suggest a real-time procedure for the robot to navigate through the

environment in order to reach the goal. Mataric [107, 108] implemented this map within a

subsumption architecture [31] framework, and it was shown that the robot can successfully

reach goals in the environment without colliding with obstacles. With reference to Mataric’s

 34

work, Kuipers and Byun [93] notably proposed a similar notion of a topologically organized

map, in which control strategies are embedded within its representation to advise how to

traverse in the environment. Each node in the topological map represents a distinctive place

in the environment, which is detected by a hill-climbing method; and the connectivity among

those nodes is described in terms of control policies. Kuipers and Byun’s topologically

organized map was successfully implemented on a real robot by Lee [98].

Figure 11: Mataric’s topologically organized distributed map [107] (top)
and the corresponding environment (bottom). (Diagram reproduced
from [107].)

Note that the uniqueness of the topological maps discussed above is that, unlike

conventional maps (whether metric or topological), these maps encode behavioral

 35

information within the representations. As suggested by the theory of event coding (TEC)

[74] discussed above (Section 2.1.1), the joint representation of perceptual and behavioral

information seems to help a robot behave in an anticipatory fashion. Indeed, our

computational model of proactive intelligent behavior for robots (Chapter 3) also integrates

the behavioral information within the representation of the world model (episodic memory),

enabling the computation of anticipatory behavior.

2.3 Improvisation

Recall that the primary research question of this dissertation is to understand how

lifelong experience of a robot influences its ability to anticipate as well as the way it

improvises its actions (see Chapter 1). In this section, issues related to improvisational

behavior are reviewed. Improvisation is defined here as one’s ability to promptly detect an

unanticipated circumstance of the situation, find a fallback solution to deal with the

situation, and execute an action to have a desired outcome. One of the essential aspects of

improvisation is promptness. For example, according Bailey [17], music composer Frederic

Rzewski once asked jazz musician Steve Lacy if he could describe the difference between

composition and improvisation in fifteen seconds. Lacy replied, “in fifteen seconds the

difference between composition and improvisation is that in composition you have all the

time you want to decide what to say in fifteen seconds, while in improvisation you have

fifteen seconds,” taking exactly fifteen seconds to answer. In other words, there is always a

time constraint when performing improvisation. In case of extreme events such as

earthquakes or terrorist attacks, such a time constraint becomes extremely important for an

emergency response organization to produce workable solutions when dealing with dynamic

problems [112]. As each improvised jazz performance is a product of the knowledge gained

 36

through lifelong preparation [26], without prior knowledge/skill gained before, sufficient

improvisation cannot be attained. Improvisation is indeed relevant to intelligence as defined by

Piaget [42, 128].

While improvisation can be observed in a variety of art forms such as music, dance,

and theater, research on improvisation seems to be premature when compared to, for

example, studies on anticipation. Even so, musical improvisation (jazz improvisation in

particular) has been studied by a substantial number of researchers. In this section, musical

improvisation and some computational models of jazz improvisation are discussed first.

Some limited examples of improvisation in artificial intelligence are then reviewed.

2.3.1 Musical Improvisation

Regardless of genre, music performers often incorporate some degree of

improvisation in their artistic expression. For example, when traditional Persian and Indian

music are played, improvisation becomes an essential element of the performance; on the

other hand, improvisation plays only a nominal role in traditional Japanese music as it

follows original scripts very tightly [132]. Today, jazz is certainly one of the most popular

music genres that profoundly integrate improvisation, and it has been a subject of significant

academic research.

Kernfeld [83], for example, identified that there are at least three forms of jazz

improvisations: namely, paraphrase, formulaic, and motivic improvisations. In a paraphrase

improvisation, a performer produces a variation of an existing tune in a way that it carries a

new or “jazzy” sound, but the original melody is still recognizable to the audience. On the

other hand, in a formulaic improvisation, the original melody becomes hardly recognizable

even though the original musical structure is unchanged. For each fragment of the original

melody, a performer tries to find an alternative melodic fragment that is most appropriate

 37

for that juncture. Each jazz performer is supposed to maintain a repertoire of such melodic

fragments, known as motives or “licks”, accumulated through out his/her lifetime. A

motivic improvisation is a rather systematic exploration of new sounds. During a session, a

performer creates a new tune from less than a few selected motives by methodically

transforming the arrangement of their notes (e.g., raising or lowering tones, stretching or

compressing intervals).

Note that, out of these three forms, our computational model of proactive intelligent

behavior for robots (Chapter 3) addresses the formulaic aspect of improvisation. More

specifically, when a robot encounters an unanticipated situation when performing a familiar

task, the recalled episode that was being used to perform the task is subdivided into

fragments. The robot then attempts to find an alternative episodic fragment that is most

appropriate for that juncture.

2.3.2 Computational Jazz Improvisation

Notice that, in any of these jazz improvisation forms, performers do not

extemporaneously create completely new pieces from scratch. They utilize some form of

basic outlines to derive their improvisations. Pressing [132] refers to such an outline as a

referent. More specifically, a referent is “a set of cognitive, perceptual, or emotional structures

(constraints) that guide and aid in the production of musical materials” [134]. Pressing [133]

proposed a computational model of human improvisation that incorporates the notion of

referents. By partitioning a single improvisational performance into a series of segments3, the

improviser constantly determines what behavior or “schema” has to be executed in the next

3 Pressing [133] referred them as event clusters.

 38

segment. The decision is made based on various factors such as referents, current goals,

properties of current and previous segments, and long-term memory storing relevant past

experiences. Grachten [65], for example, took this referent/constraint based approach to

implement a computer program called JIG. Incorporating case-based reasoning (see Section

2.4.2 below) and probabilistic sampling methods, JIG achieves formulaic jazz improvisation

by progressively retrieving appropriate motives and adapting their properties (e.g., pitches

and durations of notes) to match with current constraints. The referent-based improvisation

has been also applied to non-artistic academic fields such as organizational theory. For

example, Mendonca [113] developed a cognitive model of emergency management, in which

referents guide the deliberation of a workable course of actions to deal with extreme events.

Furthermore, our computational model of proactive intelligent behavior for robots (Chapter

3) also utilizes the notion of referents. More specifically, when improvisational behavior is

desired, the representation of the most relevant episodic memory is converted into a more

abstract form, a referent, and it is used as a basic outline to derive the improvisational

behavior.

According to Johnson-Laird [80], only three types of algorithms can truly facilitate

creativeness: namely, neo-Darwinian, neo-Lamarckian, and a hybrid of the two. Inspired by the

natural selection process in biology, a neo-Darwinian algorithm generates a new piece by

randomly blending different pieces together. Based on some evaluation criteria, if this new

piece sounds sufficient, it is kept for a future generative process. In a neo-Lamarckian

algorithm, on the other hand, a new piece is derived from some relevant domain knowledge.

In this case, unlike the neo-Darwinian approach, the evaluation process is not required. The

third type, a hybridized version of the two, utilizes expert knowledge in both composition

and evaluation processes. Johnson-Laird noted that, even though it is fated to produce a

 39

substantial amount of unwanted pieces due to the randomness in the production process,

the neo-Darwinian approach might be the only way one can improvise if no expert

knowledge is available. On the other hand, the neo-Lamarckian approach produces a new

piece by effectively assuming that there is appropriate expert knowledge available to guide

the production. However, such an assumption is not always guaranteed to hold. Hence, the

aim of the hybrid approach is to overcome the limitations of both algorithms.

Taking the neo-Darwinian approach, Weinberg et al. [196], for example, constructed

a two-arm robot [195] that plays a xylophone in a way that new melodies are

extemporaneously adapted from different preexisting melodies that had been pre-generated

using a genetic algorithm. For jazz improvisation, however, Johnson-Laird [80] conjectured

that the neo-Lamarckian or hybridized version are more reasonable choices. Our

computational model (Chapter 3) can be classified as neo-Lamarckian since its improvisation

is derived from relevant domain knowledge (experience), and randomness plays an

insignificant role in the process.

2.3.3 Artificial Intelligence

The role of improvisation is not yet fully explored in the robotics community. Even

in the artificial intelligence community, there are only limited examples. Nevertheless, at least

two noteworthy studies were conducted on improvisation in the context of AI: one by Agre

[4] and the other by Anderson [7]. Conceptually, improvisation is similar to planning in

classical AI as both suggest a plan of action to achieve a predefined goal [5]. Agre [4] noted,

however, that improvisation is performed when the consequence of actions are not

necessarily fully known while, in planning, the information regarding the state space is

already predetermined. In other words, improvisation has to work with incomplete

knowledge, or, in some cases, some part of the knowledge is deliberately ignored in order to

 40

avoid exhaustive computation. The latter cases in fact relate to anytime algorithms [28, 202]

in which a solution to a problem is deliberated in an incremental fashion. More specifically,

anytime algorithms are constructed in a way that the quality of a solution improves

monotonically with respect to the amount of time spent for computation [201]. The

computation can hence be interrupted anytime, yielding a solution that is attainable given the

time constraint. Likewise, in order to answer the fifth subsidiary research question in

Chapter 1, one of the experiments in Chapter 5 was setup to determine the trade-off

between promptness and the quality of our proactive behavior computation (Section 5.3).

Anderson [7] conjectured that improvisation can be weak or strong. If the situation is

totally novel, it requires strong improvisation, which means that “deeper reasoning” is

necessary upon choosing the action. On the other hand, if the situation is within a familiar

domain, some “routine response” (weak improvisation) can be applied quickly. Thus, in

order to improvise, an agent has to be able to determine how much the current situation is

different from a routine activity and appropriately adjust the routine based on relevant

domain knowledge [7]. Note that, our computational model of proactive intelligent behavior

for robots (Chapter 3) refers to Anderson’s notions of weak and strong improvisations as

anticipation and (just) improvisation, respectively. From weak to strong, our computational

method is designed to handle the range of Anderson’s terms of improvisation.

Both Agre and Anderson (independently) implemented improvisational agents in

their software architecture called Pengi [4, 5] and Waffler [7, 8], respectively. Pengi interacts

with a simulated environment in which animated characters interact with certain objects

(Figure 12). In order to “kill the bee”, for example, the agent does not construct a “plan” as

in classical AI planning per se. It instead recalls the interaction it had with the objects. If it

can recall (or “visualize” in Agre’s term) appropriate past experience and consider that, for

 41

example, kicking the ice cube would lead to some desirable consequence, it then executes the

action. It should be noted here, however, that the experience that the agent’s decision is

based on is some precompiled routine activities entered by programmers (i.e., it is not

automatically acquired knowledge).

Figure 12: Simulated environment for Pengi. (Diagram reproduced from [5].)

While Agre’s Pengi architecture was tested in a game-like environment, Anderson’s

Waffler works in a simulated kitchen. The diagram in Figure 13 shows how an activity such

as “making tea” can be processed via improvisation. As in Pengi, Waffler is also equipped

with a repertoire of precompiled routines (plans) that the agent can base its decision on.

Furthermore, the agent in Waffler also has built-in domain knowledge that is used to guide

the selection of appropriate actions. Anderson [7] calls such knowledge “constraints”.

Indeed, the emphasis of Waffler is utilization of such constraints during improvisation.

Constraints can help the agent narrow down its options or limit the search space.

Constraints may also provide additional alternative options that the agent otherwise would

have ignored. In other words, constraints influence how an agent retrieves relevant actions

from its memory. Furthermore, constraints also affect improvisation on when to execute the

action. Anderson [7] noted that delaying deliberation of a plan can provide the agent with

more time to search alternatives, but it also could compromise the end result if any

 42

underlying assumption being made is time dependent. Thus, in Waffle, the constraints

(“utility threshold”) also guide the decision on when is good time to deliberate. Note that

our computational method (Chapter 3) also utilizes constraints to attain improvisation.

Borrowing the concept from computational jazz improvisation (see Section 2.3.2 above), the

representation of the most relevant episodic memory for a current goal is abstracted into a

basic outline, referent, and it is used to constrain the derivation of improvisational behavior.

Figure 13: The process of “making tea” with Waffler. (Diagram reproduced
from [8].)

Hayes-Roth and Brownston [70] also proposed a software system, CAIT,

implementing similar constraint-directed improvisation. The domain of CAIT is a virtual

puppet theater. Compared to Waffler, the underlying mechanism for choosing appropriate

actions seems much simpler. However, the main concern of CAIT is human-robot

 43

interaction (HRI) as well as multi-agent coordination. In CAIT, a human user specifies a goal

of a play in order to make virtual puppets enact. The specified goal along with the internal

state of the puppet itself and interpreted states of other puppets become part of the

constraints in CAIT. A similar theatrical improvisational system was also proposed by

Moraes and da Rocha Costa [116], focusing on the director’s role in multi-agent

coordination. Note that, even though constraints are indeed used to derive improvisational

behavior, unlike CAIT, our computational model of proactive intelligent behavior for robots

(Chapter 3) does not particularly address the issues on HRI or multi-agent coordination.

2.4 Relevant Machine Learning Techniques

In this section, various machine learning techniques that are relevant to the main

computational model of this dissertation (Chapter 3) are described. In particular, temporal

difference learning, case-based reasoning, instance-based learning, partially observable

Markov decision processes, and predictive state representation are explained.

2.4.1 Temporal Difference Learning

Temporal difference (TD) learning is a predictive reinforcement learning method

that was most notably theorized by Sutton [170]. It is incorporated into our computational

model (Chapter 3) in a manner so that the sensor readings are constantly predicted by this

learning method in order to detect novelty in the environment. The core idea of TD learning

can be explained well by contrasting it with standard supervised learning. In standard

supervised learning, an algorithm is employed to generate a hypothetical function that best

explains the trends of training data. Typically, such a function is refined iteratively and then

used to interpolate missing data points or classify query points into predefined categories.

On the other hand, in TD learning, training data points are presented sequentially, and the

 44

algorithm generates a hypothetical function that interprets the temporal relationships among

them in order to predict unseen future points. Since the function is recursively updated

based on previously computed parameters (i.e., bootstrapping), TD learning is considered a

form of dynamic programming [20]. The algorithm that is best known for implementing TD

learning is TD(λ) [170]. TD-Gammon by Tesauro [174], for example, incorporates TD(λ)

into a neural network framework in order to play backgammon, a two-person board game. It

has been demonstrated that not only could TD-Gammon outperform another

backgammon-playing computer program, it was also able to play comparably well against

human world champions [173, 174].

TD learning is often considered relevant to how animals learn association of certain

stimuli in the environment [171]. In particular, Sutton and Barto [172] have shown that

classical conditioning [125] can be modeled using TD learning. By monitoring dopaminergic

signals in primate midbrains, Schultz et al. [153, 154] further concluded that actual

neurophysiological activities from expected rewards could be indeed described by a TD

model. Parenthetically, the hippocampal model proposed by Foster et al. [60] employs TD

learning to learn the spatial coordinates of the environment.

2.4.2 Case-Based Reasoning

Case-based reasoning (CBR) is a class of memory-based problem-solving techniques

in which a solution to a current problem is sought in its memory (case library). A case library

reserves past problem-solving experiences (cases), so that they can be utilized again in the

future. The process of CBR typically involves: 1) retrieval of a case from the memory; 2)

customization of the case to create a solution for current needs; 3) execution of the solution;

and 4) storage of the solution as a new case. The diagram in Figure 14 shows, for example, a

 45

case-based reasoning cycle suggested by Kolodner and Leake [91].

Retrieve

Propose

ballpark

solution

Adapt /

Justify
Evaluate StoreCriticizeRetrieve

Propose

ballpark

solution

Adapt /

Justify
Evaluate StoreCriticize

Figure 14: Steps of case-based reasoning, proposed by Kolodner and Leake [91].

One of the essential attributes in CBR is indexing [89]. More specifically, each case in

the memory is labeled with an index that uniquely identifies the situation in which the case is

used. The postulation is that, if indexing is adequately proceeded, the most suitable solution

to the current problem can be promptly presented simply by seeking a case whose index best

describes the current problem [89, 91]. For example, the diagram in Figure 15 shows how

certain diplomatic meetings are stored in CYRUS, one of the earliest case-based reasoners

developed by Kolodner [90]. To save the diplomatic meetings in a way that they can be

effectively recalled in the future, Kolodner proposed a memory structure called E-MOP

(episodic memory organization packet), which is an enhanced version of Schank’s MOP

[148, 149]. The E-MOP in the figure comprised with two indexes: namely, participants and

topic. If the value of participants is Begin, or the value of topic is Camp David Accords, E-

MOP points to the diplomatic meeting that took place at Camp David in 1978, involving the

Israeli and Egyptian leaders. On the other hand, if the values of participants and topic are

Gromyko and SALT, respectively, the diplomatic meeting to which the E-MOP is referring

is the talk on the Strategic Arms Limitation Treaty (SALT) between the United States and

the Soviet Union.

 46

Figure 15: An example of E-MOPs (episodic memory organization packets) in
CYRUS [90], This E-MOP in particular is shown to encapsulate particular
diplomatic meetings that took place. (Diagram reproduced from [90].)

CBR is exceptionally relevant to our computational model (Chapter 3) because, as

pointed out by Anderson [7], CBR shares a common connotation with improvisation;

instead of considering every contingency, which is computationally burdensome, it is more

efficient to propose an extemporized solution that is synthesized from previous experiences.

For example, in the context of Chinese (Szechwan) cooking, Hammond’s CHEF [67]

composes a recipe for stir-fried beef with broccoli by recalling relevant recipes such as stir-fried beef

with green beans (i.e., substituting green beans with broccoli).

CBR has demonstrated its efficacy in a variety of domains such as medical diagnosis,

legal proceedings, and industrial optimization [89]. In robotics, there are at least three types

of CBR applications. The first type is planning. Veloso and Carbonell’s PRODIGY [191],

for example, constructs a sequence of behavioral actions by referring to relevant past

problem-solving episodes. There have been also attempts to apply CBR in path planning [63,

92].

The second type of CBR in robotics applications is regarding reactive navigation. For

example, CBR can be employed to propose an appropriate action for the current situation by

 47

retrieving a case that best represents the current spatial configuration [142]. To identify the

situational similarities more fluidly, some have also tried to incorporate temporal

information. Ram and Santamaria [137] referred to this type of CBR as continuous case-based

reasoning. More specifically, a robot is set up to monitor how the sensor readings change with

respect to time. The case-based reasoner then computes the temporal similarity of the

current sensory sequence with respect to the ones experienced in the previous episodes

(cases). After identifying a matching case, it retrieves the behavioral parameters (e.g., goal

gain, noise gain, or sensible distance) from the case in order to adapt the control strategy

to the current environment [100, 136, 137].

Finally, the third type of CBR applications in robotics pertains to human-robot

interaction (HRI). For example, Endo et al. [55] implemented a high-level mission planning

tool that assists users in specifying multi-robot missions. The planning tool utilizes CBR to

retrieve the most suitable mission from the case library that best matches with the current

specification of the mission. In this line of work, CBR was further applied to repair a faulty

component of the executed mission in case of failing to accomplish its intended goal [120].

Our computational model (Chapter 3) is related to the second type of CBR that deals

with reactive navigation. Ram and Santamaria’s continuous CBR [137] is perhaps the most

relevant to our method as the temporal aspect of the sensory information is utilized in both

approaches. However, the main distinction is that, in Ram and Santamaria’s work, CBR

retrieves cases (episodes) as well as proposes appropriate actions while, in our method, CBR4

only retrieves cases, and a partially observable Markov decision process (Section 2.4.4) is

4 To be precise, our method employs instance-based learning (see Section 2.4.3).

 48

separately employed to identify the most suitable actions. In fact, this type of hybridization

can be considered a contribution to the field of case-based reasoning. Note that

hybridization of CBR and reinforce learning has been successfully applied to controlling

simple physical systems (e.g., pendulum) [145] as well as a real-time strategy game [159].

Likewise, our method may well be employed to such applications.

2.4.3 Instance-Based Learning

Our computational model of proactive intelligent behavior for robots (Chapter 3)

employs instance-based learning to retrieve relevant episodes from its memory. Instance-

based learning is a memory-based learning method, and it has a sensible resemblance with

case-based reasoning. Both CBR and instance-based learning are often referred to as a “lazy

learning method” as they retain training data in its original form and postpone generalization

of the data until a solution to a new problem is asked to be deliberated [115]. The distinction

between the two is somewhat vague. Mitchell [115] construed that the difference is in how

the data (case/instance) is represented in the memory; while a case in CBR consists of

symbolic notations that encapsulate highly abstract descriptions of the world, an instance in

instance-based learning is comprised of numerical values that represent certain points in a n-

dimensional Euclidean space. The major components of instance-based learning are

similarity and classification functions [6]. The similarity function computes how similar

between a query point (current problem) and a point in the training data (previous episodes)

is. Based on the output of the similarity function, the classification function determines in

what category the query point belongs.

Because of the mathematical properties gained by representing the query point and

instances within a Euclidean space (assuming the parameters are easily quantifiable), the k-

nearest neighbor algorithm is often employed to implement instance-based learning. For

 49

example, McCallum [109, 110] applied the k-nearest neighbor algorithm to help uncover

hidden states in a hidden Markov model (HMM) problem. More specifically, based on the

recent action, perception, and reward histories, the algorithm picks k data points from the

memory that are presumably the closest representations of the current state. The state

parameter (Q-value), which is used to calculate an optimal policy, is determined by averaging

Q-values from those k instances. This approach of instance-based learning has been further

adapted by Littman et al. [102] to find repair policies in cases of computer network failures.

Note that our computational model of proactive intelligent behavior for robots

(Chapter 3) can be viewed as comparable to McCallum’s method. In both methods, k

instances that are closest representations of a current state are selected from the memory and

used to determine a current policy. The difference is that, in our method, a goal is used to

retrieve relevant instances while McCallum’s method retrieves instances based on the recent

action-perception-reward sequence. Furthermore, upon determination of the current policy,

a model-based approach (Bellman’s equation [25]) is utilized in our method in contrast to the

model-free approach (Q-value) employed in McCallum’s method.

Another known example of algorithms that have been employed to implement

instance-based learning is locally weighted regression. As in the k-nearest neighbor

algorithm, locally weighted regression also takes advantage of the Euclidean distances of the

points in training data with respect to a query point. Instead of considering a fixed number

(k) of points to interpolate the query point, however, in locally weighted regression, a

predefined distance is used as a threshold to opt for relevant points in the training data. To

attain a solution, the contribution from each point is (inversely) weighted based on the

Euclidean distance from the query points. The diagram in Figure 16 shows the difference

between the nearest neighbor and locally weighted regression approaches in terms of

 50

interpolating a function using five data points.

Nearest Neighbor Locally Weighted RegressionNearest Neighbor Locally Weighted Regression
Figure 16: Interpolations of a function using five data points via the nearest
neighbor (left) and locally weighted regression (right) algorithms. (Diagram
reproduced from [147].)

Locally weighted regression has been applied to analyze data in a range of domains

such as biology, chemistry, economy, meteorology, image processing, and speech recognition

[15]. Most notably, Schaal and Atkeson [16, 147] implemented a robot that plays devil sticks

(juggling). In order to keep the target object (baton) in space, locally weighted regression was

used to identify control policies of two control sticks in real-time.

While biasing the computation of the current policy based on the Euclidean distance

between the relevant instance (episode) and a query point (goal) can certainly be explored in

the future, the current implementation of our computational model (Chapter 3) does not

incorporate locally weighted regression.

2.4.4 Partially Observable Markov Decision Process

The objective of a Markov decision process (MDP) problem is to find the best

policy, that is, to map an action for a current state that can maximize expected rewards. The

assumption here is that the probability of transitioning from any one state to another is

known within the state space, and such transition probabilities strictly follow the Markov

 51

property. In other words, when transitioning from state A to state B, for example, complete

information that is necessary to compute its transition probability can be found within just

state A. Hence, information that was available before arriving to state A does not influence

how to arrive at state B. While solving a standard (stochastic) MDP problem itself suffers

from a computational complexity as the state space broadens, solving a partially observable

MDP (POMDP) problem is known for its severe computational burden because the current

state cannot be assessed directly and therefore has to be estimated first. Unfortunately, when

dealing with real robots, the assumption of complete observability cannot be guaranteed

because various types of uncertainties influence the robot’s state [88]. Hence, a challenge for

the robotics researchers has been to find a computationally tractable solution while working

in a partially observable environment. As described in Chapter 3, our computational method

is designed to handle POMDP problems efficiently.

While McCallum [109, 110] has applied an instance-based learning method to

estimate the current state as discussed above, standard approaches to deal with POMDP

problems are to use Bayes’ rule. Most notably, Cassandra et al. [44] laid out one of the first

Bayesian-based frameworks for the artificial intelligence community. More specifically, as

shown in Figure 17, a belief state (i.e., a state that best represents the current situation) is at

first estimated from the current observation, previous belief state, and previously executed

action. Note that state estimation is indeed the step that is computed probabilistically,

incorporating Bayes’ rule. The process is recursive in a sense that the result from the

previous estimation is used to compute the current value. Once the belief state is identified,

the second step is to find the most advantageous policy for that state (i.e., to identify the best

action that maximizes expected rewards). In robotics, Koenig and Simmons [88] developed

Xavier, a computational architecture for robot navigation that incorporates the POMDP

 52

model. Representing the environment with a topological map, in their method, the optimal

policies are refined offline through the Baum-Welch algorithm [21, 135].

State

Estimator

Observation

Policy

Belief State Action
State

Estimator

Observation

Policy

Belief State Action

Figure 17: Computational steps proposed by Cassandra et al. [44] to deal
with partially observable Markov decision process (POMDP) problems. The
first step (state estimation) is computed probabilistically. (Diagram
reproduced from [44].)

Various attempts have been made to reduce the POMDP computational load. One

way to accomplish such reduction is to represent the state space hierarchically. For example,

in Theocharous and Mahadevan’s approach [175], the state space was abstracted based on

spatial granularities. Through their experiment using a real robot, the hierarchical dissection

of the state space was proven effective especially when covering a large area. Likewise,

Pineau et al. [130] tackled a POMDP problem by decomposing the action space

hierarchically. The application of their method on a real robot in nursing homes has

successfully provided necessary assistances to the elderly residents.

Another approach that has been taken to reduce the POMDP computational load is

to use sampling. Thrun [176], for example, has demonstrated that Monte Carlo sampling

over belief space can attain solutions that are near optimal. Conversely, Pineau et al. [129]

proposed a sampling method that takes advantage of how a trajectory of the value function

is shaped. More specifically, at each computational cycle, a finite set of sampling points that

are enough to recover the shape of value function through a piecewise linear function is

selected. After updating state parameters on those points, by stochastically forecasting the

path of its future trajectory, the points that are projected to be no longer relevant are

 53

eliminated, reducing the size of the state space that affects computation. Note that this form

of sampling is known as trajectory sampling [171].

Note that our computational model of proactive intelligent behavior for robots

(Chapter 3) also attempts to reduce the POMDP computational burden in several ways.

State space abstraction, action space abstraction, and trajectory sampling are among those

methods used toward that end. The details of our method to reduce the load of the POMDP

computation are explained in Chapter 3.

2.4.5 Predictive State Representation

In order to describe a state of a certain dynamic system (e.g., robot), Littman et al.

[101] introduced a representation called predictive state representation (PSR). In terms of

assessing a current state within a predefined state space and finding an optimal policy for

that state, PSR can be employed alternatively to instance-based learning or partially

observable Markov decision process. Recall that, in McCallum’s implementation of instance-

based learning [109, 110], the policy was determined by averaging the state parameters (Q-

values) from k (neighboring) states that most effectively encapsulate the recent action-

perception-reward sequence. On the other hand, in standard POMDP approaches, the

current state is determined by recursively applying Bayes’ rule [44, 88]. Littman et al. [101]

referred to the former approach (McCallum’s) as history-based approach and the latter one

(POMDP) as generative-model approach; and suggested that PSR is a combination of both. In

other words, while PSR utilizes history to estimate a current state as in a history-based

approach, the state parameters are recursively updated as in a generative-model approach.

Unlike McCallum’s approach, however, in PSR, each state explicitly maintains a predicted

sequence of what may be observed in the future given a predefined sequence of past actions.

In McCallum’s approach, such information concerning possible future outcomes is implicitly

 54

encoded as the Q-values. On the other hand, in standard POMDP approaches, while the

state representation does not usually address a predicted future explicitly, such information

can be computed by, for example, employing Bellman’s equation [25] since the probability

distribution over the state space is known.

The underlying assumption of PSR is that representing an expected future

consequence of past actions within a state should be more advantageous than the

conventional state representations. It should noted, however, that, while the theoretical

foundation of PSR has been soundly established [162], the practical implication of this

approach has not yet been fully demonstrated. The preliminary empirical results have shown

that PSR is at least comparable to POMDP [76, 163].

Note that, from a high-level perspective, our computational method (Chapter 3) can

be considered comparable to PSR as both methods combine history-based and generative-

model approaches. More specifically, our method is generative in a sense that it computes

POMDP solutions recursively. However, unlike PSR, our method does not explicitly encode

a history within the representation of a state (event). Instead, each state can infer such

information from the state space (episode) formed in a unidirectional temporal linear chain

fashion.

2.5 Summary

As the main computational model of this dissertation (Chapter 3) was inspired by

how a mammalian brain works, the research related to episodic memories and hippocampal

functions as well as the somatic marker hypothesis was first examined in this chapter.

Episodic memory is a form of declarative memory, storing a particular episode of

experience that can be later retrieved and recounted in accordance with how it initially

 55

proceeded [184]. Our computational model is founded upon a neurophysiological hypothesis

in which the hippocampus is considered to construct a “memory space”, a collection of

discrete episodic memories; it is the same school of thought that defines episodic memory as “a

sequence of event representations, with each event characterized by a particular combination

of spatial and nonspatial stimuli and behavioral actions” [51]. By integrating both sensory

and behavioral information into a common representation, this notion of event is also in

accordance with the theory of event coding (TEC) [74] found in cognitive psychology.

Somatic markers are emotionally induced somatosensory signals embedded within

episodic memories, and they have been shown to help an animal determine the expected

utility of its current action [45]. Our computational model approximates the functionality of

somatic markers by integrating reward signals into its foundational data structure (episodic

memory) that stores the experience of a robot.

As the primary research question of this dissertation is to understand how lifelong

experience of a robot influences its ability to anticipate as well as the way it improvises its

actions (Chapter 1), we also reviewed issues regarding anticipatory and improvisational

behaviors. For example, the anticipatory behavioral control (ABC) framework [72] considers

how the association between voluntary action and predicted consequent perception plays an

essential role for attaining anticipatory behavior. Likewise, to process anticipation, our

computational model implicitly incorporates the ABC framework in a way that a temporal

sequence of action-perception pairs is encoded within the representation of episode in

accordance with what a robot experienced. While some researchers have utilized a joint

representation of action and perception within topologically organized spatial maps to gain

anticipatory behavior (e.g., [107, 152]), our computational model is unique in a sense that it

encodes both behavioral and perceptual information within a temporally organized memory

 56

structure (episodic memory). By focusing on the temporal relationship instead of the spatial

one, our computational model can be applied even for non-spatial tasks.

In terms of improvisation, our computational model can be categorized as neo-

Lamarckian [80] since the computation of improvisational behavior is driven by relevant

expert knowledge (experience) as opposed to neo-Darwinian in which a new idea is derived

from a mixture of randomized old ideas. To guide the derivation of improvised behavior,

our computational method abstracts a basic outline known as a referent [133] from episodic

memory. Taking the formulaic improvisation approach from jazz music [83], the referent is

subdivided into fragments, and the algorithm seeks the most suitable episodic fragment for

the moment from its memory. Note that, upon derivation, constraints (referents) are used to

help narrow down possible improvisations and hence avoid excessive computation. Some

recognized work on constrained-based improvisation in artificial intelligence focused on this

aspect (e.g., [7, 70]).

Several machine learning methods relevant to our computational model were also

reviewed in this chapter. For example, detection of novelties in the sensor signals is

implemented by temporal difference (TD) learning [170] in which the algorithm attempts to

generalize the temporal relationships among sequentially presented data points in order to

predict unseen future points. Our computational model is exceptionally relevant to case-

based reasoning as it shares a common connotation with improvisation [7]. In particular,

continuous CBR [137] is most comparable to our method as both exploit the temporal

aspect of sensory information. Another “lazy learning method” that is relevant to our

computational approach is instance-based learning. McCallum’s work [109] in particular is

most relevant. In both McCallum’s and our method, the current action is determined by the

k closest representations of a current state retrieved from the memory. The difference is that,

 57

in McCallum’s method, the representation (instances) are retrieved based on the recent

action-perception-reward sequence while, in our method, instances are retrieved based on a

goal. Our computational model also deals with the partially observable Markov decision

process (POMDP) problem of a robot. In other words, it computes the most advantageous

action for the current state after assessing what exactly the current state itself is. As is

common practice (e.g., [44, 88]), our method employs a Bayesian-based approach to estimate

the current state. Furthermore, our method attempts to reduce the infamous computational

burden associated with the POMDP calculation in several ways by including state space

abstraction, action space abstraction, and trajectory sampling. Finally, by combining history-

based and generative-model approaches, our method can also be considered comparable to

predictive state representation (PSR) [101] although, in our method, the history is not

directly encoded within the representation of a state (event) itself.

 58

CHAPTER 3

A COMPUTATIONAL MODEL OF PROACTIVE INTELLIGENT

BEHAVIOR FOR ROBOTS

In this chapter, a computational model of proactive intelligent behavior for robots is

developed. Proactive intelligent behavior here means that a robot is acting in an either anticipatory

or improvisational manner. More specifically, anticipation is the robot’s ability to assess the

current state, predict the future consequences of the situation, and execute an action to have

a desired outcome based on the determined assessment and prediction. Improvisation, on

the other hand, is the ability to promptly detect an unanticipated circumstance of the

situation, find a fallback solution to deal with the situation, and execute an action to have a

desired outcome. To be self-sustained in any environment, the robot has to be able to

compute behavior based solely on what it knows about the world throughout its experience.

In other words, the robot has to be able to convert its ongoing experience autonomously

into a particular representation that can be effectively utilized during the computation of

proactive intelligent behavior.

The computational model was founded upon certain principles found in biology.

More specifically, the foundational data structure utilized in this model was inspired by how,

according to Eichenbaum and his colleagues [51], an animal’s experience is represented in

the hippocampus (see Section 2.1.1). In particular, from low-level sensor readings to the

abstract notion of episodic memories, specific mathematical expressions were formulated to

represent the robot’s experience hierarchically within the data structure. Furthermore, this

computational model approximates the functionality of Damasio’s somatic markers [45] (see

Section 2.1.2) by integrating reward signals into this data structure as well.

The details of this biologically inspired foundational data structures are explained in

 59

the first section of this chapter. In the second section, the algorithmic processes involved in

the computation of proactive intelligent behavior using the foundational data structure are

described. The auxiliary functions that do not belong to the core processes but play essential

supportive roles in computing proactive intelligent behavior are discussed in the third

section. The relevance of our computational model with respect to biology and machine

learning is then discussed in the final (fourth) section.

3.1 Foundations

In this section, the foundational data structures that are utilized in the computation

of proactive intelligent behavior are explained. In particular, the notions of events, episodes, and

referents are explained.

3.1.1 Temporal Abstraction of Ongoing Experience

As discussed in Chapter 1, the primary objective of this dissertation is to determine

how extended experience of a robot influences its ability to compute proactive behavior. In

particular, the question of what information should be extracted from current experience in

order to be utilized for future proactive behavior (Subsidiary Question 2) is discussed in this

subsection.

Experience

By definition, experience is “direct observation of or participation in events as a basis

of knowledge” [1]. Correspondingly, in our model, observation (or perception) is considered

a fundamental attribute to define experience of robots. Here, a robot’s observation is

expressed in terms of sensors with which the robot is integrated. Presenting formally,

observation (o) is an m-length vector of sensor readings (z) where m is the number of

 60

integrated sensors:

 },,,{ 21 mzzzo K= (3.1)

Another type of firsthand knowledge that encompasses experience is behavior. For

example, recall the neurophysiological studies by Eichenbaum and his colleagues [51, 58,

198] indicating that both perceptual and behavioral aspects of an animal’s experience are

stored using the hippocampus (see Section 2.1.1). Recall also that, according to the cognitive

psychological theory of event coding (TEC) [74], jointly storing perceptual and behavioral

information of experience in the memory helps an animal attain anticipatory behavior

(discussed also in Section 2.1.1). In our model, a robot’s behavior is expressed in terms of

Arkin’s motor schemata [10, 11], a distributed motor control method based on Arbib’s schema

theory [9]. More specifically, each motor schema comprises a tight-loop control program to

compute a primitive action given sensor readings. Multiple motor-schemata can be

processed simultaneously, and consequently a complex motor behavior can emerge by

coordinating their outputs (actions). Instead of being expressed in low-level motor

commands (velocity, turning angle, etc.), a motor schema offers a rather abstract notion of

actions (Move-To-Goal, Avoid-Static-Obstacle, etc.), which helps reduce the action space.

In behavior-based robotics, motor-schemata have been successfully implemented in

architectural frameworks such as AuRA [14] and RS [104]. Presenting formally, here, overall

behavior (b) consists of a set of motor schemata (σ) being instantiated:

 },,,{ 21 βσσσ K=b (3.2)

Note that execution of behavior b entails simultaneous (i.e., not sequential) instantiation of

specified motor schemata, yielding some overt emergent behavior as a result.

As discussed in Chapter 1, we are also interested in determining whether somatic

markers can help a robot achieve better proactive behavior (Subsidiary Question 4). As

 61

reviewed in Chapter 2, somatic markers are emotionally induced somatosensory signals

saved in episodic memories (along with other types of perceptual signals) and have been

shown to help a person determine the expected utility of current action [45]. In our model, a

robot is assumed to maintain an independent function that determines whether the current

situation is advantageous for the robot itself or not (see Section 3.3.2 below). We refer to the

output of such a function as reward. Reward approximates an emotionally induced

somatosensory signal, serving as a somatic marker when saved in memory. Presenting formally,

reward (r) is a scalar value indicating to what extent the current state is desirable for the

robot. The value can be positive or negative. Having a positive value implies that the robot is

currently at some desirable state while at an undesirable state, the reward value becomes

negative. When the reward value is zero, the desirability is neutral.

Event

As shown above, in our model, observation, behavior, and reward are considered the

attributes to define a robot’s experience. More specifically, a stream of the perceptual signals

(observation) is constantly monitored by a robot; whenever the characteristic of the signal is

found to be distinct from the one received before, a snapshot of all three signals

(observation, behavior, and reward) are encapsulated into a joint representation called an

event (denoted with e) and remembered for future usage:

 },,{ rboe = (3.3)

Each event captures a distinctive configuration of the robot and world, the equivalent of a

state in a finite state machine.

Perceptual Segmentation

The process of encapsulating a robot’s continuous experience into a series of discrete

 62

events is here referred to as event sampling. As noted above, event sampling is done by

segmenting the perceptual signal with respect to its temporal changes (Figure 18). More

specifically, the segmentation is performed based on how predictable the perceptual signal is.

In other words, given a history, the current value of the robot’s observation is constantly

predicted; whenever the robot fails to predict the current observation correctly, it is assumed

to be entering a new perceptual state, and thus a snapshot of the robot’s experience at this

particular instance is saved as a new event. Hence, if the environment is simple, since it is

highly predictable, the amount of information required to store the state space is minimal.

On the other hand, if the environment is complex and highly unpredictable, the amount of

information to cover the state space has to be adequately large. In other words, state space

abstraction in our method is done based on predictability of the environment.

1 2 3 4 5 6 7 8 9 10

Reward

Behavior

Observation

Experience

Time

Perceptual Segmentation

Events

1 2 3 4 5 6 7 8 9 10

Reward

Behavior

Observation

Experience

Time

Perceptual Segmentation

Events

Figure 18: Event sampling via perceptual segmentation of the experience. The
robot’s continuous experience (observation, behavior, and reward signals) is
encapsulated into a series of discrete events based on temporal changes in the
reward signal.

 63

To predict the current observation, the current reading of every integrated sensor (z)

is estimated by a designated predictive function; the predictive function is modeled by a

straightforward linear equation as shown in Equation 3.45:

 1 −=′ ttt zwz (3.4)

where tz ′ is the predicted sensor reading at instance t (current), 1−tz is the actual sensor reading

at the previous instance, w is a current weight being updated by some simple reinforcement

learner. Here, the reinforcement learner can be implemented with, for example, TD(λ) [170]

(Section 2.4.1), in which the update rule shown in Equation 3.5 is applied to adjust the

weight:

 ∑
=

−
+ ′∇′−+=

t

k

k

kt

tttt zzzww
1

1)(λα (3.5)

where α is a learning rate, λk is an exponential weighting factor6, and the gradient kz ′∇ is a

partial derivative of kz′ with respect to the weight
7. At each time cycle, a root-mean-squared

(RMS) difference of predicted and actual sensor readings is calculated. When the RMS

difference is the greatest (local maximum) among neighboring instances, a new event is

sampled:









<

−′
=

−′

=
otherwisefalse

andiftrue 0
)(

 0
)(

)(

2

rms

2

rms

sample
dt

oofd

dt

oodf

tf

tttt

 (3.6)

where frms is a function that returns a RMS of a vector.

5 The subscript (t) denotes a temporal index, different from the subscript used to denote the integrated sensor
types in Equation 3.1.

6 Sutton and Barto [171] refers to this factor as an eligibility trace.

7 Because of Equation 3.4, kz ′∇ is simply 1−kz .

 64

A simple example of the event sampling process is demonstrated in Box 1.

Furthermore, Figure 20 shows the prediction errors of observations when a simulated robot

(integrated with 10 sonar sensors) proceeds along a corridor in an office building. Each spike

represents the occurrence of an event, and it shows how events are clustered around salient

features of the environment such as open doors and a corridor junction.

Box 1: A simple example of event sampling.

Figure 19 below illustrates a simple environment with a concave wall. A mobile

robot, equipped with a one-dimensional range sensor facing the wall, moves from Position 0

to Position 8, measuring the distance to the wall nine times. Table 1 shows the

measurements (z) at the nine instances, the predicted measurements (z') attained via

Equation 3.4, the root-mean-squared differences (error) between z and z', and the outputs of

the sampling function (Equation 3.6).

In this case, the events are sampled at instances 3 and 6 as the characteristic of the

sensor signal significantly changes at those instances.

00

WallWall

11 22 66 77 8833 44 55Robot TraceRobot Trace

1D Range 1D Range
SensorSensor

00

WallWall

11 22 66 77 8833 44 55Robot TraceRobot Trace

1D Range 1D Range
SensorSensor

Figure 19: A trace of a robot measuring the distance to a concave wall.

Table 1: The measurements (z) at the nine instances, the predicted measurements

(z'), the error of z', and the outputs of the sampling function.

t 0 1 2 3 4 5 6 7 8

z 1.0 1.0 1.0 2.0 2.0 2.0 1.0 1.0 1.0

z' 1.0 1.0 1.0 1.0 2.0 2.0 2.0 1.0 1.0

error 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0

f sample (t) FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE

 65

RMS Prediction Error

0

0.05

0.1

0.15

0.2

0.25

Time Step

R
M
S
 P
re
d
ic
ti
o
n
 E
rr
o
r

Doors

Doors

Corridor

Junction

Robot Passage

1 35 69 103 137 171 205 239 273 307 341 375 409 443 477 511

RMS Prediction Error

0

0.05

0.1

0.15

0.2

0.25

Time Step

R
M
S
 P
re
d
ic
ti
o
n
 E
rr
o
r

Doors

Doors

Corridor

Junction

Robot Passage

1 35 69 103 137 171 205 239 273 307 341 375 409 443 477 5111 35 69 103 137 171 205 239 273 307 341 375 409 443 477 511

Figure 20: A graph of prediction errors and a corresponding robot path in a simulated indoor
environment. The robot has 10 sonar sensors onboard. Each spike in the graph indicates the
occurrence of a new event.

3.1.2 Formation of Episodic Memories

Like a single frame in a motion picture film, an event itself is a mere snapshot of the

world at some particular instance. However, when presented collectively in a sequence, the

information becomes vivid and provides a robot with a foundation for computing proactive

intelligent behavior. Here, contextually similar events in a sequence are grouped together,

forming another computational element called an episode (or episodic memory when collectively

saved in the robot’s physical memory). Presenting formally, an episode (E) holds an n-length

ordered vector of events along with its contextual information (χ):

 }),,...,,{(21 χneeeE = (3.7)

The notion of context (χ) is explained in detail below.

 66

Purposive Contextualization

The method of forming episodes based on goals is here referred to as purposive

contextualization. A goal is a desired perceptual state that the robot is attempting to reach. For

example, suppose that the robot is equipped with a gripper and tactile sensors. If the robot

intends to grab a ball, a set of expected tactile sensor readings, indicating a ball being

grabbed, becomes a goal. Recall that an observation (o) is defined in terms of readings of

integrated sensors (Equation 3.1). Likewise, goal (g) is defined with an m-length vector of

sensor readings where m is the number of the integrated sensors:

 },,{ 21 mzzzg K= (3.8)

Different goals can be activated (or deactivated) depending on the robot’s

motivational state (Section 3.3.1). When activated, the events that were sampled during the

pursuit of a goal are grouped together, forming a new episode (Figure 21). In this case, the

episode in Equation 3.7 is alternatively represented as:

 }),,...,,{(21 geeeE nP = (3.9)

Note that deactivation of the goal results in termination of this particular episode. However,

deactivation of a goal does not necessary imply that the goal is actually met by the robot. As

mentioned above, activation and deactivation of a goal are determined by a motivation

function whose outcome reflects the robot’s motivational state (see Section 3.3.1). Hence,

even if the goal is not met, the episode can be terminated.

 67

1 2

Reward

Behavior

Observation

Experience

Time

Event

Episodes

Partitioning based on Goals

Goal

Context

1 2

Reward

Behavior

Observation

Experience

Time

Event

Episodes

Partitioning based on Goals

Goal

Context

Figure 21: Production of episodes via purposive contextualization. Events are divided
into different episodes based on changes of the goals that the robot pursues.

Utilitarian Contextualization

The robot, however, is not required to have a specific perceptual goal all the time.

For example, it may wander around to explore the environment without a particular desired

perceptual state in mind. In this case episodes are not formed based on goals, but instead by

changes in the reward signal that guides the partitioning of the events (utilitarian

contextualization) (Figure 22).

 68

321Reward

Behavior

Observation

Experience

Time

Event

Episodes

Partitioning based on the Reward Signal

Context

321Reward

Behavior

Observation

Experience

Time

Event

Episodes

Partitioning based on the Reward Signal

Context

Figure 22: Production of episodes via utilitarian contextualization. Events are divided into
different episodes based on how significantly the characteristics of the reward signal changes.

More specifically, when a goal is not pursued, the value of the reward signal is closely

monitored; when the signal is having some momentous value, the current environment and

the experience leading up to that point is considered important for the robot, and thus the

events occurred during that period are grouped together as a new episode. Here, the reward

signal is considered having a momentous value when the characteristic of the reward signal is

changed significantly. For example, a first-order differential equation can be used to identify

mathematically critical points (i.e., local maximum and minimum) in the signal:







 =
=

otherwisefalse

iftrue 0
)(partition

dt

dr

tf

t

 (3.10)

In other words, if the derivative of the reward signal becomes zero, f
partition

 returns true, the

 69

events until then are partitioned into a new episode. Note that f
partition

 can be implemented

using other appropriate functions as long as the characteristic of the reward signal can be

identified.

In the utilitarian contextualization, the observation stored in the end-event when the

reward signal had a momentous value is set as the context of the episode. Hence, the episode

in Equation 3.7 can be expressed as:

 }),,...,,{(][21 nenU oeeeE = (3.11)

where][ne
o is the observation of the end-event.

Unidirectional Temporal Linear Chain

It should be noted that, in terms of machine learning, an episode can be considered

the equivalent of a state space (as an event being the equivalents of a state). However, in an

episode, events are organized in a unidirectional temporal linear-chain fashion where the

state (event) transitions are guided by the specific episode trajectory (i.e., the exact order of

the event sequence recorded in the episode) (Figure 23). This property in fact benefits the

computation of proactive behavior in two ways. First, it allows us to assume that the

transition probability between any two events can be approximated by a discrete probability

distribution (Poisson) based on the event distance between them. As explained in detail in

Section 3.2.2 and verified in Section 5.1, because of this property, the computational time

required to estimate the current state can be reduced from O(n2) to O(n). The second

advantage is that, as explained in Section 3.2.3 below, when assessing the utility of each state,

a state transition between two states that do not belong to a common episode trajectory can

be ignored, reducing the computational steps required for value iteration. In other words,

trajectory sampling [171] can be applied to assess the utility values.

 70

ssAA

ssGG

ssFF

ssDD

ssCC

ssEE

ssBB

TwoTwo--WayWay

TransitionTransition

StateState

ssAA

ssGG

ssFF

ssDD

ssCC

ssEE

ssBB

TwoTwo--WayWay

TransitionTransition

StateState

(a)

ee00

ee66

ee55

ee33

ee22

ee44
ee11

EpisodeEpisode

TrajectoryTrajectory

EventEvent

OneOne--WayWay

TransitionTransition

ee00

ee66

ee55

ee33

ee22

ee44
ee11

EpisodeEpisode

TrajectoryTrajectory

EventEvent

OneOne--WayWay

TransitionTransition

(b)
Figure 23: (a) A general state machine with fully connected
transitions. (b) Formation of an episode with a unidirectional
linear chain of events (from e0 to e6).

3.1.3 Construction of Referents

As described above, events and episodes are computational elements that carry both

precise and abstract levels of information, respectively. Here, referents offer a middle ground

between the two to provide flexibility of solutions in computing proactive intelligent

behavior. In particular, referents are utilized in computing improvisational behavior (Section

3.2.5). The concept of referents was adopted from Jazz improvisation [133] (Section 2.3.2).

A referent outlines the behavioral progression in an episode. Each referent is

constructed from a single episode. A referent consists of a sequence of nodes, and each node

has a unique association with a particular behavior type instantiated in that episode. Along

with the behavior type, a referent node also retains the notions of what the robot was

 71

observing before and after the behavior was executed. Here, the observation perceived

before executing the behavior is referred to as a nodal precondition, and the perceptual state

perceived after the execution is referred to as a nodal effect. Expressed formally, a referent

node (ω) consists of a behavior (b), a nodal precondition (o
init
), and a nodal effect (o

end
):

 },,{ endinit oob=ω (3.12)

The representation of b is exactly same as the one defined in Equation 3.2 (i.e., a set of

active motor schemata), and both o
init
 and o

end
 share the exactly same representation with

observation (o) defined in Equation 3.1 (i.e., a set of sensor readings).

A sequence of nodes collected from a single episode composes a referent (Ω), which

can be formally expressed as:

),...,,(21 Rωωω=Ω (3.13)

where R is the number of referent nodes. Note that the number of referent nodes is same as

the number of times the behavior instantiation has been altered in one episode (Figure 24).

An example of how a referent can be extracted from an episode is shown in Box 2.

Note that the framework of referents is set up in a way that some classical planning

algorithm (e.g., STRIPS planning [57]) may be employed to plan a sequence of actions based

on the referent nodes. In this case, the behavior in a referent node is an action (operator).

After associating the numerically described goal (Equation 3.8) and nodal

preconditions/effects with some abstract symbols, an agent should be able to generate a

sequence of actions that leads a robot to reach a goal state from a current state. However,

such symbolic planning is beyond the scope of this dissertation. Our use of referents in the

context of improvisation is described in Section 3.2.5.

 72

Episode

Referent

Precondition Effect Effect EffectPrecondition Precondition

Referent Nodes

321

Reward

Behavior

Observation

Experience

Event

1 2 3

Episode

Referent

Precondition Effect Effect EffectPrecondition Precondition

Referent Nodes

321

Reward

Behavior

Observation

Experience

Reward

Behavior

Observation

Experience

Event

1 2 3

Figure 24: Construction of a referent from an episode based on behavioral instantiations. In
this case, three referent nodes are extracted since there were three behavioral instantiations
during this episode. The observation perceived before Behavior 1 is stored as the nodal
precondition of Node 1. The observation at the end of Behavior 1 is the nodal effect of Node 1
as well as the nodal effect of Node 2. Similarly, the observation at the end of Behavior 2 is the
nodal effect of Node 2 as well as the nodal effect of Node 3. Finally, the observation at the
end of Behavior 3 is the nodal effect of Node 3. (See Box 2 for an example with concrete
numbers.)

 73

Box 2: An example of constructing a referent.

Suppose that an episode (Episode 1) consists of 10 events as shown in the table

(Table 2) below. Since its behavior type (b) was altered twice (at events e3 and e7), three

referent nodes (ω1, ω2, and ω3) are extracted (similar to the diagram in Figure 24 above).

The nodal precondition of ω1 is the observation perceived before bMF is executed (i.e., z = 1.7),

and its nodal effect is the observation of e2 (i.e., z = 4.7). The observation of e2 is also the

nodal precondition of ω2. Similarly, the observation of e6 (i.e., z = 0.9) is the nodal effect of

ω2 as well as the nodal precondition of ω3. The nodal of effect of ω3 is the observation of e9

(z = 5.8).

Table 2: The perceptual information (z), behavioral information (b), and referent nodes (ωωωω) of the
events in Episode 1.

Episode 1  e 0 e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9

z 1.7 9.1 5.8 4.7 5.7 5.0 7.1 0.9 4.0 1.9 5.8

b  bMF b MF bMF b SO b SO b SO b SO b MF bMF bMF

ω  ω 1 ω 1 ω 1 ω 2 ω 2 ω 2 ω 2 ω 3 ω 3 ω 3

3.2 Computation of Proactive Intelligent Behavior

In this section, the algorithmic processes involved in computation of proactive

intelligent behavior are explained. The overall progression of the computation is illustrated

in Figure 25. Recollection, event matching, behavior selection, validation, and recovery are

performed during the computation. The following subsections describe these processes in

detail.

 74

RecollectionRecollection
InstanceInstance--Based LearningBased Learning

Event MatchingEvent Matching
Recursive Bayesian FilteringRecursive Bayesian Filtering

Behavior SelectionBehavior Selection
Markov Decision ProcessMarkov Decision Process

Episodic MemoriesEpisodic Memories

P
 O
 M

 D
 P

P
 O
 M

 D
 P ValidationValidation

RecoveryRecovery

Valid?Valid?

BehaviorBehavior

YesYes
AnticipatoryAnticipatory

NoNo
ImprovisationalImprovisational

RecollectionRecollection
InstanceInstance--Based LearningBased Learning

Event MatchingEvent Matching
Recursive Bayesian FilteringRecursive Bayesian Filtering

Behavior SelectionBehavior Selection
Markov Decision ProcessMarkov Decision Process

Episodic MemoriesEpisodic Memories

P
 O
 M

 D
 P

P
 O
 M

 D
 P ValidationValidation

RecoveryRecovery

Valid?Valid?

BehaviorBehavior

YesYes
AnticipatoryAnticipatory

NoNo
ImprovisationalImprovisational

RecollectionRecollection
InstanceInstance--Based LearningBased Learning

Event MatchingEvent Matching
Recursive Bayesian FilteringRecursive Bayesian Filtering

Behavior SelectionBehavior Selection
Markov Decision ProcessMarkov Decision Process

Episodic MemoriesEpisodic Memories

P
 O
 M

 D
 P

P
 O
 M

 D
 P ValidationValidation

RecoveryRecovery

Valid?Valid?

BehaviorBehavior

YesYes
AnticipatoryAnticipatory

NoNo
ImprovisationalImprovisational

Figure 25: A flow chart of the proactive behavior computation.

3.2.1 Recollection

Recollection is a process to recall relevant episodes from memory in order to deal

with the environment in which the robot currently is located. The recalled episodes offer a

basic framework on which the computation of proactive behavior can be based. Here, the

relevance of an episode is calculated with respect to a goal that the robot pursues. In terms

of machine learning, recollection can be considered as the equivalent of defining an

appropriate state space for a given goal. However, it should be noted that while a standard

machine learning problem defines only a single state space to work with, in this episodic-

memory-based computation, multiple state spaces (episodes) can be specified for a sole

problem (goal). On the other hand, if the robot pursues no goal, the recollection process

yields no relevant episode (i.e., the state space is empty); hence, proactive behavior cannot be

computed in this case.

The core algorithms involved in the recollection process are essentially the same as

 75

those found in instance-based learning (Section 2.4.3), consisting of similarity and

classification functions [6]. The details of the similarity and classification functions used in

this recollection process are explained below.

Similarity Function

Recall that an episode consists of a sequence of events as well as the context (χ)

(Equation 3.7). The relevance of the episode is measured in terms of the similarity between

the context and goal, which are both expressed in the form of a set of sensor readings (see

Equations 3.9, 3.11, and 3.8). As explained in Section 3.1.2 above, depending on how the

episode was formed, the context can be either a past goal that the robot was pursuing

(purposive contextualization) or a set of particular perceptual readings at the climax of the

episode (utilitarian contextualization). The similarity value (Eρ) in both cases is computed

probabilistically as shown in Equation 3.14:

),(][curL EE gf χρ = (3.14)

where the function returns the likelihood of the goal (curg), sampled from a certain

probability distribution8 where the context of the episode (][Eχ) is the mean. An example of

computing similarity values for a simple case is shown in Box 3. Note that, as explained in

Section 3.2.5 below, an intermediate goal attained via the recovery process can also be

evaluated with this function when the robot is computing improvisational behavior.

8 Here, we assume the normal distribution, a common distribution used to model a sensor with noise (e.g.,
Kalman filter [82]).

 76

Box 3: An example of computing similarity values.

Suppose that the current goal (curg) is to touch a red object, which is expressed as:

0.0} 0.0, 0.0, {1.0,},,,{ DistBlueGreenRedcur == zzzzg

The first three elements (normalized) are the red, green, and blue values of the object color,

respectively. The fourth element is the distance to the object. Suppose also that there are

two types of episodic context, 1χ is 2χ , representing the robot’s perceptual states in which

the robot touches a pink object and a green object, respectively:

0.0} 0.8, 0.7, {1.0,1 =χ and 0.0} 0.0, 1.0, {0.0,2 =χ

Having χ as its mean, the Gaussian probability density function is expressed as:










−
−Σ−

Σ
=

−

2

)()(
exp

)2(

1
)(

1T

2/Gauss

χχ

π
χ

XX
Xf

N

where N is the dimension of the vector (which is 4), and ∑ is a covariance matrix. For the

sake of this example, we assume that ∑ is the identity matrix (i.e., the sensors are

uncorrelated, and the variance is 1.0); the determinant of ∑ is thus 1.0.

The similarity values are computed by inserting curg into the Gaussian function as:










−
−−

===
2

)()(
exp

)2(

1
)(),(cur

T

cur

2curGausscurL

χχ
π

χρ χ

gg
gfgfE

Therefore, the similarity values of 1χ and 2χ with respect to curg are computed as:

0144.0
2

)0.00.0()8.00.0()7.00.0()0.10.1(
exp

)2(

1 2222

21 =








−
−+−+−+−

=
π

ρE

0093.0
2

)0.00.0()0.00.0()0.10.0()0.00.1(
exp

)2(

1 2222

22 =








−
−+−+−+−

=
π

ρE

Since it has a larger similarity value, in this case, 1χ is more similar to curg than 2χ .

 77

Classification Function

Once the similarity value is determined, the next step in recollection is to classify the

episode as to whether it is relevant or irrelevant to the current goal. The episode is classified

as relevant if the similarity value is found above a predefined threshold. Having a very high

threshold means that the only episodes whose contexts are identical to the current goal are

considered relevant. On the other hand, if the threshold is set to low, the episodic contexts

that are not substantially similar to the current goal can be considered relevant. Note that

while a tentative value was set for the threshold in our implementation (Chapter 4), this

value can be eventually learned by some reinforcement method (e.g., simulated annealing

[85]) although it is beyond the scope of this dissertation.

Presenting formally, for any episode that is in the robot’s memory (C), if the

similarity value is above the threshold (ρθ), the episode is classified as relevant and added to

the working memory (relM):

 }}{|{
:1:1:1rel ρθρ ≥∧⊆=
KEKK CEEM (3.15)

where K is an upper limit value posed to restrict the size of relM . Note that a high K value is

certainly always desirable since a statistically significant number of episodes can be collected

to make an informed decision for a specific goal. However, as discussed in Section 5.3,

having a higher K value requires greater computational power. A similar notion of restricting

the size of the working memory has been suggested by Kira and Arkin [84] in the context of

case-based reasoning (see Section 2.4.2). In order to reduce the size of a case library, four

types of strategies were proposed to eliminate cases from the library: namely, 1) random

elimination, 2) performance-based elimination (i.e., delete poorly performed cases), 3)

recency-based elimination (i.e., delete old cases), and 3) frequency-based elimination (i.e.,

 78

delete infrequently used cases). According to their experiment in simulation, the

performance-based elimination strategy and a combination of the three non-random

strategies were found most useful for robot navigation. However, the difference from our

method is that their case consists of behavior parameters while ours consists of an episode

that is a sequence of perceptions/behaviors/rewards. As we will discuss in Section 3.2.3, an

episode with poor performance should not be eliminated because such an episode can

contribute to discount the utility of executing a certain undesirable behavior. Since we

assume that the environment does not stay static, in our case, we apply the recency-based

elimination strategy to restrict the size of the working memory. In other words, the newer a

recalled episode the higher its priority is; episodes that are not in the first K newest episodes

are thus eliminated from the selection. We refer to this process as history-length trimming, and

its effectiveness is evaluated in the third experiment (Section 5.3). Box 4 shows an example

of how to compute the relevance of episodes.

 79

Box 4: An example of computing relevance of episodes.

Suppose that there are nine episodes in the robot’s memory whose similarity values

(Eρ) are specified as shown in Table 3 below. The episodes in the table are ordered

chronologically; E1 is the earliest episode, and E9 is the latest one. Here, we suppose that the

threshold (ρθ) is set to 0.01. If the upper bound is not set (i.e., K = ∞), six episodes (E1, E3,

E4 E5, E6, and E8) will be classified as relevant as they exceed the threshold. If however K is

set to 3, the only three latest episodes from the six (E5, E6, and E8) will be classified as

relevant.

Table 3: The similarity values (ρρρρE) and relevance of sample episodes.

RelevantRelevantRelevant
ρE ≥ θρ , K = 3

RelevantRelevantRelevantRelevantRelevantRelevant
ρE ≥ θρ , K = ∞

0.0060.0150.0080.0130.0100.0110.0120.0090.014ρE

E9E8E7E6E5E4E3E2E1

RelevantRelevantRelevant
ρE ≥ θρ , K = 3

RelevantRelevantRelevantRelevantRelevantRelevant
ρE ≥ θρ , K = ∞

0.0060.0150.0080.0130.0100.0110.0120.0090.014ρE

E9E8E7E6E5E4E3E2E1

�� �� �� �� �� ��

�� �� ��

3.2.2 Event Matching

If recollection is the process to define a state space for solving the current goal,

event matching is the equivalent of state estimation. More specifically, the function of event

matching is to identify the event that best represents (matches) the current situation from

every relevant episode collected by the recollection process. Here, event matching is

accomplished by a recursive Bayesian filter, the probabilistic method commonly used for

solving the simultaneous localization and mapping (SLAM) problem [178]. At first, for each

relevant episode, the posterior probabilities (belief) of being at some event (eq) in the

 80

episode given the history of the observations (τo) and executed behaviors (τb) are solved by

the following recursive equation9:

 ∑
∈

−−
−−

−

=
Ee

qqq b|oepe|bep|eopb|oep
1

),(),()(),(11

11

τ

ττ
ττττ

ττ η (3.16)

where η is a normalization factor,)|(qeop τ is the sensor model,),(1−ττ e|bep q is the

transition model, and),(11

1

−−
−

ττ
τ b|oep is the belief of the previous computational cycle. An

example of the posterior probability computation is shown in Box 5.

To implement the sensor model, which is the conditional probability of observing oτ

given the query event (eq), the same similarity function used in the recollection process

(Equation 3.14) can be employed:

),()|(][L qeq oofeop ττ = (3.17)

where oτ is the current observation, and][qe
o is the observation saved in the querying event.

9 See Appendix A for derivation.

 81

Box 5: An example of the posterior probability computation.

Suppose that a robot experienced an episode, Episode 1 (Table 4), in which it

sampled five events while moving forward and measuring the distance to a concave wall as

shown in the figure. Table 5 shows the current sequence of the robot’s perceptual and

behavioral information (τ – 3 is the earliest, and τ is the latest). As shown in Table 6, the

posterior probabilities (Equation 3.16) at instances τ – 3, τ – 2, τ – 1, and τ have their

highest values at e0, e1, e2, and e3, respectively. Note that),(3

ττ b|oep at τ – 2 also has a

relatively high value (0.14) since e1 and e3 are similar in terms of their sensor readings (2.00).

Episode 1Episode 1

1D Range 1D Range
SensorSensor

WallWall

ee00 ee33ee11 ee22 ee44Episode 1Episode 1

1D Range 1D Range
SensorSensor

WallWall

ee00 ee33ee11 ee22 ee44ee00 ee33ee11 ee22 ee44

Table 4: The perceptual (z) and behavioral (b) information of Episode 1.

Episode 1 e 0 e 1 e 2 e 3 e 4

z 1.00 2.00 3.00 2.00 1.50

b Move-Forward Move-Forward Move-Forward Move-Forward Move-Forward

Table 5: The perceptual (z) and behavioral (b) information of the current sequence.

Current Sequence τ -3 τ -2 τ -1 τ
z 0.99 2.01 3.05 2.04

b Move-Forward Move-Forward Move-Forward Move-Forward

Table 6: The posterior probabilities of the current sequence.

Posterior Probability

τ - 3 0.99 0.00 0.00 0.00 0.01

τ - 2 0.00 0.86 0.00 0.14 0.00

τ - 1 0.00 0.00 1.00 0.00 0.00

τ 0.00 0.00 0.00 1.00 0.00

),|(1

ττ boep),|(2

ττ boep),|(3

ττ boep),|(4

ττ boep),|(0

ττ boep

 82

On the other hand, the transition model is the transition probability of the robot

arriving at the target event (eq) when the previous event is 1−τe and behavior bτ is currently

being executed. In the certainty equivalence approach [94, 189], the transition probabilities

may be estimated by taking the statistic of the transitions while exploring the environment

[81, 171]. For example, a robot may randomly explore the environment and keep track how

many transitions from one state to another have occurred. On the other hand, in this

episodic-memory-based approach, since events are formed in a unidirectional temporal linear

chain (Equation 3.7), the transition model can be computed in terms of how many events

the robot has to advance from 1−τe in order to reach eq. Let ej be 1−τe , the transition model

can be formally represented as:








≠>+

=>+

=

otherwise

andif else

andif

),(

),(

),|(P

P

m

qmqjm

qmqj

jq bbjqeef

bbjqeef

ebep

ε
εκ

ε

τ

τ

τ (3.18)

where εm is some extremely small number to ensure that the probability does not become

absolutely zero, κm is a discount factor, and fP is a function that returns the probability of the

robot reaching eq from ej. Here, fP assumes a discrete probability distribution, namely, the

Poisson distribution. More specifically, let us define dj:q to denote the distance between ej

and eq in terms of event numbers, and d to denote the average number of events that the

robot advances within one computational cycle. The probability of the robot reaching eq

from ej is then computed by the following equation:

!

)exp(
),Poisson(),(

:

)(

:P

:

qj

d

qjqj
d

dd
ddeef

qj−
== (3.19)

In other words, the output of the transition model (Equation 3.18) is the probability

computed by f
P
 if the index of eq is greater than the index of 1−τe , and also if τb is the same

 83

behavior that is stored in eq; if the behaviors mismatch, the probability is discounted. Ideally,

the amount of the discount should be analytically assigned based on the characteristics of the

behaviors. For example, if bq and τb makes a robot move in opposite directions, the

discount should be greater than when moving in the same direction. Currently, however, the

discount factor is assumed a constant. The analytical assignment of the value should be

addressed in the future. An example of this transition model computation is shown in Box 6.

Box 6: An example of the transition model computation.

Suppose a previously stored episode (Episode 1) consists of five events whose

behavioral information is shown in Table 7 below. Suppose also that the robot is currently

instantiating the Move-Forward motor-schema (i.e., bτ = Move-Forward). Table 8 shows

four cases of the transition model computation in which the transition probability of arriving

at an event (eq) in Episode 1 from another event (ej) in Episode 1 is calculated by Equation

3.18. In Case 1, since q comes after j, and bq matches with bτ, the transition probability is

simply the output of the Poisson function (Equation 3.19) plus some εm. In Case 2, since bq

and bτ mismatch, the output is multiplied by a predefined discount factor. In Cases 3 and 4,

since q comes earlier than j, the transition probability is just εm.

Table 7: The behavioral information of Episode 1.

Episode 1 e 0 e 1 e 2 e 3

b Move-Forward Move-Forward Swirl-Obstacle Swirl-Obstacle

Table 8: Four cases of transition model computation.

Case 1 Case 2 Case 3 Case 4

e q = e 1 e q = e 2 e q = e 1 e q = e 2

e j = e 0 e j = e 1 e j = e 2 e j = e 3

q > j TRUE TRUE FALSE FALSE

b q = b τ TRUE FALSE TRUE FALSE

0.368 0.368 0.000 0.000

0.368 + ε m 0.368κ m + ε m ε m ε m

),(P qj eef

),|(jq ebep τ

 84

Since the posterior probabilities are computed whenever the event sampling captures

a new event, the value of d is assumed to be 1.0. The graph of the Poisson probability mass

function when d is 1.0 is shown in Figure 26. Since d is always assumed to be 1.0, the

transition probability is always chosen from this distribution. Consequently, as indicated in

the figure, the probability becomes near-zero (0.003) when the distance from ej to eq

becomes five. This is a property of this function that can be in fact exploited to reduce the

computational burden of event matching for each episode from O(n2) to O(n) by computing

the transition model in Equation 3.16 only for a 5-event distance (instead of all n events).

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20

NearNear--ZeroZero

P
ro
b
ab
il
it
y
 o
f
a
ro
b
o
t
ad
v
an
ci
n
g

P
ro
b
ab
il
it
y
 o
f
a
ro
b
o
t
ad
v
an
ci
n
g
 dd

j:
q

j:
q

in
 o
n
e
co
m
p
u
ta
ti
o
n
al
 c
y
cl
e

in
 o
n
e
co
m
p
u
ta
ti
o
n
al
 c
y
cl
e

ddj:qj:q (distance from (distance from eejj to eto eqq))

Poisson Probability Mass FunctionPoisson Probability Mass Function

((d = 1.0= 1.0))dd

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20

NearNear--ZeroZero

P
ro
b
ab
il
it
y
 o
f
a
ro
b
o
t
ad
v
an
ci
n
g

P
ro
b
ab
il
it
y
 o
f
a
ro
b
o
t
ad
v
an
ci
n
g
 dd

j:
q

j:
q

in
 o
n
e
co
m
p
u
ta
ti
o
n
al
 c
y
cl
e

in
 o
n
e
co
m
p
u
ta
ti
o
n
al
 c
y
cl
e

ddj:qj:q (distance from (distance from eejj to eto eqq))

Poisson Probability Mass FunctionPoisson Probability Mass Function

((d = 1.0= 1.0))dd

Figure 26: The probability mass function for the Poisson distribution.

After the posterior probabilities for all of the events in the episode are computed, the one

with the highest probability is considered as the event that best represents the current state.

However, it is possible that the state space was not appropriately chosen by the recollection

process. In other words, none of the events could correspond to the current state. In that

case, similar to the approach suggested by Tomatis et al. [183], the entropy of the posterior

probability distribution is checked. Here, the entropy (H) of the posterior probability

distribution for an episode (E) is computed by Shannon’s information entropy equation

 85

[157]:

),|(log),|()(2

ττττ boepboepEH i

Ee

i

i

∑
∈

−= (3.20)

Having a high entropy value infers that the probability distribution is close to uniform. Thus,

only if the entropy is below the predefined threshold (θH), the event with the highest

posterior probability in the episode is considered matched (][
ˆ

Ee) to the current event (state):

 })(),(argmax|{ˆ
][H

Ee
E EHbe|opeee θττ ≤∧==

∈
 (3.21)

Note that the value of θH is currently determined empirically although a more sophisticated

method to determine the value should be addressed in future work. For example, in our

indoor experiment using a real robot (Section 5.2), θH was set to 2.5 (Section C.1). An

example of this event-matching process is shown in Box 7.

It should be also noted that, if the recollection yields k episodes as relevant (Equation

3.15), there will be at most k events that could be legitimately matched. A set of all relevant

episodes whose events are legitimately matched is denoted with relM̂ :

 })(|{ˆ
relrel HEHMEEM θ≤∧∈∀= (3.22)

The example shown in Box 8 demonstrates this equation in use.

 86

Box 7: An example of event matching.

Suppose that a robot experienced two episodes, Episode A (Table 9) and Episode B

(Table 10). The current sequence of the robot’s perceptual and behavioral information is

shown in Table 11. As shown in Table 12, at the current instant (τ), the highest posterior

probabilities (Equation 3.16) for Episodes A and B can be found at eA3 and eB3, respectively.

Suppose that the threshold (θH) is set to 2.0. As shown in Table 12, in this case, eA3 is the

only event that is considered matched since the entropy (H) of Episode A does not exceed the

threshold.

Table 9: The perceptual (z) and behavioral (b) information in Episode A.

Episode A e A0 e A1 e A2 e A3 e A4

z 1.00 2.00 3.00 2.00 1.50

b Move-Forward Move-Forward Move-Forward Move-Forward Move-Forward

Table 10: The perceptual (z) and behavioral (b) information in Episode B.

Episode B e B0 e B1 e B2 e B3 e B4

z 1.95 2.00 2.05 2.10 2.30

b Move-Forward Move-Forward Move-Forward Move-Forward Move-Forward

Table 11: The perceptual (z) and behavioral (b) information of the current sequence.

Current Sequence τ -3 τ -2 τ -1 τ
z 0.99 2.01 3.05 2.04

b Move-Forward Move-Forward Move-Forward Move-Forward

Table 12: Event matching of the two episodes and their entropy values.

H H ≤ θ H

Episode A 0.00 0.00 0.00 1.00 0.00 0.02 TRUE

Episode B 0.17 0.21 0.22 0.23 0.17 2.31 FALSE

),|(1

ττ boep),|(2

ττ boep),|(3

ττ boep),|(4

ττ boep),|(0

ττ boep

 87

Box 8: An example of restricting relevant episodes based on entropy.

Here, the same set of nine episodes examined in Box 4 is presented. Along with the

similarity value (Eρ), in this example, the entropy value (H) for each episode is also shown.

Suppose that the similarity threshold (ρθ), the upper limit (K), and the entropy threshold

(Hθ) are set to 0.01, 3, and 1.00, respectively. In this case, according to Equation 3.22, E5 is

the only episode whose event is legitimately matched (i.e., rel5 M̂E ∈) because it is one of the

K latest episodes whose similarity values is above the threshold, and its entropy is kept

below the threshold.

Table 13: The similarity values (ρρρρE), relevance, and entropy values (H) of sample episodes.

1.101.390.081.370.061.350.041.330.02H

TRUEFALSETRUEFALSETRUEFALSETRUEFALSETRUEH ≤ θH

RelevantRelevantRelevant
ρE ≥ θρ , K = 3

0.0060.0150.0080.0130.0100.0110.0120.0090.014ρE

E9E8E7E6E5E4E3E2E1

1.101.390.081.370.061.350.041.330.02H

TRUEFALSETRUEFALSETRUEFALSETRUEFALSETRUEH ≤ θH

RelevantRelevantRelevant
ρE ≥ θρ , K = 3

0.0060.0150.0080.0130.0100.0110.0120.0090.014ρE

E9E8E7E6E5E4E3E2E1

�� �� ��

3.2.3 Behavior Selection

Based on the defined state space and estimated current state, the most suitable action

for proactive intelligent behavior can be computed. Here, the action is selected in terms of

behavior as a set of motor schemata (Equation 3.2). In other words, a set of motor schemata

that is expected to lead the robot to the most rewarding situation is determined. As in a

standard Markov decision process (MDP) problem, the notion of utility is incorporated into

this computation. By applying a Bellman equation [25], the utility (U) of each event in an

episode is computed as shown in Equation 3.23:

 88

 ∑
∈′

+ ′′+=
Ee

iiUii eUebepreU)(),|()(1κ (3.23)

where ri is the reward value stored in ei, and Uκ is a factor that determines the influence of

other events. It should be noted that),|(1 ii ebep +′ is the same transition probability

employed in the transition model (Equation 3.18). The example in Box 9 shows the utility

values of events in a sample episode. Generally, in an MDP problem, the Bellman equation

has to be iterated for a number of times to obtain converged utility values (value iteration)

[171]. On the other hand, here, because of the events forming a unidirectional temporal

linear chain10, from the end event to the start event, the utility value can be computed by a

recursive (dynamic programming [25]) fashion without any iteration. Furthermore, the utility

computation does not in fact have to be carried out each time when an action is determined.

It has to be performed only once when the episode is added to the memory.

10 εm in the transition probability (Equation 3.18) is zero in this case.

 89

Box 9: An example of the utility computation.

Suppose that a previously stored episode (Episode 1) consists of four events whose

reward values (r) are recorded as shown in the table below. Note that the events in the table

are ordered from the newest one (e4) to the oldest one (e0) as their utility values are

recursively computed in this order (i.e., from U(e4) to U(e0)) via Equation 3.23. For

example, U(e3) is calculated based on U(e4), and U(e2) is calculated based on U(e3) and

U(e4).

Table 14: The utility values of the events in Episode 1.

Episode 1 e 4 e 3 e 2 e 1 e 0

r 1.00 0.50 0.00 0.00 0.00

U (e i) 1.00 0.87 0.50 0.41 0.31

 0.37 0.18 0.06 0.02
  0.32 0.16 0.05
   0.19 0.09
    0.15
    )(),|(010 eUebep ii+

)(),|(111 eUebep ii+

)(),|(212 eUebep ii+

)(),|(313 eUebep ii+

)(),|(414 eUebep ii+

Based on the utility value associated with each event, the optimal behavior (∗b) that

attains the highest utility value is determined by the following maximization equation:

 ∑∑
∈′Γ∈

+
∗ ′′

Γ
=

+ Ee

E

bEb

eUebep
b

b)()ˆ,|(
|)(|

1
maxarg][

)(

 (3.24)

where),(1 ii e|bep +′ is the same transition probability employed in Equations 3.18 and 3.23;

and, Γ+ is a function that returns a subset of episodes from relM̂ . More specifically, given a

behavior (b), Γ+ returns a special case of episodes in relM̂ where the matched events (][
ˆ

Ee) in

these episodes are followed by events storing b:

 }ˆ},{ˆ {)(1][1rel ++
+ ∈∧=∧⊆∧∈∀=Γ iEiii ebeeEeeMEEb (3.25)

An example of selecting the optimal behavior is shown in Box 10.

 90

Box 10: An example of selecting the optimal behavior.

Suppose that a robot experienced three episodes (EA, EB, and EC) shown in the

tables below. Let us define a function, f
UB
, that computes the expected utility of a behavior:

∑
∈′

′′=
Ee

E eUebepEbf)()ˆ,|(),(][UB

The outputs of f
UB
 are also listed in the tables. Equation 3.24 can be then expressed as:

),(
|)(|

1
maxarg UB

)(

Ebf
b

b
bEb
∑
+Γ∈

+
∗

Γ
=

Thus, having two behavioral types (b
MF
 and b

SO
), ∗b is chosen by comparing these two:

 (1) ()),(),(
},{

1
),(

|)(|

1
MFUBMFUBMFUB

)(MF MF

BA

BAbE

EbfEbf
EE

Ebf
b

+=
Γ ∑

+Γ∈
+

 (2)),(
}{

1
),(

|)(|

1
SOUBSOUB

)(SO SO

C

CbE

Ebf
E

Ebf
b

=
Γ ∑

+Γ∈
+

Note that these are the averaged expected utilities of executing b
MF
 and b

SO
, respectively. By

substituting the f
UB
 values into these equations, the output of (1) becomes 0.31, higher than

the output of (2) that is 0.28. Hence, b
MF
 is selected as the optimal behavior (∗b).

Table 15: The expected utility of executing bMF given episode EA.
Localized

E A e A0 e A1 e A2 e A3 e A4

b bMF bMF bMF bMF bMF 
U (e) 0.31 0.41 0.50 0.87 1.00 

0.00 0.00 0.00 0.00 0.37 0.37)(),|(3MF iAi eUebep

),(MFUB AEbf

Table 16: The expected utility of executing bMF given episode EB.
Localized

E B e B0 e B1 e B2 e B3 e B4

b bMF bMF bMF bMF bMF 
U (e) 0.19 0.25 0.32 0.37 1.00 

0.00 0.00 0.12 0.07 0.06 0.25)(),|(1MF iBi eUebep

),(MFUB BEbf

Table 17: The expected utility of executing bSO given episode EC.
Localized

E C e C0 e C1 e C2 e C3 e C4

b b SO b SO b SO b SO b SO 
U (e) 0.22 0.28 0.34 0.68 0.50 

0.00 0.00 0.13 0.13 0.03 0.28)(),|(1SO iCi eUebep

),(SOUB CEbf

 91

Note that Equation 3.24 is the equivalent of how an optimal policy is computed in a

standard MDP problem. However, while the standard MDP assumes only one state space

and one estimated current state, there can be more than just one estimated current state

(event) space since there can be more than just one state space (episode). The number of

state spaces is the number of episodes returned by function Γ+. Hence, the expected utility

of executing b is averaged over the number of episodes returned by function Γ+. For

instance, in the previous example (Box 10), since Γ+ for the first behavior (b
MF
) returned two

episodes (EA and EB), the expected utility of executing bMF was averaged over the two

episodes. If two or more different behaviors have the exactly same expected utility value, the

behavior is chosen randomly among them.

3.2.4 Validation

The behavior attained through the processes of recollection, event matching, and

behavior selection above assumes that the current world is the same world that the robot

interacted with when those utilized episodic memories were formed. In other words, by

executing a known sequence of actions in a familiar environment, the consequence of the

actions is assumed predictable. Furthermore, the maximization equation (Equation 3.24)

infers that it is the most profitable choice. Hence, the type of proactive intelligent behavior

computed by these processes is here referred to as anticipatory behavior. However, in reality,

the static world assumption does not always hold. The current environment may not be

quite the same as the one the robot interacted with before.

Thus, the validation process provides the robot with a chance to examine whether the

recalled episode indeed represents the current state space accurately. This examination is

done by monitoring how events progress when the robot interacts with the current world

 92

and comparing them against the ones stored in the recalled episode. The following function,

E∆ , quantifies the delay of current event progress with respect to the schedule specified in

the recalled episode:

 1
)ˆ()ˆ(

)(
)(

][1][

−
−

−
=∆

+ iEiE

i
E

eTeT

eTt
t (3.26)

where t is the current time;)(ieT is the timestamp of the event that was sampled most

recently (at instance i);)ˆ(][iEeT is the timestamp of the event from E that was matched at

instance i; and)ˆ(1][+iEeT is the timestamp of the event from E that was sampled right after

iEe][̂ . In other words, E∆ determines how much the occurrence of the current event is

delayed with respect to the expected interval specified in the recalled episode. If the

occurrences of events are found to be on schedule, an episode is classified as valid (Equation

3.27). On the other hand, if the delay of the event progress exceeds a predefined threshold

(∆θ), the episode is classified as invalid and suspended from performing event matching.



 ≤∆
= ∆

otherwisefalse

iftrue

)(
),(

E

valid

θt
Etf (3.27)

Similar to the entropy threshold (Equation 3.21), ∆θ is also determined empirically. Having a

too large threshold could result in delaying or even failing the detection of invalid episodes.

On the other hand, if the threshold is smaller than the range of ordinary noise, it could end

up eliminating valuable episodes. For example, in our experiments (Chapter 5), the threshold

value was set to 5.0 as the number was found to work reasonably well detecting invalid

episodes. Nevertheless, a more sophisticated method to determine a right threshold value

should be addressed in the future. An example of this validation process is shown in Box 11.

If all of the recalled episodes are found invalid, and there is no relevant episode left to select

 93

the output behavior, anticipation is considered to have failed. Therefore, in this case, the

recovery process (improvisation) has to be invoked next.

Box 11: An example of validation.

Suppose a previously stored episode (Episode 1) consists of four events whose time

stamps are recorded as shown in the table below. Suppose also that the current time is 5003,

and the robot is being matched to event e3 since time 5000. Using Equation 3.26, the delay

of current event progress is calculated as:

5.01
10061008

50005003
1

)()(

)(5003
)5003(

34

=−
−
−

=−
−
−

=∆
eTeT

eT i
E

Hence, if the threshold (∆θ) is set to 0.5 or above, Episode 1 will be classified by Equation

3.27 as valid; on the other hand, the episode will be classified as invalid if the threshold is

below 0.5.

Table 18: The timestamps of the events in Episode 1.
Localized

Episode 1 e 0 e 1 e 2 e 3 e 4
Time Stamp 1000 1002 1004 1006 1008

 3.2.5 Recovery

Even if the anticipatory aspect of proactive intelligent behavior could not be

attained, the robot may still be able to compute the improvisational aspect of proactive

intelligent behavior via a recovery process. The recovery process attempts to revive the

proactive intelligent behavior computation by proposing an intermediate goal. The

intermediate goal is then injected back into the processes of recollection, event matching,

and behavior selection to re-compute the appropriate behavior. Recall that at each time

when an episode is formed, the behavioral progression of the event is outlined by a referent

(Section 3.1.3). The recovery process selects an intermediate goal based on a primary

 94

referent, where primary referent (Ω*) refers to the referent of the previously recalled episode

whose last known matched event has the highest utility value comparing to other relevant

episodes:

)(maxarg Ω=Ω
Ω

∗ U (3.28)

where)(ΩU is a function that returns the utility value (Equation 3.23) of the last known

matched event that belongs to the episode from which Ω was constructed. The assumption

here is that the recalled episode is not an exact representation of the current world to

compute anticipatory behavior (since the world appears to have changed), but its basic

outline (referent) still holds sufficient information to perform improvisation. An example of

selecting a primary referent is shown in Box 12.

Box 12: An example of selecting a primary referent.

Three sample episodes (Episodes 1, 2, and 3) and the utility values of their events are

shown in the table (Table 19) below. Suppose that the last known matched events for

Episodes 1, 2, and 3 are e2, e3, and e1, respectively. The function,)(ΩU , in Equation 3.28

returns the utility values of those matched events (also shown in the table). In this case, the

referent abstracted from Episode 1 is chosen as the primary one since its last known

matched event (e2) has the highest utility value (0.50) comparing to other two.

Table 19: The utility values of sample episodes.

Utility U (e 0) U (e 1) U (e 2) U (e 3) U (e 4) U (Ω)
Episode 1 0.31 0.41 0.50 0.87 1.00 0.50

Episode 2 0.19 0.25 0.32 0.37 1.00 0.37

Episode 3 0.22 0.28 0.34 0.68 0.50 0.28

In order to select the intermediate goal, the last known matched event is first

identified (Figure 27). It is up to this event that the episode was able to represent the current

world adequately. One of the nodes in the primary referent is considered an active node (ω*) if

 95

the occurrence of the last known event coincided with it:

)}ˆ()()ˆ()(|{]init[]end[eToTeToT <∧≥∧Ω∈= ∗∗
ωωωωω (3.29)

where)(]init[ωoT and)(]end[ωoT are the timestamps of the nodal precondition and effect of a

referent node (ω), respectively; and)ˆ(eT is the timestamp of the last known matched event.

Finally, the nodal effect (
]end[∗ω

o) of the active node is selected as the intermediate goal (gint):

]end[int ∗=
ω

og (3.30)

An example of selecting an intermediate goal is shown in Box 13.

321

Precondition Effect Effect EffectPrecondition Precondition

Referent

Node

Event

Last Known Matched Event

Active Node

Intermediate Goal

321

Precondition Effect Effect EffectPrecondition Precondition

Referent

Node

Event

Last Known Matched Event

Active Node

Intermediate Goal

Figure 27: Selection of an intermediate goal. Referent Node 2 is
here identified as an active node since the last known matched
event resides within this nodal period. Hence, the nodal effect of
this active node (i.e., the perceptual state stored inside the last event
of this nodal period) is selected as the intermediate goal.

 96

Box 13: An example of selecting an intermediate goal.

Suppose that a previously stored episode (Episode 1) consists of 10 events as shown

in the table (Table 20) below. Since its behavior type (b) was altered twice (at events e3 and

e7), three referent nodes (ω1, ω2, and ω3) are extracted (similar to the diagram in Figure 27).

Suppose also that e4 is the last known matched event. In this case, ω2 is considered an active

node according to Equation 3.29. More specifically, the observation at e2 (i.e., z = 4.7)

becomes the nodal precondition of ω2 (]init[2ω
o) while the observation of e6 (i.e., z = 0.9)

becomes the nodal effect of ω2 (]end[2ω
o). Since e4 occurred after]init[2ω

o and before]end[2ω
o , ω2

is qualified to be an active node. Thus,]end[2ω
o that is the observation of e6 (z = 0.9) becomes

a new intermediate goal (Equation 3.30).

Table 20: The perceptual information (z), behavioral information (b), referent nodes (ωωωω), and
timestamps (T) of the events in Episode 1.

Localized

Episode 1 e 0 e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9

z 9.1 5.8 4.7 5.7 5.0 7.1 0.9 4.0 1.9 5.8

b bMF bMF bMF b SO b SO b SO b SO bMF bMF bMF

ω ω 1 ω 1 ω 1 ω 2 ω 2 ω 2 ω 2 ω 3 ω 3 ω 3
T 5000 5002 5004 5006 5008 5010 5012 5014 5016 5018

Overriding the current goal, the selected intermediate goal is injected back into the

path of recollection, event matching, and behavior selection. In other words, the

intermediate goal becomes the desired perceptual state that the robot is now set to pursue.

Accordingly, relevant episodes are recalled based on this goal, a current state is matched with

respect to the recalled episodes, and the behavior that is expected to benefit the robot most

is attained at last. The behavior computed through this modus operandi is considered

improvisational as it is indeed a resolution to an unanticipated circumstance of the situation,

and the action that is expected to maximize the desired outcome is nevertheless selected

 97

from its own previous experiences.

It should be noted, however, that even if the intermediate goal is injected back into

the system, it is possible for the recollection process to find no relevant episode in the

memory (i.e., there is no episode in the memory whose context is similar to the perceptual

state specified in the intermediate goal). In this case, the recovery process is invoked again to

find more intermediate goals. More specifically, the nodal effects of the two nodes residing

before and after the active node are selected as the new intermediate goals. For instance, in

the case of the example shown in Box 13, if the first intermediate goal (the nodal effect of

the active node (ω2)) fails to yield a new set of relevant episodes, the recovery process will

then select the nodal effects of ω1 and ω3 (i.e., the observations in e2 and e9, respectively) as

the new intermediate goals. The two intermediate goals are simultaneously injected back into

the recollection process. Until the recollection process finds at least one new relevant

episode in the memory or none of the nodes in the primary referent is found to yield any

relevant episode (i.e., improvisation failure), the recovery process will be invoked

indefinitely.

3.3 Auxiliary Functions

The method described above attempts to compute proactive intelligent behavior for

any given environment. The relevance of the behavior is determined with respect to a goal

that is given to the robot, and its utility is assessed based on the reward signal. Specification

of a goal and modulation of the reward signal are computed by two auxiliary functions:

namely, the motivation and reward functions, respectively. Here, the motivation and reward

functions are considered auxiliary since they serve essential but supportive roles, residing

outside the core processes of the proactive intelligent behavior computation.

 98

3.3.1 Motivation Function

Recall that goal is defined as a desired perceptual state represented in the form of

sensor readings (Equation 3.8). Motivation is defined here as a set (π) consisting of a goal (g)

and its magnitude (ψ):

 },{ ψπ g= (3.31)

Having a high ψ value implies that the robot is highly motivated to activate the goal. A goal

becomes active if the motivation to which it belongs has the highest magnitude among

possible candidates:

))}(maxarg(|{cur πππ
π

Ψ=∧∈=
Π∈

ggg (3.32)

where П is a set of all possible motivations, and)(πΨ is a function that returns the

magnitude of the motivation.

Note that, at each time cycle, the magnitude of every motivation in П is adjusted

based on the current goal (gcur) and observation (ocur):

),(curcurmotiv ogf=ψ (3.33)

More specifically, fmotiv is the motivation function that returns the degree of motivation for

pursuing a particular goal given the current observation. An example of how to select a

current goal is shown in Box 14.

The use of motivation has been exploited by many robotics researchers, especially in

behavior-based robotics [12, 29, 124, 146, 169]. In those cases, motivation influences

behaviors directly by adjusting behavior parameters such as the activation level. Here,

motivation instead influences behaviors by setting a goal, and the goal influences behaviors

by recalling relevant episodic memories.

 99

Box 14: An example of selecting a current goal.

Suppose that the current observation (o
cur
) is expressed as:

}9.0 ,0.1{},{ BatteryBumpercur == zzo

where zBumper and zBattery are the readings of a bumper-sensor and a battery-meter, respectively

(both normalized). The numerical values indicate that the robot is currently colliding with an

object, and the battery is 90% full. Suppose also that there are two types of motivation:

namely, πBump-Free and πFully-Charged. Like ocur, the goals of these motivational types are expressed

in terms of zBumper and zBattery with the following numerical values:

}5.0 ,0.0{Free-Bump =g and }0.1 ,5.0{Charged-Fully =g

In other words, gBump-Free is a perceptual state at which no object is colliding with the robot

while the battery is not necessary full. At gFully-Charged, the battery is full, but an object may or

may not be colliding with the robot. Here, we arbitrarily define a function that determines

the magnitude of motivation (Equation 3.33) as:









=−

=+−

==

else

if else

if

0

),(Charged-Fully]Battery[]Battery[

Free-Bump]Bumper[]Bumper[

curmotiv cur

cur

ggzz

ggzz

ogf og

og

ψ

where]Bumper[gz and]Bumper[curoz are the normalized bumper-sensor readings in g and o
cur
,

respectively; and]Battery[gz and]Battery[curoz are the normalized battery-meter readings in g and

o
cur
, respectively. Substituting the numerical values into the equation, if πBump-Free is evaluated

(i.e., if g is gBump-Free), ψ becomes 1.0. On the other hand, if πFully-Charged is evaluated (i.e., if g is

gFully-Charged), ψ becomes 0.1. Having a larger motivational magnitude, Equation 3.32 will

hence select gBump-Free as the current goal.

 100

3.3.2 Reward Function

The reward signal indicates how much the current state is desirable for the robot.

The reward value, which is a scalar, can be a positive or negative number. When it is

positive, it implies that the robot is at some desirable state; on the other hand, the robot is

presumed at an undesirable state when the number is negative. Embedded within each event,

the reward signal influences the choice of behaviors by providing their utilities (Equation

3.23). Independently from the core processes of the proactive intelligent behavior

computation, the reward signal is continuously regulated by a reward function.

The reward function determines the current reward value based on three factors: 1)

the similarity between the current goal and observation; 2) the similarity between the

predicted and actual observations; and 3) the similarity between the associative rewarding

states (explained below) and current observation. When the current observation matches

with the current goal, since it is the indication that the goal is met, the reward value is

increased. Note that the predicted observation is not the same observation predicted by

TD(λ) (Equation 3.5). In this case, the observation is predicted based on the matched events

obtained by Equation 3.21. More specifically, given an episode (E), the predicted observation

(][Eo′) refers to the observation of the event that is stored subsequently to the previously

matched event (][̂Ee):

 }ˆ},{|{ 1][11][−−− =∧∈∧⊆=′ ττ EiiiiiiE eeeoEeeoo (3.34)

An example of computing the predicted observation is shown in Box 15.

 101

Box 15: An example of computing the predicted observation.

Suppose that a previously stored episode (Episode 1) consists of seven events as

shown in the table below. Suppose also that the robot is previously matched to event e4. In

this case, according to Equation 3.34, the predicted observation (Equation 3.34) is the

observation of e5 (i.e., z = 7.1).

Table 21: The perceptual information of the events in Episode 1.
Localized

Episode 1 e 0 e 1 e 2 e 3 e 4 e 5 e 6

z 9.1 5.8 4.7 5.7 5.0 7.1 0.9

When the predicted observation matches the current observation, it implies that the

episode used to represent the current world is indeed apposite. Hence, it is rewarded

accordingly. The associative rewarding states are particular perceptual states that are

intrinsically important for the robot. For example, a voltage reading that indicates the battery

is fully charged can be one of the associative rewarding states. On the other hand, a

perceptual state indicating that the robot is violently hit by an object may be considered an

unrewarding (punishing) state. These states can be preprogrammed into the robot before it

starts interacting with the real world or eventually learned through experiences. (The exact

mechanism of how the associative rewarding states are learned is beyond the scope of this

dissertation.) If any of the associative rewarding states matches with the current observation,

such a situation is correspondingly rewarded (or punished). This concept is in fact related to

how certain stimuli in the environment are associative with an animal’s certain emotions

(e.g., snakes being associated with fear). As mentioned in Section 2.1.2, according to the

somatic marker hypothesis [45], the emotional responses induced by perceiving such stimuli

are internally converted into somatosensory signals and incorporated into the animal’s

memory along with other sensory signals. Indeed, the associative rewarding states are the

 102

equivalents of those stimuli, and the reward signal generated by the associative rewarding

states and saved in an episodic memory is considered the equivalent of a somatic marker.

As shown in Equation 3.35, each of the factors above is weighted by a predefined

constant in order to attain the current reward value (r
cur
):

 ∑
Ι∈Γ∈

+′+=
+

ι
ι ικκκ),(),(max),(curL][curL

)(
curcurLcur *

ofoofgofr E
bE

og (3.35)

where κg, κo, and κι are the weights for the current goal (gcur), predicted observation (][Eo′),

and associative rewarding state (ι), respectively. The similarities are computed by the same

likelihood function (f
L
) employed in Equations 3.14 and 3.17. Here, the rations among the

predefined constants are more important than their values themselves. For example, as

experimented in Section 5.2, if the influence of the somatic markers is desired to be

substantial, κι should be a significantly larger number than others (or zero if the influence

should be eliminated). While a method to learn these weights should be addressed in the

future, here, the values are assigned manually. An example of computing the current reward

value is shown in Box 16.

 103

Box 16: An example of computing the current reward value.

Similar to the example examined in Box 14, suppose that the current observation

(o
cur
) is set as:

}9.0 ,0.1{},{ BatteryBumpercur == zzo

indicating that the robot is currently colliding with an object, and the battery is 90% full.

Suppose also that the current goal (g
cur
), the predicted observation (o'), and an associative

rewarding state (ι) are respectively set as:

}5.0 0.0,{cur =g , }80. ,0.1{=′o , and }01. ,0.0{=ι

Recall the Gaussian function employed to calculate similarity values in Box 3. The first term

of Equation 3.35 can be then calculated by:










−
−−

==
2

)()(
exp

)2(
)(),(curcur

T

curcur

2curGausscurcurL cur

gogo
ofgof

g

ggg π

κ
κκ

Assuming the weight (κg) is 1.0, inserting the numerical numbers to the equation yields:

0891.0
2

)5.09.0()0.00.1(
exp

)2(

1
),(

22

2curcur =








−
−+−

=
π

κ gofLg

Similarly, the second and the third terms are calculated as:

1584.0
2

)8.09.0()0.10.1(
exp

)2(

1
),(

22

2cur =








−
−+−

=′
π

κ oof Lo

0961.0
2

)0.19.0()0.00.1(
exp

)2(

1
),(

22

2cur =








−
−+−

=
π

ικι ofL

Combining all these values, the current reward value (r
cur
) hence becomes:

3436.00961.01584.00891.0cur =++=r

 104

3.4 Discussion

In this section, the computational model described above is examined from two

different perspectives. First, the relevancy of the computational model to existing biological

studies is discussed. Then, the machine learning aspect of the model is elucidated.

3.4.1 Biological Relevance

As noted above, the computational model described here is inspired by how a

mammalian hippocampus works. While it is not a high fidelity model to explicate every detail

of hippocampal physiology, major hippocampal functions are approximated by this model.

In particular, the proposed data structure to implement episodic memory is based on the

notion of “memory space” proposed by Eichenbaum and his colleagues [51]. As discussed in

Chapter 2, this notion conflicts with the conventional belief that the hippocampal constructs

a two-dimensional Euclidean cognitive map, transforming the egocentric view that an animal

perceives into the geocentric framework via path-integration. Even though this 2D map

hypothesis has been explained through various experiments using rats and two-dimensional

mazes in laboratories, it does not elucidate why many wild mammals such as monkeys,

squirrels, and chipmunks can effectively navigate on trees, a three-dimensional space. On the

other hand, the memory-space notion of episodic memories does not suffer from such a

spatial dimensionality limitation as it constructs a world model temporally. Furthermore,

having both sensory and behavioral information integrated within a single event, it is also in

accordance with the theory of event coding (TEC) [74], grounded in a series of psychological

studies.

The computational model also implements novelty detection, one of the presumed

hippocampal functions. In fact, there are two levels of novelty detection implemented within

 105

the model, and they are processed in different time scales. The first level is performed during

the event sampling process. By employing TD(λ) [170], predicted sensor readings are

constantly computed and compared against the actual readings. When the prediction fails,

the robot is considered to be entering a new state. Although classical conditioning has been

modeled using TD(λ) [153, 154, 172], modeling sensory prediction using this algorithm has

not been particularly asserted by these scientists. Nevertheless, various hippocampal

researchers have propositioned that such functionality itself indeed exists within areas CA1

and CA3 [68, 69, 97, 119, 192].

The second level of novelty detection is conducted during the validation process. By

comparing a current event progression against the one stored in a recalled episode, if they

start diverging, the robot is considered to be entering a new state space. This is perhaps the

same level with which Hoffmann’s anticipatory behavioral control (ABC) framework [72]

operates. As discussed in Chapter 2, the ABC framework is also grounded on various studies

in psychology, and its main premise is that when some voluntary action is executed, the

predicted consequence is compared against the actual effect. The causal relationship is

reinforced if the prediction turns out to be a valid one.

Finally, Damasio’s somatic marker hypothesis [45] is also incorporated into our

computational model. More specifically, a reward signal embedded within an event

(Equation 3.3) is considered the equivalent of a somatic marker. Recall that emotionally

induced somatosensory signals quantify how painful or pleasurable the animal feels about

certain stimuli. Along with other sensory information, the somatosensory signals are

integrated into episodic memory. As demonstrated by gambling experiments [23, 24], when

such memories are recalled, the embedded somatosensory signals seem to help the animal

determine the expected utility of current action. Similarly, in our computational model, the

 106

value of the reward signal is modulated by the reward function based on how desirable the

current state is. After being integrated into episodic memories, the embedded reward signals

also help the robot compute the expected utility of the current action. While the

computational model employs a Bellman equation to compute the expected utilities

(Equation 3.23), it is not clear whether the utility computation in the actual animal’s somatic

marker circuitry can be modeled by the Bellman equation. Nevertheless, the functionality of

somatic markers is approximated by this computational model.

3.4.2 Machine Learning Aspects

The computational method described here can be categorized as a “lazy learning

method” as it retains training data in its original form and postpones generalization of the

data until the elaboration of a solution is requested. Indeed, the computational processes in

this method (i.e., recollection, event matching, behavior selection, validation, and recovery)

(Figure 25) bear a moderate resemblance to the case-based reasoning cycle suggested by

Kolodner and Leake [91] (Figure 14). Ram and Santamaria’s continuous case-based

reasoning [137] may be the most relevant CBR approach to this method as they both utilize

the temporal aspect of the sensory information. However, the difference is that, while

temporal information is used to retrieve a case in continuous CBR, in our method temporal

information is used to identify the most relevant event within a case (episode). The case

retrieval in our method is done in terms of goals. Furthermore, in continuous CBR, the case-

based reasoner proposes actions while, in our method, actions are separately computed by

the combination of event-matching and behavior selection processes.

Strictly speaking, however, according to Mitchell’s classification [115], our

computational method belongs to instance-based learning rather than CBR since the data is

described in terms of numerical values, representing certain points in a n-dimensional

 107

Euclidean space. A comparable example may be McCallum’s implementation of instance-

based learning [109, 110]. As reviewed in Chapter 2, in McCallum’s method, k instances that

are the closest representations of a current state are selected from the memory based on the

recent action-perception-reward sequence. A current policy is then determined after

averaging Q-values from those k instances. Once again, in our method, a current goal

determines the retrieval of the k instances from the memory, not the sequence. The

similarity of the two methods is that the k retrieved instances collectively determine a current

policy in both cases: with a model-free approach (Q-value) in McCallum’s method and with a

model-based approach (Bellman equation) in our method.

It should be noted that the computational method described here deals with a

partially observable Markov decision process (POMDP) problem (see Section 2.4.4). More

specifically, the event-matching process attempts to identify a current state in a POMDP by

employing a recursive Bayesian filter. Once the current state is identified, treating the rest as

an MDP problem, an optimal policy is determined using a Bellman equation.

Because the state space is organized in a unidirectional temporal linear chain fashion,

this computational method can be also considered comparable to predictive state

representation [101]. As reviewed in Chapter 2, Littman et al. [101] explained that PSR is a

combination of history-based and generative-model approaches; each state retains

information regarding a history as well as an expected future consequence, and the state

representation is updated generatively. Our computational method is also a combination of

history-based and generative-model approaches but in a different way from how it is done in

PSR. Our computational method is closer to the generative-model approach than the

history-based one as it computes POMDP solutions recursively. Even though the state

(event) itself does not maintain information regarding a history or an expected future

 108

consequence explicitly as in PSR, it can be easily inferred from the state by referring to the

state space (episode) formed in a unidirectional temporal linear chain fashion.

 109

CHAPTER 4

IMPLEMENTATION

This chapter describes the implementation of the computational model detailed in

Chapter 3. In particular, the architectural framework that realizes the computational model is

explained in the first section. The details of how this architectural framework was further

integrated into a complete robotic system are explained in the second section.

4.1 AIR: Anticipatory-Improvisational Robot Architecture

The computational model of proactive intelligent behavior was realized in a Java-

based computer program whose architectural framework is illustrated in Figure 28. The

architecture, referred to as AIR (Anticipatory-Improvisational Robot), is a hybrid

deliberative/reactive system, an architectural type widely used in robotics [10]. AIR consists

of two layers: namely, the behavioral subsystem (reactive component) and the episodic

subsystem (deliberative component). The input and output of the whole AIR system are first

explained, followed by the descriptions of the episodic and behavioral subsystems in detail.

4.1.1 I/O

The input to the AIR system is a set of readings from embedded sensors, and the

output is a set of motor commands to be executed by the actuators. The data structures used

to store these types of information are explained below in detail.

 110

Action

Motor Schemata

coordinator

Event

Sampler

Episodic Subsystem

Behavioral Subsystem

g
cur

r
cur

b

Perception

b

Reward

Manager

Goal

Manager

e

Episode

Compiler

E

Episodic

Memory

Repository

C

AIR (Anticipatory-Improvisational Robot)

o'

Anticipatory

Processor

Improv

Reasoner

relM̂

g
int

Action

Motor Schemata

coordinator

Event

Sampler

Episodic Subsystem

Behavioral Subsystem

g
cur

r
cur

b

Perception

b

Reward

Manager

Goal

Manager

e

Episode

Compiler

E

Episodic

Memory

Repository

C

AIR (Anticipatory-Improvisational Robot)

o'

Anticipatory

Processor

Improv

Reasoner

relM̂

g
int

(a)

gcur

o'

C

e

b

gint

relM̂

Recollection

Event

Matching

Behavior

Selection

Mrel

Anticipatory Processorgcur

o'

C

e

b

gint

relM̂

Recollection

Event

Matching

Behavior

Selection

Mrel

Anticipatory Processor

 (b)

gint

relM̂

Recovery

Validation

Improv Reasoner

Activation

gint

relM̂

Recovery

Validation

Improv Reasoner

Activation

 (c)

Figure 28: The AIR architecture: (a) the entire system, (b) the anticipatory processor module, and (c)

the improvisational reasoner module. (Note: gcur = goal (current), rcur = reward (current), b = behavior,

e = event, E = episode, C = past episodes, o′ = predicted observation, gint = goal (intermediate),
relM̂

= relevant episodes that contain successfully matched events, and Mrel = relevant episodes.)

 111

Input Data Structure

A data structure called Perception is used to encapsulate the input information. As

shown in Table 22, the sole member of Perception is called readings, and it stores the list of all

sensor readings in an array form. An individual sensor reading is saved in a sub-data

structure called Reading. As shown in Table 23, Reading comprises four members: namely, id,

values, phi_angles, and theta_angles. The first member, id, contains a unique identification

number for the sensor type. The second member, values, contains the actual data values of

the reading. Note that some sensor may return multiple data points per single reading. For

example, a laser scanner (SICK LMS200) returns 361 data points as it measures distances to

objects in the environment 361 times per scan (with a 0.5-degree increment). Hence, in this

case, the size of the array is 361. Note also that the contents of values do not have to be

distances. If the sensor is a color blob detector, for example, the values can be the sizes of

detected blobs. The third and forth members, phi_angles and theta_angles, specify the

horizontal and vertical directions of each data point with respect to the center of the robot,

respectively (Figure 29). More specifically, projecting the data points in the (egocentric)

spherical coordinates system, each entry in the phi_angles array represents the azimuth angle

of the corresponding data point measured from the positive X-axis (the robot’s current

heading direction). On the other hand, each entry in the theta_angles array represents the

zenith angle of the corresponding data point measured from the positive Z-axis (vertically

upwards).

Table 22: The member of Perception.

Name Data Type Description

readings Reading [] An array containing the latest readings from the

sensors.

 112

Table 23: The members of Reading.

Name Data Type Description

id int The unique ID of this sensor.

values double[] The data points of the reading.

phi_angles double[] The azimuth angles (from the positive X-axis)

of the data points.

theta_angles double[] The zenith angles (from the positive Z-axis) of

the data points.

XX

ZZ

YY
ϕϕ

θθ

XX

ZZ

YY
ϕϕ

θθ

Figure 29: An input data point specified in the spherical

coordinate system. In this case, the phi (ϕϕϕϕ) angle of the red
ball is approximately 15°, and the theta (θθθθ) angle is
approximately 45°.

Output Data Structure

The output information (motor commands) is saved in a data structure called Action,

which consists of six members (Table 24). The first three members (speed_x, speed_y, and

speed_z) specify desired speeds (meters per second) along the positive X, Y, and Z axes of the

(egocentric) Cartesian coordinate system, respectively (Figure 30). The positive X-axis is the

direction of the robot’s current heading, the positive Y-axis points horizontally to the left,

and the positive Z-axis points vertically upwards. The other three members of Action

(speed_yaw, speed_pitch, and speed_roll) specify desired rotational speeds (degrees per second) of

the robot along its Z, Y, and X axes, respectively. If the robot is a typical wheeled robot,

 113

only speed_x and speed_y (or speed_yaw) are utilized as the platform has only two degrees of

freedom. On the other hand, if the robot is an autonomous helicopter, all six members may

be utilized.

Table 24: The members of Action.

Name Data Type Description

speed_x double The translational speed in the poistive X-axis.

speed_y double The translational speed in the positive Y-axis.

speed_z double The translational speed in the positive Z-axis.

speed_yaw double The rotational speed along the positive Z-axis.

speed_pitch double The rotational speed along the positive Y-axis.

speed_roll double The rotational speed along the positive X-axis.

speed_yawspeed_yaw

speed_rollspeed_roll

XX

ZZ

YY
speed_pitchspeed_pitch

speed_xspeed_x
speed_yspeed_y

speed_zspeed_z

speed_yawspeed_yaw

speed_rollspeed_roll

XX

ZZ

YY
speed_pitchspeed_pitch

speed_xspeed_x
speed_yspeed_y

speed_zspeed_z

Figure 30: The egocentric Cartesian coordinate system and
the motor commands.

4.1.2 Episodic Subsystem

The episodic subsystem implements the computational processes described in

Chapter 3. More specifically, the processes of event sampling, episodic memory formation,

recollection, referent construction, event matching, behavior selection, validation, and

recovery as well as motivation and reward functions are all implemented in the episodic

subsystem. The role of the episodic subsystem is to decide what type of motor schemata

should be instantiated in the lower reactive layer (behavioral subsystem). The episodic

 114

subsystem consists of seven computational modules: goal manager, reward manager, event

sampler, episode compiler, episodic memory repository, anticipatory processor, and

improvisational reasoner. The functionalities of these modules are explained below.

Goal Manager

This module determines the robot’s current goal based on the motivation function

described in Section 3.3.1. More specifically, there are a finite set of possible goals, and each

goal is stored in a data structure called Motivation (Table 25). Motivation consists of three

members: id, goal and magnitude. If one motivation has the highest magnitude value among all

possible motivations, the goal belongs to this motivation is selected as the current goal. (See

the pseudocode in Section B.1.1.) Note that intermediate goals used in improvisation are

handled by the improvisational reasoner (described below).

Table 25: The members of Motivation.

Name Data Type Description

id int The unique ID of this motivational type.

goal Perception The goal state.

magnitude double The motivational magnitude.

As described in Section 3.3.1, in a fully autonomous mode, each motivational

magnitude is computed by a designated motivation function based on the current

observation (Equation 3.33). However, in this implementation, user inputs are also used to

modulate the motivational magnitudes, so that the core part of the proactive behavior

computation can be examined effectively. In this case, if a user selects one of the available

motivation types through the graphical user interface (Figure 31), the magnitude of the

selected motivation is set to a predefined positive value (1.0); if the motivation is turned off

 115

by the user, the magnitude is set to zero11. The current goal (gcur) computed by this module

is utilized by the reward manager, the episode compiler, and the anticipatory processor

explained below.

A toggle switch for A toggle switch for

manual activationmanual activation

A status line showing the A status line showing the

type of active motivationstype of active motivations

Toggle switches for Toggle switches for

activating motivationsactivating motivations

A toggle switch for A toggle switch for

manual activationmanual activation

A status line showing the A status line showing the

type of active motivationstype of active motivations

Toggle switches for Toggle switches for

activating motivationsactivating motivations

Figure 31: The graphical user interface for the goal manager.

Reward Manager

This module computes the current reward value based on the reward function

explained in Section 3.3.2. The reward value is a scalar represented with a real number. More

specifically, at each time cycle, the value is updated based on how the current observation is

similar to 1) the current goal, 2) the predicted observation, and 3) the associative rewarding

sates (Equation 3.35). (See the pseudocode in Section B.2.1.) Note that in the normal

(anticipatory) mode, the current goal is the one computed by the goal manager (explained

above). However, if the robot is in the improvisational mode, the intermediate goal

computed by the improvisational reasoner (explained below) is used instead.

11 While the current method of magnitude specification is binary (toggle), a slider bar, for example, can be used
to specify the value in a continuous range when the motivation function needs to be evaluated.

 116

As shown in Figure 32, the current reward value can be visualized by a graphical user

interface. If desired, the user can also override the automatically calculated reward value and

set the number manually through this interface (e.g., to examine the effectiveness of the

reward signal or test the reward function itself). The current reward value (rcur) computed by

this module is utilized by the event sampler and the episode compiler explained below.

A toggle switch for manual A toggle switch for manual

rewardingrewarding

A line graph showing the A line graph showing the

temporal changes of the temporal changes of the

current reward value current reward value

A slider bar for manually A slider bar for manually

setting the reward valuesetting the reward value

A toggle switch for manual A toggle switch for manual

rewardingrewarding

A line graph showing the A line graph showing the

temporal changes of the temporal changes of the

current reward value current reward value

A slider bar for manually A slider bar for manually

setting the reward valuesetting the reward value

Figure 32: The graphical user interface for the reward manager.

Event Sampler

By implementing the event sampling process described in Section 3.1.1, temporal

abstraction of ongoing experience is performed in this module. More specifically, the values

of perceptual signals are constantly predicted (Equation 3.4) and compared against the actual

values. When the prediction fails (Equation 3.6), the experience (observation, behavior, and

reward signals) is sampled as an event (e). (See the pseudocode in Section B.3.1.) Each

sampled event is stored in a data structure called Events (Table 26), which comprises five

members: namely, index, observation, behavior, reward, and timestamp. The first member, index,

stores the index of the event within an episode. Note that this index is used to calculate a

distance between two events when computing a transition probability (Equation 3.18). The

 117

next three data fields (observation, behavior, and reward) store the values of the observation,

behavior, and reward signals, respectively. Note that the observation signal is the system

input (Section 4.1.1), the behavior (b) is determined by the behavioral subsystem (Section

4.1.3), and the current reward value (rcur) is the one computed by the reward manager

described above. Note that behavior is saved in a data structure called Behavior (Table 27)

whose sole member, schemata, is an array of integers storing the unique identifications of the

motor schemata being activated when this event was sampled. The last member of Event is

called timestamp, recording the time when the event was sampled. In particular, timestamp is

utilized during the validation process (Section 3.2.4). If the validation fails (i.e., if the current

event progress is substantially slower than the one recorded in the recalled episode),

improvisation is invoked. Events (e) sampled in this module are utilized in the episode

compiler, anticipatory processor, and improvisational reasoner (described below).

Table 26: The members of Event.

Name Data Type Description

index int The index of the event within an episode.

observation Perception The perceptual state of the world.

behavior Behavior The executed behavior.

reward double The reward value.

timestamp long The time when this event was sampled.

Table 27: The member of Behavior.

Name Data Type Description

schemata int [] The IDs of active motor schemata.

Episode Compiler

This module compiles episodes by partitioning a series of events arrived from the

event sampler into separate subgroups based on their contexts. As explained in Section 3.1.2,

depending on the mode, the episodic context can be a current goal (purposive

contextualization) (Equation 3.9) or a perceptual state of the instance when the

 118

characteristics of the reward value are significantly changed (utilitarian contextualization)

(Equation 3.11). In this version of AIR, the purposive contextualization is only supported.

(See the pseudocode in Section B.4.1). The data structure used to store an episode is called

Episode and shown in Table 28. The first member, events, stores all the events during this

episode in an array of Event (recall Table 26). The second member, context, stores the context

of this episode. Once compiled, episodes are delivered to the episodic memory repository, so

that they can be preserved for a future use.

Table 28: The members of Episode.

Name Data Type Description

events Event [] The series of events.

context Perception The context of this episode.

Episodic Memory Repository

After being created by the episode compiler, a new episode is added to the list of the

episodes maintained by this module. When the program terminates, the list is saved in a text

file, so that they can be reloaded to the system memory when the program starts up again.

The text format of an example episode is shown in Figure 33. The anticipatory processor

(explained below) utilizes the collection of these episodes (C) to compute anticipatory

behavior.

 119

<E><E>
EE--time: 1210716142187time: 1210716142187
<c><c>
cc--time: 1210716137875time: 1210716137875
<z><z>
zz--type: 16type: 16
zz--time: 1210716137875time: 1210716137875
zz--valval: 1.0;1.0;: 1.0;1.0;
</z></z>
</c></c>
<e><e>
ee--index: 0index: 0
ee--time: 1210716144828time: 1210716144828
<p><p>
pp--time: 1210716144796time: 1210716144796
<z><z>
zz--type: 1type: 1
zz--time: 1210716144796time: 1210716144796
zz--valval::
0.823468029499054;2.0975399017333984;1.7670960426330566;5.0;5.0;0.823468029499054;2.0975399017333984;1.7670960426330566;5.0;5.0;
;0.8095319867134094;0.8327479958534241;5.0;5.0;5.0;5.0;1.8370120;0.8095319867134094;0.8327479958534241;5.0;5.0;5.0;5.0;1.8370120
07;1.4008920192718506;0.8391799926757812;07;1.4008920192718506;0.8391799926757812;
zz--lonlon: 90.0;50.0;30.0;10.0;: 90.0;50.0;30.0;10.0;--10.0;10.0;--30.0;30.0;
150.0;150.0;--170.0;170.0;150.0;130.0;90.0;170.0;170.0;150.0;130.0;90.0;
</z></z>
</p></p>

bb--time: 1210611547687time: 1210611547687
bb--schemata: 7;schemata: 7;

<r><r>
rr--valval: 0.0: 0.0
</r></r>
</e></e>
</E></E>

observationobservation

behaviorbehavior

rewardreward

eventevent

contextcontext

<E><E>
EE--time: 1210716142187time: 1210716142187
<c><c>
cc--time: 1210716137875time: 1210716137875
<z><z>
zz--type: 16type: 16
zz--time: 1210716137875time: 1210716137875
zz--valval: 1.0;1.0;: 1.0;1.0;
</z></z>
</c></c>
<e><e>
ee--index: 0index: 0
ee--time: 1210716144828time: 1210716144828
<p><p>
pp--time: 1210716144796time: 1210716144796
<z><z>
zz--type: 1type: 1
zz--time: 1210716144796time: 1210716144796
zz--valval::
0.823468029499054;2.0975399017333984;1.7670960426330566;5.0;5.0;0.823468029499054;2.0975399017333984;1.7670960426330566;5.0;5.0;
;0.8095319867134094;0.8327479958534241;5.0;5.0;5.0;5.0;1.8370120;0.8095319867134094;0.8327479958534241;5.0;5.0;5.0;5.0;1.8370120
07;1.4008920192718506;0.8391799926757812;07;1.4008920192718506;0.8391799926757812;
zz--lonlon: 90.0;50.0;30.0;10.0;: 90.0;50.0;30.0;10.0;--10.0;10.0;--30.0;30.0;
150.0;150.0;--170.0;170.0;150.0;130.0;90.0;170.0;170.0;150.0;130.0;90.0;
</z></z>
</p></p>

bb--time: 1210611547687time: 1210611547687
bb--schemata: 7;schemata: 7;

<r><r>
rr--valval: 0.0: 0.0
</r></r>
</e></e>
</E></E>

observationobservation

behaviorbehavior

rewardreward

eventevent

contextcontext

Figure 33: An example of the text format used to store an episode. The timestamp of
the episode is first specified. In the second section, the information regarding the
episodic context is stored. The third section contains the information regarding the
event sequence (only one event is saved in this case), including the index, time,
observation, behavior, and reward of each event.

Anticipatory Processor

This module computes anticipatory behavior by performing the processes of

recollection, event matching, and behavior selection discussed in Sections 3.2.1, 3.2.2, and

3.2.3, respectively. More specifically, based on the current goal (gcur) specified by the goal

manager, a set of relevant episodes are first selected from the past episodes (C) stored in the

episodic memory repository (Equation 3.15). (See the pseudocode in Section B.5.1.) Given

the current sequence of events (e) that are arrived from the event sampler, the posterior

probability of each event in every relevant episode is then calculated (Equation 3.16). If the

entropy of the posterior probability distribution is low enough, the event with the highest

posterior probability value is chosen as the matched event (Equation 3.21). (See the

 120

pseudocode in Section B.5.2.) Finally, by analyzing the episode, if the behavior executed just

after this past matched event has the highest expected utility value, it is chosen as the output

of this module (Equation 3.24). (See the pseudocode in Sections B.5.3 and B.5.4.)

The window shown in Figure 34 is a graphical user interface for this module. The

top portion of the window displays the status of the computation. More specifically, the

current relevant episodes, their entropy values, episodes with matched events, and utilized

episodes for the behavioral selection are displayed. This interface also allows the user to

select types of desired motor schemata manually when generating training episodes during

the experiments (Section 5).

A toggle switch for motor A toggle switch for motor

schemata instantiationschemata instantiation

Status lines showing the Status lines showing the

relevant episodes, entropy relevant episodes, entropy

values, localized episodes, values, localized episodes,

and selected episodes.and selected episodes.

A toggle switch for manual A toggle switch for manual

instantiation of the motor instantiation of the motor

schemataschemata

A toggle switch for motor A toggle switch for motor

schemata instantiationschemata instantiation

Status lines showing the Status lines showing the

relevant episodes, entropy relevant episodes, entropy

values, localized episodes, values, localized episodes,

and selected episodes.and selected episodes.

A toggle switch for manual A toggle switch for manual

instantiation of the motor instantiation of the motor

schemataschemata

Figure 34: The graphical user interface for the anticipatory processor.

 121

As the output of this module, a set of desired motor schemata is stored in Behavior

(Table 27) and utilized in the behavioral subsystem discussed below (Section 4.1.3). In

addition, a set of all relevant episodes that had successful event matching (relM̂) (Equation

3.22) is sent to the improvisational reasoner, so that an intermediate goal can be determined;

and the predicted observation (o') (Equation 3.34) is sent to the reward manager for

determining the current reward value.

Improvisational Reasoner

This module implements the improvisational aspect of the proactive intelligent

behavior computation. A set of all relevant episodes that were successfully matched (relM̂) is

delivered to this module from the anticipatory processor. This module constantly monitors

the event progress of those episodes based on the method described in Section 3.2.4. (See

the pseudocode in Section B.6.1.) If the progress of the events is found to be significantly

delayed, that episode is eliminated from the list of relevant episodes (Equation 3.27). If all of

the episodes are eliminated from the list, the recovering process is then invoked.

To recover the proactive behavior computation, as discussed in Section 3.2.5, a

primary referent has to be first selected from the previous list of the relevant episodes that

contain matched events (Equation 3.28). We utilize the previous list because the current list

is empty after eliminating the delayed episodes. The procedures for abstracting a referent

from episode and selecting a primary referent from possible referents are described by the

pseudocode in Sections B.6.2 and B.6.3, respectively. The data structure used to store a

referent (Referent) is shown in Table 29. Its sole member, nodes, is an array storing the

sequence of referent nodes. The sub-data structure used to store a referent node

(ReferentNode) is shown in Table 30. The first member of ReferentNode is called behavior, storing

 122

the type of behavior executed during this nodal period. The second and third members

(precondition and effect) store the perceptual states captured just before and after the behavioral

execution, respectively. The fourth member, timestamps, copies the timestamps of the events

sampled before and after the behavioral execution.

Table 29: The member of Referent.

Name Data Type Description

nodes ReferentNode [] The nodes of the referent.

Table 30: The members of ReferentNode.

Name Data Type Description

behavior Behavior The executed behavior.

precondition Perception The initial perceptual state before the behavior

was executed.

effect Perception The final perceptual state after the behavioral

execution was completed.

timestamps int[2] The timesamps of the events just before and

after the behavior was executed.

Finally, based on the primary referent, an intermediate goal is selected via Equation

3.29. More specifically, analyzing each node in the primary referent, if the timestamp of the

last known matched event coincides with any of these nodes, that node is chosen as the

active node. The nodal effect stored in the active node is then chosen as the final

intermediate goal. (See the pseudocode in Section B.6.4). As the output of this module, the

intermediate goal is delivered to the anticipatory processor, so that the processes of the

recollection, event matching, and behavior selection can be reactivated.

The graphical user interface for the improvisational reasoner is shown in Figure 35.

The interface visualizes the progression of the referent nodes and identifies what the current

active node is. If desired (e.g., for debugging), the user can force the module to activate the

recovery process from this window, bypassing the validation process.

 123

A toggle switch for A toggle switch for

automatic activation of the automatic activation of the

recovery processrecovery process

A toggle switch for A toggle switch for

manually activating the manually activating the

recovery processrecovery process

Referent nodesReferent nodes

Active nodeActive node

Nodes progressed so farNodes progressed so far

StatusStatus

A toggle switch for A toggle switch for

automatic activation of the automatic activation of the

recovery processrecovery process

A toggle switch for A toggle switch for

manually activating the manually activating the

recovery processrecovery process

Referent nodesReferent nodes

Active nodeActive node

Nodes progressed so farNodes progressed so far

StatusStatus

Figure 35: The graphical user interface for the improvisational reasoner.

4.1.3 Behavioral Subsystem

A set of preprogrammed motor schemata (see Section 3.1.1) resides within the

behavioral subsystem, and a subset of them is periodically instantiated (or de-instantiated) by

the upper deliberative layer (episodic subsystem). The function of the behavioral subsystem

is to compute the outputs of the active motor schemata and coordinate them to produce the

resultant low-level motor commands (Section 4.1.1). The implemented motor schemata and

coordinators are summarized below. The details of the individual algorithms are also

described as pseudocode in Appendix B.

Motor Schemata

• Avoid-Static-Obstacle: A standard obstacle avoidance method [10, 11]. The robot

moves away from detected obstacles by generating repulsive vectors from them (Section

B.7.1).

• Enter-Opening: A modified version of the docking motor schema [10, 13]. Given a

 124

detected opening in the environment (e.g., door), the robot attempts to enter the

opening by combining ballistic and controlled movements (Section B.7.2).

• Move-Backward: The robot moves towards the direction that is opposite of the current

heading (Section B.7.3).

• Move-Forward: The robot moves towards the same direction it is current heading

(Section B.7.4).

• Move-Leftward: The robot moves towards the direction that is perpendicularly left of

the current heading (Section B.7.5).

• Move-Rightward: The robot moves towards the direction that is perpendicularly right

of the current heading (Section B.7.6).

• Move-To-Big-Blob: A modified version of the Move-To-Goal motor schema [10, 11].

The robot moves to a goal perceived as the biggest blob in the field of view (Section

B.7.7).

• Stop: The robot stops moving (Section B.7.8).

• Swirl-Obstacle: An alternative method of negotiating an obstacle as described in [52].

Instead of generating a repulsive vector away from an obstacle, it generates a movement

vector tangential to the surface of the obstacle. Based on this vector, the robot

circumnavigates the obstacle (Section B.7.9).

Behavior Coordinator

• Cooperative-Coordinator: As implemented in Arkin’s motor schema based navigation

[10, 11], the output vectors of active motor schemata (activated by the anticipatory

processor) are linearly summed to generate a single output vector (Section B.8.1).

• Subsumptive-Coordinator: Proposed by Brooks [31], motor schemata are organized in

 125

priority-based hierarchical layers (e.g., motor schemata with the highest priority reside in

the top layer). As shown in the pseudocode (Section B.8.2), by inspecting the layers from

top to bottom, if a layer with a higher number has an active motor schema, the output of

the schema is used as the final output, subsuming the outputs from lower layers. If

multiple motor schemata are found active in one layer, their outputs are coordinated by

the cooperative-coordinator described above. In this particular implementation (Figure

36), there are two layers; the top layer contains the Stop schema, and the rest of the

motor schemata reside in the bottom layer. In other words, if the Stop schema is

activated, all other motor schemata are halted.

ActionAction

AvoidAvoid--StaticStatic--ObstacleObstacle

EnterEnter--OpeningOpening

MoveMove--BackwardBackward

MoveMove--ForwardForward

MoveMove--LeftwardLeftward

MoveMove--RightwardRightward

MoveMove--ToTo--BigBig--BlobBlob

StopStop

SwirlSwirl--ObstacleObstacle

ΣP
er
c
ep

ti
o
n

P
er
c
ep

ti
o
n

CooperativeCooperative--

CoordinatorCoordinator

SubsumptiveSubsumptive--

CoordinatorCoordinator

Bottom Layer

Top Layer

ActionAction

AvoidAvoid--StaticStatic--ObstacleObstacle

EnterEnter--OpeningOpening

MoveMove--BackwardBackward

MoveMove--ForwardForward

MoveMove--LeftwardLeftward

MoveMove--RightwardRightward

MoveMove--ToTo--BigBig--BlobBlob

StopStop

SwirlSwirl--ObstacleObstacle

ΣP
er
c
ep

ti
o
n

P
er
c
ep

ti
o
n

CooperativeCooperative--

CoordinatorCoordinator

SubsumptiveSubsumptive--

CoordinatorCoordinator

Bottom Layer

Top Layer

Figure 36: Coordination of the motor schemata. If the Stop schema, the sole schema in
the top layer, is activated, the output from the bottom layer (holding the rest of the
motor schemata) will be suppressed by the subsumptive-coordinator. Otherwise, the
behavioral output is a linear summation of the outputs from all active motor schemata
in the bottom layer, coordinated by the cooperative-coordinator.

4.2 System Integration

As shown in Figure 37, the Java-based computer program that implements AIR was

integrated into a complete robotic framework. More specifically, AIR was interfaced with

 126

HServer [62], a low-level controller program integrated with a collection of hardware drivers.

AIR sends action commands to HServer, and HServer relays the commands to the robot

hardware. HServer sends perceptual signals, captured by the robot sensors, back to AIR as

well. AIR and HServer run as independent processes. While HServer, written in C++, runs

only on Linux operating system, Java-based AIR can run on any operating system that

supports a Java virtual machine (JVM). The communication between AIR and HServer is

done through an internet socket connection, enabling AIR and HServer to exist on separate

machines. Three types of configurations are implemented and used in the experiments

described in Chapter 5: namely, real robot, Gazebo, and USARSim configurations. The

details of these configurations are described in the following subsections.

HServerHServerHServer

GazeboGazeboGazebo

A I RA I RA I R

PerceptionPerception

USARSimUSARSimUSARSim

Simulated RobotSimulated RobotSimulated Robot

Real RobotReal RobotReal Robot

Simulated RobotSimulated RobotSimulated Robot

Simulation ModeSimulation Mode

ActionAction

HServerHServerHServer

GazeboGazeboGazebo

A I RA I RA I R

PerceptionPerception

USARSimUSARSimUSARSim

Simulated RobotSimulated RobotSimulated Robot

Real RobotReal RobotReal Robot

Simulated RobotSimulated RobotSimulated Robot

Simulation ModeSimulation Mode

ActionAction

Figure 37: Integration of AIR (Figure 28) into a complete robotic framework.

4.2.1 Real Robot Configuration

A picture of the hardware used in this configuration is shown in Figure 38.

 127

ActivMedia’s Pioneer 2 DX robot was integrated with a Sony EVI Camera. The data flow

among AIR, HServer, and the robot/sensor is shown in Figure 39. More specifically, in this

configuration, HServer (running on a Dell Dimension 4700 with Intel Pentium 4; 3.00 GHz;

Red Hat Enterprise Linux WS 4) receives readings from sixteen sonar sensor readings

embedded on the Pioneer 2 DX robot and sends back the control commands via a wireless

serial connection (FreeWave Data Transeiver; 900 MHz). A stream of analog video images

from the camera also arrives at HServer via a wireless video connection (RadioShack A/V

Signal Sender; 2.4 GHz) and a frame grabber (Hauppauge WinTV GO).

From the digitized video images, HServer was configured to detect objects in the

environment using a classifier [99] implemented in Intel’s open source computer vision

library (OpenCV) [2]. Specifically for the second experiment12 in Chapter 5 (Section 5.2), the

classifier was trained to detect four types of predefined objects (a baby doll and three signs).

From 250 to 500 training images for each object were used to train the classifier. Sample

results of the object detection are shown in Figure 40.

From HServer, the sonar sensor readings and detected objects are delivered to AIR

(running on Lenovo ThinkPad T61 with Intel Core 2 Duo; 2.0 GHz; Windows XP) and the

motor commands computed by AIR are sent back to HServer via a TCP/IP socket

connection. This configuration was used in the second experiment in Chapter 5 (Section

5.2).

12 No other experiments utilized the object detection capability.

 128

ActivMediaActivMedia

Pioneer 2 DXPioneer 2 DX

RadioShackRadioShack

Wireless A/V SignalWireless A/V Signal

Sender (2.4 GHz)Sender (2.4 GHz)

SonySony

EVI CameraEVI Camera

Pan/Tilt/ZoomPan/Tilt/Zoom

FreeWaveFreeWave

Wireless RS232 DataWireless RS232 Data

Transceiver (900 MHz)Transceiver (900 MHz)

ActivMediaActivMedia

Pioneer 2 DXPioneer 2 DX

RadioShackRadioShack

Wireless A/V SignalWireless A/V Signal

Sender (2.4 GHz)Sender (2.4 GHz)

SonySony

EVI CameraEVI Camera

Pan/Tilt/ZoomPan/Tilt/Zoom

FreeWaveFreeWave

Wireless RS232 DataWireless RS232 Data

Transceiver (900 MHz)Transceiver (900 MHz)

Figure 38: The real robot hardware configuration.

HServerHServerHServerA I RA I RA I R

perceptionperception

actionaction

Dell Dimension 4700Dell Dimension 4700

WirelessWireless

Lenovo ThinkPad T61Lenovo ThinkPad T61
SocketSocket

Comm.Comm.

Robot/SensorRobot/Sensor

HServerHServerHServerA I RA I RA I R

perceptionperception

actionaction

Dell Dimension 4700Dell Dimension 4700

WirelessWireless

Lenovo ThinkPad T61Lenovo ThinkPad T61
SocketSocket

Comm.Comm.

Robot/SensorRobot/Sensor
Figure 39: The data flow among AIR, HServer, and the robot/sensor.

 129

(a) (b)

(c) (d)
Figure 40: Four images showing objects detected by the OpenCV classifier implemented within
HServer: (a) two baby-dolls, (b) the “Arc Flash and Shock Hazard” warning sign, (c) the “High
Voltage” danger sign, and (c) the “Construction Entrance” sign.

4.2.2 Gazebo Configuration

In this configuration, AIR was set up to interact with a virtual robot simulated in

University of Southern California’s Gazebo [87], a high fidelity three-dimensional simulator.

More specifically, based on an integrated dynamics engine [164], the dynamics of a simulated

robot is constantly computed to reflect the motor commands being received and the type of

the virtual environment it is currently in. In this configuration, ActiveMedia Pioneer 2 DX

and its sixteen sonar sensors are simulated.

As shown in Figure 41, Gazebo and HServer run on a same desktop machine (Dell

Dimension 4700 with Pentium 4; 3.00 GHz; Red Hat Enterprise Linux WS 4), and they

 130

interact with each other through a shared memory connection. Relayed by HServer, AIR

(running on Dell Latitude X200 with Pentium III; 933 MHz; Red Hat Linux Fedora Core 4)

receives the emulated sonar sensor readings from Gazebo and sends back the motor

commands. AIR and HServer are connected through a TCP/IP socket connection. This

configuration was used in the first and third experiments described in Chapter 5.

HServerHServerHServer

GazeboGazeboGazebo

A I RA I RA I R

perception

action

Dell Dimension 4700

Shared

Memory

Dell Latitude X200
Socket

Comm.

Emulated Robot/SensorEmulated Robot/Sensor

HServerHServerHServer

GazeboGazeboGazebo

A I RA I RA I R

perception

action

Dell Dimension 4700

Shared

Memory

Dell Latitude X200
Socket

Comm.

Emulated Robot/SensorEmulated Robot/Sensor

Figure 41: The data flow among AIR, HServer, and the emulated robot/sensor in Gazebo.

4.2.3 USARSim Configuration

While Gazebo is a widely recognized 3D simulator in the robotics community, no

adequate toolkit is currently available to design the (virtual) environment that can be

simulated; hence, the complexity of the environments is rather limited in Gazebo. On the

other hand, USARSim [43], another high fidelity 3D simulator developed by the National

Institute of Standards and Technology (NIST), comes with a toolkit to design a fairly

complex 3D environment as it is based on Epic Games’ 3D gaming technology [38].

USARSim was developed by NIST to simulate search-and-rescue robots in realistic

 131

environments. Thus, along with Gazebo, AIR was also interfaced with USARSim.

In the USARSim configuration, iRobot’s ATRV-Jr, integrated with SICK LMS200

laser scanner, was simulated. As shown in Figure 42, USARSim runs on a laptop (Lenovo

ThinkPad T61 with Intel Core 2 Duo; 2.0 GHz; Windows XP) and communicates with

HServer running on a desktop machine (Dell Dimension 4700 with Pentium 4; 3.00 GHz;

Red Hat Enterprise Linux WS 4) through a TCP/IP socket connection. HServer and AIR,

running on the same desktop machine, communicates with each other through a TCP/IP

socket connection as well. This configuration was used in the third experiment (Section 5.3).

HServerHServerHServer

USARSimUSARSimUSARSim

A I RA I RA I R

perception

action

Dell Dimension 4700

Lenovo ThinkPad T61

Socket Comm.

Emulated Robot/SensorEmulated Robot/Sensor

Socket

Comm.

HServerHServerHServer

USARSimUSARSimUSARSim

A I RA I RA I R

perception

action

Dell Dimension 4700

Lenovo ThinkPad T61

Socket Comm.

Emulated Robot/SensorEmulated Robot/Sensor

Socket

Comm.

Figure 42: The data flow among AIR, HServer, and the emulated robot/sensor in USARSim.

 132

CHAPTER 5

EVALUATION

In this chapter, the computational model of proactive intelligent behavior for robots

discussed in Chapter 3 is evaluated through a set of three experiments. As summarized in

Table 31, the first experiment determines the efficiency of the foundational data structure.

The second experiment elucidates the characteristics of proactive behavior with respect to

somatic markers. Finally, the tradeoff between promptness of the proactive behavior

computation and the quality of the behavior is examined in the third experiment.

Table 31: A summary of the experiments in Chapter 5.

Section 5.1 5.2

Evaluation Focus

Efficiency of the

foundational data

structure

Characteristics of

proactive behavior

with respect to

somatic markers

Relevant Subsidiary

Research Question

(Section 1.2.2)

3rd 4th

Experiment # 1 2 3A 3B

Proactiveness Anticipation Anticipation Anticipation Improvisation

Configuration Gazebo Real Gazebo USARSim

Environment Indoor Indoor Indoor Outdoor

Scenario
Simple Hallway

Navigation
Search-and-Rescue

Simple Hallway

Navigation

Reconnaissance and

Detour

Results

The data structure

indeed helps reduce

the localization time.

The somatic markers

help the robot make

advantageous

decisions.

The history length

can be trimmed to

improve promptness

without

compromising

behavioral qualities.

The prompt

localization time is

crucial for sustaining

behavioral qualities.

5.3

Tradeoff between promptness of the

proactive behavior computation and the

quality of the behavior

5th

5.1 Efficiency of the Foundational Data Structure

Recall from Chapter 1 that the third subsidiary research question (Section 1.2.2)

seeks to determine how information should be stored in episodic memory:

• How should past episodes of experience be organized in the memory of a robot in order for them to be

 133

utilized upon anticipation and improvisation?

To address this question, the efficiency of the organizational structure to encode the episodic

memory (Section 3.1) was evaluated in this experiment. The efficiency in this case refers to the

computational efficiency upon computing proactive behavior. As discussed in Chapter 1, the

applications that require proactiveness (e.g., military, search-and-rescue, etc.) can be very

time-sensitive. Regardless of how large the state space becomes, behavioral computation has

to be fast enough for a robot to be practical in such situations. In other words, the larger the

state space it can process in a given time, the more complex task the robot can effectively

handle. Thus, computational efficiency is considered a key metric to evaluate the

organizational structure of the episodic memory as opposed to, for example, a required

memory size since it is likely solved by additional hardware.

The most computationally expensive step in the proactive behavior computation is

the event-matching process (Section 3.2.2). In particular, if implemented naively, the

recursive Bayesian filter (Equation 3.16) requires an O(n2) computation time to compute the

full posterior probabilities for every episode comprised with n events because the transition

model has to be computed n times for each of the n events (states). Incidentally, localization

with respect to a map using a Kalman filter (also Bayesian) requires an O(n2) computation

time [179].

As discussed in Sections 3.1.1 and 3.2.2, however, because the events stored in the

episodic memory are organized in a unidirectional temporal linear-chain fashion, a certain

assumption can be made to reduce the computational load. More specifically, to implement

the transition model, the transition probability between two events is approximated by the

Poisson probability density function, computing the probability based on the distance

between the two events (Equation 3.19). Furthermore, if the distance between the two

 134

events becomes greater than a five-event length, the probability becomes essentially zero

(recall Figure 26). Exploiting this property, in this experiment, we empirically show that the

amount of time required to compute the event-matching process for each episode can be

reduced from O(n2) to O(n).

5.1.1 Materials and Methods

The computation time required for the event-matching process while exploiting the

property of the Poisson distribution (limited-transitions case) is compared against the

computation time when the property is not exploited (full-transitions case). The computation time

here refers to the time required to compute the event-matching function (Equation 3.16)

that is the posterior probability of being at some event in a past episode given the history of

the current sequence of observations and executed behaviors. At every time cycle, for each

event in an episode, the time to compute the event-matching function were recorded in AIR

and averaged over all of the events in the episode. For the limited-transitions case, the

transition model in Equation 3.16 was computed for only five relevant events. As mentioned

above, since the events in an episode are formed in a unidirectional linear chain, our claim

here is that, if the property of the Poisson distribution is exploited, the event-matching

process can be computed in an O(n) time.

The Gazebo configuration described in Section 4.2.2 was used in this experiment. In

other words, AIR, the Java-based computer program that implements the proactive behavior

computation running on a laptop machine (Intel Pentium III), was set up to interact with a

virtual robot (Pioneer 2 DX) simulated in the high fidelity 3D simulator, Gazebo, running on

a desktop machine (Intel Pentium 4). The virtual indoor environment used in this

experiment is shown in Figure 43. Note that, given a fixed number of integrated sensors, the

 135

time to compute the event-matching function (Equation 3.16) solely depends on the number

of events in an episode. In other words, regardless of environmental types, the time to

compute the event-matching process is the same as long as the number of events in an

episode is unchanged. Thus, the results gained from this indoor experiment are expected to

be generally applicable for other types of environments.

40 m

10 m

10 m

10 m

5 m
2 m2 m

111 222 333 444

555 666 777 888

1 m1 m

StartStart

40 m

10 m

10 m

10 m

5 m
2 m2 m

111 222 333 444

555 666 777 888

1 m1 m

StartStart

Figure 43: The simulated indoor environment used in the first experiment.

The robot was equipped with 16 sonar sensors, but no odometry information was

ever used for the proactive behavior computation. AIR computed the anticipatory behavior

based on a single training episode stored in the memory. The training episode was generated

by manually instantiating a combination of the Avoid-Obstacle, Move-Forward, and Swirl-Obstacle

motor schemata (Section 4.1.3). In this experiment, manual instantiation of behavior is

considered adequate since behavioral types do not influence the time to compute the event-

 136

matching function13 (Equation 3.16).

 For each case, the size of the training episode in the memory was varied from 20

events to 200 events with the increment of 10 events (i.e., 19 different sizes). For each

condition, the testing lasted 10 event-matching cycles, and it was repeated 20 times. Hence,

the computation time of the each data point was averaged over 200 measurements. Some of

the predefined constants utilized during the computation in this experiment are summarized

in Table 37, Appendix C (Section C.1).

5.1.2 Results

The average computation time (over 200 measurements) of each condition with

respect to the number of the events in the episode is plotted in Figure 44. The numerical

results are shown in Appendix C (Section C.2.1). More specifically, Plot 1 shows the overall

computation time for the event-matching process with respect to the number of events in an

episode when the property of the Poisson distribution was exploited (i.e., the limited-

transitions case). Plots 2 and 3 are also for the limited-transition case, showing the time

required to compute the sensor model and transition model, respectively. Plots 4, 5, and 6

show the time required to compute the overall event-matching process, sensor model,

transition model, respectively. Each of these plots was also fitted with trend lines using

Microsoft Excel. Plots 1, 2, 3, and 5 were best fitted by linear trend-lines while Plot 4 and 6

were best fitted by second-order polynomial trend-lines.

In other words, as expected, when all of the possible transitions were taken into

account upon computing the transition model, the computation time increased quadratically

13 An arbitrary reward value (1.0) was also manually assigned at the end of the episode although its influence on
the computation time was null as well.

 137

with respect to the number of events (states). When the computation was broken down to

the sensor model and transition model parts, the transition model computation did indeed

exhibit the quadratic increase while the increase of the sensor model computation remained

linear. On the other hand, in the limited-transitions case, the overall event-matching time

was increased only linearly with respect to the number of events, consistent with the O(n)

claim. The computations for both sensor and transition models were also expectedly linear.

Limited Transitions vs. Full Transitions

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180 200

Size of an Episode (# of Events)

T
im

e
(m

s)

1. Limited Transitions: Total

2. Limited Transitions: Sensor Model

3. Limited Transitions: Transition Model

4. Full Transitions: Total

5. Full Transitions: Sensor Model

6. Full Transitions: Transition Model

7. Trend of Plot 1 (Linear)

8. Trend of Plot 2 (Linear)

9. Trend of Plot 3 (Linear)

10. Trend of Plot 4 (Quadratic)

11. Trend of Plot 5 (Linear)

12. Trend of Plot 6 (Quadratic)

Figure 44: The average computation time required for the event-matching process with
respect to the number of events in an episode. (See Table 38 in Appendix C for the numerical
values. Also in Appendix C, the constants and the correlation coefficients of the trendlines are
shown in Table 39, and the standard error measurements (too small to display here) are
reported in Table 40.)

5.1.3 Discussion

This experiment demonstrated the time required for the event-matching process can

be indeed reduced from O(n2) to O(n) if the property of the Poisson distribution is

exploited in the transition model computation. As discussed in Section 3.4.2, a combination

 138

of the event-matching and behavioral-selection processes is the equivalent of a partially

observable Markov decision process (Section 2.4.4). In general, the state estimation part of

POMDP, which is the equivalent of the event-matching process in our approach, is the most

computationally expensive part. Since the event-matching process is reduced to O(n), our

method does indeed computes a POMDP solution efficiently in practice.

5.2 Effectiveness of Somatic Markers

Recall the fourth subsidiary research question (Section 1.2.2) concerning the somatic

marker hypothesis (Section 2.1.2):

• Does a memory with integrated somatic markers help a robot achieve better anticipation and/or

improvisation than without them?

In order to determine this question, the effectiveness of somatic markers integrated within

the episodic memory is evaluated. As reviewed in Section 2.1.2, the somatic marker

hypothesis [45] asserts that an animal’s internal emotional responses to environmental

stimuli are physically embedded into the episodic memory and such an element (marker) in

the memory is later utilized in the decision making process, allowing the animal to select the

most advantageous option. This experiment was adapted from the gambling experiment

conducted by Bechara et al. [23] in which the somatic marker hypothesis was examined using

patients whose ventromedial prefrontal cortices (presumably a part of the somatic marker

circuitry) had been damaged. Although reviewed in Section 3.1, we revisit their experiment

in more detail in order to contrast their work with ours.

In their experiment [23], the subjects were asked to draw cards from four types of

decks. As summarized in Table 32, two of the four types (A and B) rewarded the subjects

with $100 per card, but the occasional punishments were arranged in a way that after

 139

drawing ten cards from these types, the subject would lose $250. On the other hand, the

other two decks (C and D) rewarded the subjects with only $50 per card, but it was set up in

a way that they would eventually gain $250 after drawing ten cards from these types of the

decks.

Table 32: A summary of reward arrangements for the gambling experiment
conducted by Bechara et al. [23].

Card Type A B C D

Reward Value $100 $100 $50 $50

Avg. Punishment Value -$250 -$1,250 -$50 -$250

Avg. Frequency of

Punishment
1 in 2 cards 1 in 10 cards 1 in 2 cards 1 in 10 cards

Net Gain Per 10 Cards -$250 -$250 $250 $250

The graphs in Figure 45 show the average distributions of 100 cards picked by the

subjects over the four types of decks. The right graph (“Target Subjects”) shows the

distribution for the subjects whose ventromedial prefrontal cortices were damaged, and the

left graph (“Normal Control”) is for the subjects with out the damage. According to Bechara

et al. [23], the difference between these groups was substantial in terms of selecting the types

of the cards. The graph in Figure 46 highlights the difference between the two groups in

terms of their advantageous (decks A and B) vs. disadvantageous (decks C and D) choices.

More specifically, in 100 trials, the number of times each subject selected from the

disadvantageous decks was subtracted from the number of time he/she selected from the

advantageous decks, and the value was averaged over all the subjects in the group. In other

words, having a positive graph indicates an advantageous trend. In this graph (Figure 46),

attention should be paid on the groups labeled “EVR-Type” and “Normal”; the former is

the subjects with the ventromedial prefrontal context damages (i.e., broken somatic marker

 140

circuitry) and the latter is control subjects without the damage14. According to Bechara et al.

[23], the subjects without the somatic marker circuit damage were found to make

advantageous decisions profoundly compared to the subjects with the damage. In other

words, the somatic marker circuitry seems to make a significant contribution upon making

advantageous decisions.

Figure 45: The difference between the group with the somatic-marker circuital damages (“Target
Group”) and the group without the damage (“Normal Controls”) in terms of their choices of cards.
The vertical error bars indicate the values of standard error measurements. (Diagram reproduced from
[23].)

14 Regarding the other two groups, the “Brain-Damaged” group is the subjects with other types of brain
damages, and the “EVR” group is one stereotypical subject (“Patient E.V.R.”) whose ventromedial prefrontal
cortex was damaged [23].

 141

Figure 46: The difference between the group with the somatic-marker circuital damages (“EVR-
Type”) and the group without the damage (“Normal”) in terms of their advantageous choices minus
disadvantageous ones. (See Footnote 14 for the descriptions of other two groups.) The vertical error
bars indicate the values of standard error measurements (Diagram reproduced from [23].)

5.2.1 Materials and Methods

Recall that, in our framework, a somatic marker refers to the reward signal saved in a

sampled event whose value was predominantly determined by the associative rewarding

states (Section 3.3.2), and it is utilized in the behavior-selection process by providing

expected utilities of to-be-executed behaviors (Section 3.2.3). More specifically, recall the

following equation (a copy of Equation 3.35), which is the reward function that determines

the current reward value:

 ∑
Ι∈Γ∈

+′+=
+

ι
ι ικκκ),(),(max),(curL][curL

)(
curcurLcur *

ofoofgofr E
bE

og

Here, κg, κo, and κι are the constants (weights) for the three terms of this equation: namely,

similarities of the current perceptual state (o
cur
) with respect to: 1) the current goal (g

cur
), 2)

predicted observation (][Eo′), and 3) associative rewarding states (ι), respectively. Each

similarity is calculated by the likelihood function, f
L
 (Equation 3.14). If the value of the third

term (the associative rewarding states) becomes substantially larger than other terms, the

 142

subsequent reward signal is considered a somatic marker when saved in a sampled event.

The somatic-marker gambling experiment [23] explained above was adapted for a

robotic search-and-rescue scenario in this experiment. The real robot configuration (Section

4.2.1) was used. More specifically, ActivMedia’s Pioneer 2 DX robot with sixteen sonar

sensors and a camera was controlled by the behavior computed by AIR running on a laptop

machine (Intel Core 2 Duo). The communication between the robot and AIR was mediated

by HServer, running on a desktop machine (Intel Pentium 4).

The experimental area, set up in Georgia Tech Mobile Robot Laboratory, is shown

in Figure 47. Instead of the four decks of cards in the gambling experiment, four crate boxes

were placed at four different locations in the area (labeled “Box SE”, “Box SW”, “Box NE”,

and “Box NW”). The contents of the boxes were hidden from the robot’s initial view

(marked “Start”). Thus, to inspect inside them, the robot would have to travel to the

locations while avoiding obstacles (shaded gray in the figure). The obstacles were detected by

the sonar sensors. No odometry information was ever used in this experiment.

During the test, as each card in the gambling experiment was denoted with a certain

amount of money to indicate rewards and punishments, each box contained detectable

objects that had association with certain reward/punishment values. More specially, as

shown in Table 33, if HServer (OpenCV) detected a baby-doll (“survivor”) in the incoming

video image, 50 points were rewarded (the equivalent of the $50 low rewarding card). If two

baby-dolls were detected simultaneously, 100 points were rewarded (the equivalent of the

$100 high rewarding card). In our framework, awarding of the points was done by assigning

appropriate weights (κι) for the third term of the reward function (above). In other words,

considering the perceptual states of simply detecting these objects to be the associative

rewarding states in this case, the values of κι for detecting a baby-doll and two baby-dolls

 143

were assigned to be 50.0 and 100.0, respectively (assuming the detection does not interfere

with each other). Similarly, for punishments, the values of κι for detecting the “arc flash and

shock hazard” signs, the “high voltage” danger sign, and the “construction entrance” sign

were assigned to be -1250.0, -250.0, and -50.0, respectively. The values of these punishments

were chosen, so that the robot can be punished with the exactly same frequencies applied in

the gambling experiment (Table 32). The frequencies of the punishments used in this

experiment are shown in Table 34. For example, if the robot visits the Type A box, the

robot is awarded 100 points (two baby-dolls) although once in two visits, -250 points of a

punishment (the “high voltage” danger sign) is also hidden in the box. As in the gambling

experiment, the rewards and punishments in the Type A and Type B boxes were arranged,

so that the robot would experience a net-loss of -250 points if these boxes have been visited

10 time consecutively. On the other hand, if the robot visits the Type C and Type D boxes

10 times in a row, the robot would experience a net-gain of 250 points (i.e., more

advantageous choices than the other two boxes). Note that we replicated the experimental

setup of the somatic-marker gambling experiment by Bechara et al. [23]; as they had

effectively shown the utility of somatic markers, we assumed that the utility of the robotic

somatic marker can be also assessed in a similar way.

 144

Figure 47: An experimental area used in the somatic marker experiment using a real
robot.

Table 33: Assigned associative reward values of predefined objects.

100 pts

Two Baby Dolls

50 pts

One Baby Doll

-1250 pts

“Arc Flash and

Shock Hazard”

Warning Sign

-250 pts

“High Voltage”

Danger Sign

-50 pts

“Construction

Entrance” Notice

Sign

Associative

Reward Value

Description

Object

Image

100 pts

Two Baby Dolls

50 pts

One Baby Doll

-1250 pts

“Arc Flash and

Shock Hazard”

Warning Sign

-250 pts

“High Voltage”

Danger Sign

-50 pts

“Construction

Entrance” Notice

Sign

Associative

Reward Value

Description

Object

Image

Table 34: A summary of reward arrangements for the somatic marker experiment (cf.
Table 32).

Box Type A B C D

Reward Value 100 pts 100 pts 50 pts 50 pts

Punishment Value -250 pts -1250 pts -50 pts -$250

Frequency of

Punishment
1 in 2 visits 1 in 10 visits 1 in 2 visits 1 in 10 visits

Net Gain Per 10 visits -250 pts -250 pts 250 pts 250 pts

 145

In this experiment, the performance of the robot with somatic markers was

compared against the performance of the robot without somatic markers. The latter case was

implemented by setting all the associative reward values (κι) to be zero. Incidentally, κg, the

weight for the first term (similarity between the current perceptual state and the current goal)

in the reward function, was set to be 25.0 (a half of the weight for the baby doll). Hence, if

the somatic marker is enabled, the associative rewarding state would have significant impact

on the current reward value. The second weight (κo), the similarity between the current

perceptual state and predicted perceptual state, was set to be zero, so that it would have no

effect during the experiment.

Before testing, for each of the four boxes, three training episodes were generated by

manually instantiating a combination of the Move-Forward, Move-Leftward, Move-Rightward, and

Swirl-Obstacle motor schemata (Section 4.1.3) to make the robot reach the box from the

starting position. Although the manual instantiation (supervising) of the behavior may have

produced suboptimal solution to reach the destination and may have contained variances

among them, by altering the locations of the Types A, B, C, or D boxes through out eight

trials as shown in Table 35, the effect of the sub-optimality and the variances was considered

nullified. The goal during the testing episodes was set to be the perceptual state detecting

two survivors even though no object was hidden in any of the boxes during the training

period (i.e., the current reward value was constantly zero during the training).

During a testing episode, the robot was dispatched from the same starting position

as in the training, and the same goal (detection of two survivors) was activated by the goal

manager. The activation was done manually through the graphical user interface (recall

Figure 31) in order to effectively test the proactive behavior computation (instead of, for

example, the motivation function to select the goal automatically). Twenty consecutive

 146

episodes were recorded as a single test set, and eight test sets were collected for each

condition: the robot with somatic markers vs. the robot without somatic markers (i.e., 320

runs total). No improvisation was performed in this experiment. Some of the predefined

constants utilized during the computation in this experiment are summarized in Table 37,

Appendix C (Section C.1).

Table 35: The reward/punishment schedule types (Table 34) and corresponding box
locations (see Figure 47) for each test set.

A B C D

1 Box SE Box NE Box SW Box NW

2 Box NW Box SW Box NE Box SE

3 Box SW Box NW Box SE Box NE

4 Box NE Box SE Box NW Box SW

5 Box SE Box SW Box NE Box NW

6 Box SW Box SE Box NW Box NE

7 Box NE Box NW Box SE Box SW

8 Box NW Box NE Box SW Box SE

Box TypeTest Set

Number

5.2.2 Results

The graph in Figure 48 shows the rate of the robot taking advantageous choices (i.e.,

Boxes C and D) through out the 20 trials. The rate was averaged over the eight test sets, and

the two conditions (the robot with somatic markers vs. the robot without somatic markers)

were compared. The actual sequences of the robot’s 20 visits to the boxes are shown in

Table 41 (with somatic markers) in Table 42 (without somatic markers) in Appendix C. As it

can be observed in the graph, although the difference between the two conditions was not

substantial in the beginning, the trajectories of the two gradually diverged as the number of

the trials was increased. The robot with somatic markers started taking more and more

advantageous choices as episodes were accumulated while the robot without somatic

markers was consistently taking disadvantageous choices towards the end. Note that some

 147

minimum exposure to the environment (about 11 visits in this case) seems to be necessary

before somatic markers become truly effective.

The average numbers of the robot’s visits made to each box over the 20 trials are

plotted in Figure 49 (with somatic markers) and Figure 50 (without somatic markers). Here,

the performance of the robot with somatic markers was found to be substantially better than

the one without somatic markers as it visited more advantageous boxes than

disadvantageous ones. According to a factorial analysis of variance (ANOVA), presence of

somatic markers indeed had significant effect on the box choices (F(3,56) = 7.03, p < 0.001).

Note that these results are similar to the results found in the actual somatic marker gambling

experiment conducted by Bechara et al. [23] (Figure 45) as they both have shown that the

subjects/robots with somatic markers make more advantageous choices than the ones

without somatic markers. To further visually compare our results with the ones reported by

Bechara et al. [23], the number of disadvantageous choices (Types A and B) made by the

robot was subtracted from advantageous choices (Types C and D) and plotted in Figure 51,

generating a graph compatible to the one in Figure 46. In this case, a positive bar infers an

advantageous trend in its choices. According to a one-way ANOVA, the difference between

the robot with somatic markers and the robot without them was substantial (F(1, 14) =

66.98, p < 0.001); the robot with somatic markers overwhelmingly made more advantageous

choices.

 148

Advantageous Choices

-20

0

20

40

60

80

100

120

0 5 10 15 20

Trial Number

R
a
te
 o
f
T
a
k
in
g
 A
d
v
a
n
ta
g
eo
u
s
C
h
o
ic
es
 (
%

)

Robot with Somatic Markers

Robot without Somatic Markers

Figure 48: The rate of the robot taking advantageous choices (Boxes C and D) with respect to the
number of trials. While there was no substantial distinction between the two conditions in the
beginning, at the end of the trials, the robot with somatic markers was found to choose advantageous
choices. On the other hand, the robot without somatic markers was found to choose disadvantageous
choices. The vertical error bars indicate the values of standard error measurements. (See Table 43 in
Appendix C for the numerical values.)

Robot with Somatic Markers

0

2

4

6

8

10

12

14

A B C D

Disadvantageous Advantageous

N
u
m
b
e
r
o
f
S
e
le
ct
io
n
s

O
v
e
r
 2
0
 T
r
ia
ls

Choice

Robot with Somatic Markers

0

2

4

6

8

10

12

14

A B C D

Disadvantageous Advantageous

N
u
m
b
e
r
o
f
S
e
le
ct
io
n
s

O
v
e
r
 2
0
 T
r
ia
ls

Choice
Figure 49: The average distribution of 20 consecutive box-visits
over four box types (A, B, C, and D) by the robot with somatic
markers. The vertical error bars indicate the values of standard
error measurements. (See Table 44 in Appendix C for the
numerical values.)

 149

Robot without Somatic Markers

0

2

4

6

8

10

12

14

A B C D

Disadvantageous Advantageous

N
u
m
b
e
r
o
f
S
e
le
ct
io
n
s

O
v
e
r
 2
0
 T
ri
a
ls

Choice

Robot without Somatic Markers

0

2

4

6

8

10

12

14

A B C D

Disadvantageous Advantageous

N
u
m
b
e
r
o
f
S
e
le
ct
io
n
s

O
v
e
r
 2
0
 T
ri
a
ls

Choice
Figure 50: The average distribution of 20 consecutive box-visits
over four box types (A, B, C, and D) by the robot without somatic
markers. The vertical error bars indicate the values of standard
error measurements. (See Figure 43 in Appendix C for the
numerical values.)

-20

-15

-10

-5

0

5

10

15

20

N
u
m
b
er
 o
f
A
d
v
a
n
ta
g
e
o
u
s
M
in
u
s

D
is
a
d
v
a
n
ta
g
eo
u
s
C
h
o
ic
e
s

Robot with

Somatic Markers

Robot without

Somatic Markers

-20

-15

-10

-5

0

5

10

15

20

N
u
m
b
er
 o
f
A
d
v
a
n
ta
g
e
o
u
s
M
in
u
s

D
is
a
d
v
a
n
ta
g
eo
u
s
C
h
o
ic
e
s

Robot with

Somatic Markers

Robot without

Somatic Markers

Figure 51: The difference between the robot with somatic markers
and the robot without them in terms of its advantageous choices
minus disadvantageous ones. The vertical error bars indicate the
values of standard error measurements. (See Table 46 in Appendix
C for the numerical values.)

 150

5.2.3 Discussion

This experiment demonstrated that the robot with somatic markers indeed made

advantageous decisions for itself compared to the one without somatic markers.

Algorithmically, the difference between the two conditions is the presence of associative

rewarding values (the values were all zeros for the robot without somatic markers). Since the

weight (κg) in Equation 3.35 for rewarding the robot reaching a current goal (finding two

“survivors”) had a non-zero value, once two baby dolls were detected in one episode, the

robot without somatic markers tended to choose actions based on that episode, resulting in

the disadvantageous choices for the robot in this experimental setup. However, if the world

is static and hence the punishments never appeared, since it consistently went to the boxes

where its goal was, the robot without somatic markers would have made right choices

perfectly. Thus, even if it may occasionally lead the robot into disadvantageous

circumstances (such as in this experimental setup), the value of κg should be kept non-zero.

Although the scenarios differed, this experiment and the gambling experiment

conducted by Bechara et al. [23] had similar results as the decisions made by the robot or the

subjects with somatic markers were found to be more advantageous than those without

somatic markers. It should be noted however that this does not necessary indicate that our

approach is exactly how our brains work. This experiment rather proves that a biologically

inspired approach can be incorporated into standard machine learning techniques to solve

typical artificial intelligence problems such as making advantageous decisions in the long run.

Of course, being able to make advantageous decisions in the long run is not novel in the

field of machine learning or artificial intelligence. The contribution of this approach can be

highlighted by particularly combining the results from the previous experiment:

computational efficiency during the event-matching process. Since this experiment has

 151

demonstrated that the MDP part (behavioral selection) of the partially observable Markov

decision process or POMDP (see Section 2.4.4) does work, it can be concluded that our

method indeed computes POMDP solutions computationally efficiently.

5.3 Promptness of Proactive Behavior Computation

This experiment addresses the issues raised by the fifth subsidiary research question

(Section 1.2.2) that is to understand the relationship between promptness of the proactive

behavior computation and its behavioral quality:

• What is the trade-off between promptness and the quality of anticipation/improvisation that a robot

performs?

This experiment consists of two parts; the first part attempts to solve it from an anticipatory

perspective while the second part deals with the same problem from an improvisational

perspective.

In terms of the anticipatory aspect, the first experiment in Section 5.1 demonstrated

that the event-matching time in the proactive behavior computation can be reduced to O(n)

where n is the number of events in an episode. Even so, recall that if k episodes are found

relevant by the recollection process (Section 3.2.1), the total amount of the event-matching

time has to be multiplied by k. Naturally, if the robot increases the experience, the k value

also increases, resulting the computational time to be O(kn) instead of O(n). As discussed in

Section 3.2.1, we proposed that the size of k can be restricted by setting its upper limit or

cap. If true, the computation time should remain O(n) instead of O(kn). Although, the

factor, k, may seem small as it is a mere linear multiplier (i.e., not polynomial), as our primary

interest in this dissertation is to determine how extended experience influences the proactive

behavioral computation (Section 1.2), it should not be regarded as trivial. Therefore, in the

 152

first part of this experiment, we examine how k influences the time required for the event-

matching process as well as how it influences the quality of the anticipatory behavior.

Furthermore, we also investigate whether imposing the cap can have a negative effect on the

computation time or the behavioral performance.

The second part of the experiment deals with an improvisational aspect of the

computational promptness with respect to the behavioral quality. In particular, we examine

how the number of episodes in the memory influences the time to respond to the

unanticipated circumstance (i.e., validation failure) and recall a new set of relevant episodes

for a new (intermediate) goal. As in the anticipatory experiment, the event-matching time

with respect to the quality of improvisational behavior is also examined.

5.3.1 Materials and Methods

Part A (Anticipatory Aspect)

In this part of the experiment, we examine how the number of relevant episodes

selected by the recollection process influences the time to compute event matching as well as

how it influences the quality of the behavior being computed. The same method that had

been employed in the first experiment to measure the time to compute the event-matching

process was also utilized in this experiment (Section 5.1.1) (i.e., the average time to compute

the event-matching function, Equation 3.16, for each event in every episode being recalled

was recorded as the computation time). The quality of the behavior, performing a

navigational task, was measured from two aspects: spatial (path-length) and temporal

(duration).

More specifically, as in the first experiment (Section 5.1), this experiment was

conducted with the Gazebo configuration (Section 4.2.2). In other words, AIR was executed

on a laptop machine (Intel Pentium III) and interacted with the simulated Pioneer 2 DX

 153

robot in Gazebo running on a desktop machine (Intel Pentium 4). HServer was set up to

relay the perceptual (sonar) and behavioral information between the two processes from the

same desktop machine. The same indoor environment used in the first experiment was

utilized in this experiment to perform a navigational task (Figure 52).

40 m

10 m

10 m

10 m

5 m
2 m2 m

111 222 333 444

555 666 777 888
StartStart

GoalGoal

40 m

10 m

10 m

10 m

5 m
2 m2 m

111 222 333 444

555 666 777 888

40 m

10 m

10 m

10 m

5 m
2 m2 m

111 222 333 444

555 666 777 888
StartStart

GoalGoal

Figure 52: The simulated indoor environment used in the first part of the third experiment.

In a training episode, the robot was dispatched from Room 8, and the combination

of the Avoid-Obstacle, Enter-Opening, Move-Forward, Swirl-Obstacle, Move-Leftward, and Move-

Rightward motor schemata (Section 4.1.3) were manually instantiated15 in order to navigate

the robot into Room 2 via the hallway. The robot received a fixed reward value (1.0) at the

end of the episode (i.e., as soon as entering Room 2), so that episodes with fewer events

would be prioritized during behavior selection. Five training episodes were gathered since

15 Although ideally, by enhancing the motivation and reward functions (Sections 3.3.1 and 3.3.2), the robot
should first learn the entire sequence of the behavioral instantiations automatically in a developmental fashion,
here, supervised training was used as those functions had not yet been fully developed.

 154

the limited-history case (explained below) could exploit only five recent episodes.

At each test run, the robot was released from the starting position (Room 8), and the

run was terminated as soon the robot autonomously navigated itself into the goal (Room 2).

The qualities of the behavioral performance were measured in terms of the total distance the

robot traveled (path-length) and the time the robot took to reach the goal (duration). During

the test, the two conditions were evaluated: namely, the limited-history case and the full-history

case. The condition in which no cap was imposed to limit the number of the relevant

episodes being processed in the event-matching process (i.e., trimming the history length) is

referred to as the full-history case. On the other hand, when the number of the relevant

episodes being recalled in the recollection process was restricted by the cap, the condition is

referred to as the limited-history case. For the limited-history case, the latest five episodes that

met the goal condition were selected. As discussed above, the hypothesis here is that, for the

full-history case, if the number of the events in each episode is constant, the time to

compute event matching increases linearly with respect to the number of the episodes

processed during the proactive (anticipatory) computation. Another assumption is that

reduction of this computation time can be achieved if the history length is trimmed. Our

main question in this experiment (i.e., Subsidiary Research Question 4) is to identify whether

such reduction of the computation time would compromise behavioral selection. Thus, the

quality of the behavior was evaluated for those two conditions. As discussed in Section 3.2.1,

this aspect of the experiment is related to the research conducted by Kira and Arkin [84] in

the context of forgetting cases in case-based reasoning. Here, we applied the recency-based

elimination strategy to trim the length of the history based on the assumption that the

environment would not necessary remain static.

To have a considerable increase in the volume of the episodic memory, the test run

 155

was repeated eight times consecutively. In other words, while the number of the available

episodes in the memory at the first run was only five (training episodes), at the final run,

twelve accumulated episodes were available in its memory (i.e., the full-history case exploited

all twelve episodes while the limited-history case exploited only five episodes at the final

run). This eight-run-sequence was then repeated four times for each of the two conditions

(i.e., 64 runs total). As in the first experiment, the average computation time for the event-

matching process was recorded within AIR. To reach Room 2, each run generally required

over 300 event-matching cycles; hence, the computation time of the event-matching process

for each case was averaged over more than 1200 measurements. Some of the predefined

constants utilized during the computation in this experiment are summarized in Table 37,

Appendix C (Section C.1).

Part B (Improvisational Aspect)

In the second part, the improvisational aspect of the behavioral computation with

respect to the behavioral quality is examined through an improvisational detour experiment

using USARSim (Section 4.2.3). A virtual village16 shown in Figure 53 was set up in the

USARSim simulation environment. AIR, running on a desktop machine (Pentium 4), was

configured to navigate a simulated robot (ATRV-Jr) in this virtual village. USARSim was

executed on a laptop machine (Intel Core 2 Duo) while HServer was executed on the same

desktop machine as AIR. The sole sensor used in this experiment was an emulated laser

scanner (SICK LMS200) mounted in front of the robot, scanning the front 180-degree angle.

The readings of the sensor were downsampled to have only 19 measurement points per 180-

16 The map was adapted from John Falgate’s DM-Blackhawk map for the Unreal Tournament 2004 game
(http://www.mapraider.com/Angelheart).

 156

degree scan (10-degree increment) instead of the original 181 points (1-degree increment) to

reduce the computational load. No odometry information was used in this navigational

experiment.

As explained in Chapter 3, in our model, what differentiates the computation of

improvisation from anticipation are the additional processes: validation (Section 3.2.4) and

recovery (Section 3.2.5). More specifically, in anticipation, it is assumed that the relevant

episodes recalled by the recollection process (Section 3.2.1) based on the current goal

reasonably represent the current state space. Thus, by executing the behavior recorded in

those episodes, the goal can be reached in the end. However, the assumption does not

always hold in reality. Hence, if the validation process detects a discrepancy between the

current state space and the one recorded in the recalled episode, such an episode is removed

from the working memory. If there is no more relevant episode left to work with, the

recovery process suggests an intermediate goal that would bridge between the current state

space and the target state space (containing the goal). The behavior computed from this

manner is referred to as improvisation. Although our model can be applied to non-

navigational tasks, this experiment was set up to evaluate the promptness of the behavioral

computation with respect to the quality of performing a navigational task in which the robot

generated an appropriate intermediate goal to reach a target location when an original path

became suddenly impassable. The quality of the behavior in this case is measured in terms of

the success rate and the operational speed (explained below).

 157

(a)

12 m

1
2
 m

5
8
 m

47 m

7 m

6 m

12 m

1
2
 m

5
8
 m

47 m

7 m

6 m

 (b)

Figure 53: The simulated outdoor environment used in the second part of the
third experiment: (a) a bird’s eye view of the area rendered in USARSim, and
(b) the corresponding map and its dimensions of the area.

 158

In this experiment, the training episodes contained the experience of taking different

routes in the village. More specifically, three types of training episodes were prepared:

namely, target-episode, positive-episode, and negative-episode. The target-episode (Figure 54 (a))

contained the experience of reaching location A the target location that happened to be also

the goal17 specified in the test runs. (A sample image of location A, rendered in USARSim, is

shown in Figure 55 (a).) However, during the test, this episode could not be used to reach

the goal in its original form since a barrier (Figure 54 (d)) was newly introduced to block the

path before the test began. In a target episode, the behavioral sequence of reaching location

A from the start position was manually generated by instantiating a combination of the Move-

Forward, Move-Leftward, Move-Rightward, and Swirl-Obstacle motor schemata (Section 4.1.3). As

in the previous experiment, ideally, this sequence should be generated automatically through

a developmental-learning process. However, supervised training was employed here since the

motivation and reward functions (Sections 3.3.1 and 3.3.2) that would allow such an

automatic generation of behavioral sequence had not yet been fully developed.

The episodes for the positive-episode type contained the experience in which the

robot took a different route in the village (Figure 54 (b)). More specifically, the robot was

released from an alternative starting point, approximately 15 meters west of the releasing

point used in the target episode and driven manually by instantiating a combination of the

same motor schema types used in the target episode to reach an alternative target location B

(Figure 55 (b)). Note that starting point and the goal location of this type coincided with the

path the robot took during the target episode. This episode type is considered “positive” as

17 The target location (goal) was specified in the form of the laser scanner readings.

 159

it allowed the robot to utilize this episode as the bridging episode to bring itself to the

ultimate goal eventually when the route in the target episode was found impassable (Figure

54 (d)). Consequently, to distinguish themselves from the episodes from the negative-

episode type (explained below), a positive reward value (100) was assigned to every positive

episode when the robot reached its goal (location B).

The negative-episode type was prepared, so that it could be verified that the

behavior-selection process indeed chooses the advantageous behaviors rather than mere

alternative behaviors even when improvising. More specifically, in a negative episode, the

robot was dispatched from the same starting position used in the positive episode (Figure 54

(c)), and the goal was set to be also same as the one used in the positive episode (i.e.,

location B). However, when training (supervised), instead of reaching location B by turning

left (towards the north) at the intersection (situated at the center of the village), the robot

was deliberately driven straight towards the east, leading the robot to fall into a crater at

location C (Figure 55 (c)). In other words, if the behavioral sequence from this type of the

episode was chosen, the robot would never be able to reach the intermediate goal (location

B) or consequently its final destination (location A). To distinguish itself from the episodes

of the positive type, a punishment value (-100) was given to every negative episode when the

robot fell into the crater at the end.

 160

AAAA

(a)

BBBB

(b)

CCCC

(c)

AA

BlockBlockBlock

AA

BlockBlockBlock

(d)

Figure 54: The destinations and the (ideal) paths for four different episode types: (a) the target-
episode type, (b) the positive-episode type, (c) the negative-episode type, and (d) testing episodes
when successfully detoured.

 161

(a) (b)

(c) (d)

Figure 55: Screen captures of USARSim at the four landmark locations: (a) location A (target), (b)
location B (an intermediate point), (c) location C (crater), and (d) the south center-ally entrance
(blocked).

During the testing, the robot was released from the same starting position used in

the target episode. The observation at location A was used as the goal, so that the robot

could initially retrieve the target episode as a relevant one. However, in this case, the south

entrance to the center alley located in the middle of the robot’s path was set up to be

blocked (Figure 55 (d)). Hence, as shown in Figure 54 (d), the robot would have to use a

portion of a positive episode to detour around the blocked path and eventually bring itself

back to the target episode to reach the goal (location A). In our framework (Section 3.2), this

could be done by 1) detecting the anticipatory failure at the blocked entrance, 2) recovering

from the failure by generating an intermediate goal (location B), 3) pursuing the intermediate

goal by recalling a new set of relevant episodes (positive training episodes), and 4) re-

 162

pursuing the original goal when the intermediate goal is met.

As shown in Table 36, three testing conditions were prepared, so that the behavioral

quality could be examined with respect to the three different volumes of the episodic

memory. In the first condition (Condition I), when released from the starting position, the

robot had three episodes in its memory: namely, one target episode to reach the main goal,

one positive episode to provide an alternative route, and one negative episode to ensure that

behavior selection is not arbitrary. In Condition II, the robot had one target episode, two

positive episodes, and two negative episodes (i.e., five episodes total) in its memory. In

Condition III, the memory contained one target episode, three positive episodes, and three

negative episodes (i.e., seven episodes total). To measure the promptness of the behavioral

computation, the average time the robot took to compute the event-matching process was

measured the same way as it was measured in the previous experiments (Experiments 1 and

3A). In other words, the time to compute the event-matching function (Equation 3.16) for

an event was averaged over the number of the events in every episode being recalled.

Table 36: The number of episodes in the memory and the testing conditions.

Target Postive Negative Total

Condition I 1 1 1 3

Condition II 1 2 2 5

Condition III 1 3 3 7

Number of Episodes in the Memory

The quality of the improvisational behavior was measured in terms of the success

rate and the duration. More specifically, the test run was repeated 12 times for each of the

three conditions (i.e., 36 runs total); out of the 12 runs, the number of times the robot

successfully reached the goal was measured as the success rate, and among the successful

runs, the time to reach the goal was recorded as the duration. Furthermore, the same testing

procedure (i.e., the 36 runs) was repeated with the robot operating at half speed (0.5 m/s) (as

 163

opposed to the full speed, 1.0 m/s, with which the robot was trained) in order to examine

whether the success rate could be improved. The speculation here is that, by reducing the

operational speed, the robot could gain more time to process an event sampled in the same

environment, improving the event-matching quality and consequently the quality of the

overall behavioral performance (success rate). However, obviously, the time to reach the

goal was expected to take longer with the slower operational speed. Some of the predefined

constants utilized during the computation in this experiment are summarized in Table 37,

Appendix C (Section C.1).

5.3.2 Results

Part A (Anticipatory Aspect)

For the hallway navigational task, the robot was able to successfully assess the

current state, predict the future consequences of the situation, and execute an action to reach

the goal room based on the determined assessment and prediction (i.e., performed

anticipation). The graphs in Figure 56 show the averaged computation time required for the

event-matching process with respect to the number of episodes in the robot’s memory. It

can be observed that, if all episodes in the memory were taken into consideration, the overall

computation time increased linearly with respect to the number of episodes in the memory.

On the other hand, when the cap was imposed on the number of the relevant episodes, the

computation time was kept constantly low. A factorial ANOVA confirmed that imposing

the cap indeed had significant influence on the computation time with respect to the number

of episodes in the memory (F(7,48) = 343.78, p < 0.001).

Regarding the quality of the anticipatory behavioral performance, the graph in Figure

57 shows the average length of the path that the robot took to reach the goal with respect to

the number of episodes in the memory. Unlike the computation time, the path length was

 164

not affected by the number of episodes regardless of the cap (F(7,48) = 0.11, p > 0.1). The

graph in Figure 58 shows the average duration that the robot took to reach the goal with

respect to the number of episodes in the memory. Note that, in the full-history case, the

arrival to the goal was notably delayed at the last run (when the number of the episodes in

the memory was 12). Although another experiment needs to be conducted to identify the

cause of this delay, it is speculated that the increase in the computation time for the event-

matching process may have caused erroneous event matching during point-turns (i.e., no

effect on the path-length), which may have produced oscillations of the robot before making

a translational move. However, overall, the average time the robot took to reach the goal was

not affected by the number of episodes in the memory regardless of the cap (F(7,48) = 2.82,

p > 0.1).

Limited History vs. Full History

0

20

40

60

80

100

4 5 6 7 8 9 10 11 12 13

 Number of Episodes in the Memory

T
im

e
 (
m
s)

Limited History (5 Episodes)

Full History

Figure 56: The average computation time required for the event-matching process in the anticipatory
experiment with respect to the number of episodes in the memory. When only five recent episodes
were used to compute the anticipatory behavior (limited-history), the time to compute event matching
stayed constantly low. However, when all episodes in the memory were exploited (full-history),
expectedly, the event-matching time increased linearly with respect to the number of episodes. (See
Table 47 in Appendix C for the numerical values. The standard error measurements (too small to
display here) are also reported in Table 47.)

 165

Path Length

24.75

25.00

25.25

25.50

25.75

26.00

4 5 6 7 8 9 10 11 12 13

Number of Episodes in the Memory

L
en

g
th
 (
m
)

Limited History (5 Episodes)

Full History

Figure 57: The average path length with respect to the number of episodes in the memory. The
vertical error bars indicate the standard error measurements. The path-length did not significantly
change regardless of how many episodes were used to compute the anticipatory behavior. The vertical
error bars denote the standard error measurements. (See Table 48 in Appendix C for the numerical
values.)

Duration

250

350

450

550

650

750

4 5 6 7 8 9 10 11 12 13

Number of Episodes in the Memory

T
im

e
(s
)

Limited History (5 Episodes)

Full History

Figure 58: The average duration with respect to the number of episodes in the memory. Overall, as in
the path-length graph (Figure 57), the duration did not substantially change regardless of how many
episodes were used to compute the anticipatory behavior. The only instance when a considerable
difference was recorded was at the last trial for the full-history case. The vertical error bars indicate the
standard error measurements. (See Table 49 in Appendix C for the numerical values.)

 166

Part B (Improvisational Aspect)

As shown in Figure 59, in terms of the improvisational behavioral performance (the

number of successful runs out of 12 trials), regardless of the robot’s speed, the robot was

found to perform best in the first condition (three episodes were in the memory) and worst

in the third condition (seven episodes in the memory). In any condition, the robot at half

speed (0.5 m/s) performed always better than the robot at full speed (1.0 m/s). The best

performance (11 out of 12) was achieved by the half-speed robot in the first condition, and

the worst performance (0 out of 12) was recorded by the full-speed robot in the third

condition. However, as shown in Figure 60, expectedly, the slower speed cost the behavioral

quality in terms of the duration as it took substantially longer time to reach the goal when

the robot was driven at half speed (F(1,33) = 239.79, p < 0.001).

Number of Successful Runs (Out of 12)

0

2

4

6

8

10

12

I II III

Condition

C
o
u
n
t

Full Speed

Half Speed

Figure 59: The number of successful runs (out of 12) with respect to the three experimental conditions
(Table 36). In all three conditions, the robot at half speed performed better than the robot at full
speed. Regardless of its speed, the robot in Condition I (three episodes in the memory) performed
better than the other two conditions (9 out of 12 for the full-speed robot and 11 out of 12 for the half-
speed robot). In Condition II (five episodes in the memory), when the robot was at full speed, the
number of the success runs became substantially small (2 out of 12) while, for the half-speed robot, the
number of the successful runs was still high (9 out of 12). In Condition III, the robot performed worst
among the three conditions (0 out of 12 for the full-speed robot and 4 out of 12 for the half-speed
robot).

 167

Time to Reach the Goal Location (Duration)

 Successful Runs Only

0

50

100

150

200

250

300

Full Speed Half Speed

Speed

D
u
ra
ti
o
n
 (
s)

Figure 60: The time to reach the goal location (duration) in
successful runs. As expected, when the robot was driven at half
speed, the duration was taken longer. The vertical error bars
indicate the standard error measurements. (See Table 51 in
Appendix C for the numerical values.)

The graphs in Figure 61 show the average time for both the full-speed robot and the

half-speed robot to compute the event-matching process with respect to the number of the

training episodes in the memory (i.e., the three different conditions). For comparison, the

average time the robot took to sample an event during the training is also plotted in the

graph. Similar to the trend found in the anticipatory experiment (Figure 56), the computation

time required for the event-matching process was found to increase with respect to the

number of the episodes in the memory (regardless of the robot’s speed). A one-way

ANOVA indicates that the number of the episodes in the memory is indeed a strong factor

to determine how long the robot takes to compute event matching (full-speed: F(2,33) =

16.93, p < 0.001; half-speed: F(2,33) = 82.36, p < 0.001). Unlike the anticipatory experiment,

however, this increase in the event-matching time was not precisely linear with respect to the

number of the episodes in the memory. In particular, the event-matching time in Condition

III (when the number of the episodes in the memory was seven) was less than it would have

 168

been if the increase was linear. This is likely caused by the fact that, in Condition III, the

robot was often observed to have terminated the intermediate goal prematurely, confusing

the right-turn corner at location B (the intermediate goal location) with other right-turn

corners found earlier in its path. Once the intermediate goal had been terminated, the

number of the relevant episodes since then become just one (the target episode), requiring

less time to compute the event-matching process than when the relevant episodes were six

(three positive episodes and three negative episodes).

Average Event-Matching Time vs. Average Event-Sampling Interval

0

200

400

600

800

2 3 4 5 6 7 8

Number of Epiodes in the Memory

T
im

e
(m

s)

Avg. Event-Matching Time (Full Speed)

Avg. Event-Matching Time (Half Speed)

Avg. Event-Sampling Interval (Training Episodes)

Figure 61: The average computation time required for event matching and the average event-sampling
interval in the improvisational experiment with respect to the number of episodes in the memory.
Regardless of the robot’s speed, the average event-matching time was found to exceed the average
sampling interval of the training episodes. The vertical error bars indicate the standard error
measurements. (See Table 50 in Appendix C for the numerical values.)

Note that this event-matching error is likely related to how much the event-matching

time (during the testing) exceeded the average time the robot took to sample an event during

the training (Figure 61), and it is also speculated as the source of the poor performance in

Conditions II and III (Figure 59). (Recall from Section 3.1.1 that the event-sampling

intervals are determined by the characteristics of the perceptual signal; if the discontinuity in

 169

the signal is detected, a new event is sampled.) As shown in Figure 61, the only testing

condition in which the robot took less time to compute event matching than the average

event-sampling interval during the training was Condition I; in the other two conditions, the

average event-matching time was found to exceed the average event-sampling interval. Since

the event-matching process has to be performed whenever a new event is sampled (Section

3.1.1), having excessive event-matching time likely affects the quality of event matching. By

rearranging the same set of the data used above, as shown in Figure 62, the excessive event-

matching time (the average event-matching time minus the average event-sampling interval)

for the full-time robot was also plotted against the performance (i.e., success vs. failure).

According to a one-way ANOVA, the unsuccessful runs were found to have significantly

more excessive event-matching time than successful runs (F(1,34) = 15.38, p < 0.001). Note,

however, that a more comprehensive experiment needs to be carried out in order verify

whether this analysis can be applied for other types of domains/environments.

-200

-150

-100

-50

0

50

100

150

200

E
x
c
es
si
v
e
E
v
en
t-
M
a
tc
h
in
g
 T
im

e
 (
m
s)

Success Failure

Runs

-200

-150

-100

-50

0

50

100

150

200

E
x
c
es
si
v
e
E
v
en
t-
M
a
tc
h
in
g
 T
im

e
 (
m
s)

Success Failure

Runs

Figure 62: The difference between the successful and unsuccessful runs of
the full-speed robot in terms of the excessive event-matching time. When
the time to compute the event-matching process exceeded the average
event-sampling interval of the episodes in the memory, the performance was
found to be overwhelmingly poor. (See Table 52 in Appendix C for the
numerical values.)

 170

5.3.3 Discussion

The first part of the experiment (anticipatory aspect) demonstrated that the time to

compute the event-matching process linearly increases with the size of the relevant episodes

being recalled. Although it is expected to be not as severe as being polynomial, the linear

increase can become potentially damaging if the computational resource is limited as seen in

the second part of the experiment (discussed below). In the first part of the experiment in

which the environment was kept constant, the increase in the number of the episodes did

not substantially improve the quality of the behavioral performance whether it is path-length

or duration. Hence, by trimming the history length, the computation time required for the

anticipatory aspect of the proactive behavior computation can be indeed kept as O(n)

instead of O(kn) (where n and k are the number of events in an episode and the number of

episodes in the memory, respectively).

However, this result should be compared with the result from the second experiment

on the somatic markers (Section 5.2.2). When multiple options are available (e.g., four

potential locations to find survivors), the robot has to have enough experience in the

environment to start making advantageous decisions. Being able to trim the history-length

becomes important when the computational resource is limited. As indicated in the second

part of the experiment (improvisational aspect), the increase in the number of the relevant

episodes can cause excessive event-matching time (i.e., the time to compute the event-

matching process exceeds the event-sampling interval in recalled episodes), and it seems to

affect the quality of event matching negatively18. This problem is the equivalent of having a

18 Note that a more comprehensive experiment needs to be conducted in order to verify this claim

 171

POMDP (Section 2.4.4) not being able to estimate the current state accurately. Thus, if the

robot cannot accurately find an appropriate matching event, it can lead to poor overall

performance. In other words, the robot has to have enough experience in the environment

to make advantageous decisions, but when the computational resource is limited, in order to

sustain behavioral quality, the history length has to be trimmed, so that the number of the

episodes to be processed by the event-matching process can be restricted.

An obvious solution to overcome this limitation is to use a computer with a faster

CPU. If the CPU is fast enough to eliminate the excessive event-matching time, the event-

matching problem should be resolved. On the other hand, if the CPU is fixed, there are at

least two more solutions to work around this problem. The first one is simply to make the

robot move slowly as we experimented in the second part of this experiment. By moving at

half speed, for example, the allowable time to compute event matching with respect to the

current event should be doubled since events are sampled at the same locations with respect

to salient features in the environment. Consequently, the performance in terms of the

successful rate seems to improve with a slower speed although a slower speed requires more

time to complete an assigned task (i.e., this solution is not suitable for a time-critical task).

The other solution is to adjust the transition model dynamically. Instead of assuming

event matching is performed every time when a new event is sampled (Section 3.1.1), for

example, if the event-matching time is five times slower than an event-sampling interval, it

can be assumed that the event matching is performed once per five event-sampling intervals.

Accordingly, as shown in Figure 63, this new assumption changes the graph of the Poisson

probability function from the one labeled “d = 1.0” to “d = 5.0”, and the transition model

(Equation 3.18) should be adjusted based on this change. A subsequent experiment has to be

conducted in order to validate this claim.

 172

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20

= 1.0= 1.0dd

= 5.0= 5.0dd

Poisson Probability Mass FunctionPoisson Probability Mass Function

P
ro
b
ab
il
it
y
 o
f
a
ro
b
o
t
ad
v
an
ci
n
g

P
ro
b
ab
il
it
y
 o
f
a
ro
b
o
t
ad
v
an
ci
n
g
 dd

j:
q

j:
q

in
 o
n
e
co
m
p
u
ta
ti
o
n
al
 c
y
cl
e

in
 o
n
e
co
m
p
u
ta
ti
o
n
al
 c
y
cl
e

ddj:qj:q (distance from (distance from eejj to eto eqq))

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20

= 1.0= 1.0dd = 1.0= 1.0dd

= 5.0= 5.0dd = 5.0= 5.0dd

Poisson Probability Mass FunctionPoisson Probability Mass Function

P
ro
b
ab
il
it
y
 o
f
a
ro
b
o
t
ad
v
an
ci
n
g

P
ro
b
ab
il
it
y
 o
f
a
ro
b
o
t
ad
v
an
ci
n
g
 dd

j:
q

j:
q

in
 o
n
e
co
m
p
u
ta
ti
o
n
al
 c
y
cl
e

in
 o
n
e
co
m
p
u
ta
ti
o
n
al
 c
y
cl
e

ddj:qj:q (distance from (distance from eejj to eto eqq))
Figure 63: The probability mass function for the Poisson distribution (cf. Figure 26).

Nevertheless, this experiment has successfully demonstrated that, without encoding

spatial information (e.g., dead reckoning, GPS, etc.), our framework allows the robot to

successfully navigate around a blocked route by promptly detecting an unanticipated

circumstance of the situation, finding a fallback solution to deal with the situation, and

executing an action to have a desired outcome (i.e., improvisation). How this ability can be

applicable to other types of the environment needs to be addressed in future work.

As reviewed in Section 2.2.3, the anticipatory system developed by Schmajuk and

Thieme [152] also solves a similar detour problem. While both approaches were inspired by

how mammalian hippocampus works, there is a key difference between them; Schmajuk and

Thieme’s approach models the world using a spatially oriented representation that is a

topology of the environment while our approach represents the world using episodes. The

spatially oriented representation allows the system to reason about the spatial relationships in

the environment (e.g., it can easily find an optimal path). On the other hand, the strength of

our approach is that the system is capable of reasoning about the world in terms of episodes.

Hence, the application is not limited to just navigational tasks, but it should be also able to

 173

handle non-spatial behavioral tasks such as manipulation of objects or communication with

humans or other robots.

From a high-level perspective, a hybrid deliberative/reactive control architecture

proposed by Goel et al. [64] is relevant to our system as well. More specifically, in their

method, the robot executes a series of behaviors specified in a predefined task (e.g., pushing

a box), and the behavioral performance is constantly monitored by the model-based

deliberative process. If a behavioral failure (e.g., being trapped in obstacles, etc.) is detected,

the formal analysis is invoked by the deliberate process in order to identify the cause of the

failure and suggest a solution to resolve the failure (e.g., replacing the faulty behavior). This

method is based on the assumption that the domain knowledge (model) to detect behavioral

failures, analyze the causes of the failures, and fix the failures based on the analysis already

exists within the system. However, the question of how to develop such a high-level model

automatically for a new domain/environment has not yet fully addressed. On the other

hand, our approach does not require development of such a high-level model. The model

that the robot has is its own experience (episode) encapsulating a temporal sequence of

events, and it is automatically generated by simply interacting with the environment. Another

distinction of our approach from Goel et al. [64] is handling of uncertainties. Through a

recursive Bayesian filtering (Section 3.2.2), our approach can estimate the current state even

if it is not directly observable.

 174

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this chapter, the conclusions of this dissertation and the future research direction

are discussed. In particular, the first section summarizes the work accomplished in this

dissertation. The second section describes the contributions of this research, and the third

and final section discusses future work.

6.1 Summary of Work

As discussed in Chapter 1, the primary research question of this dissertation was

established to determine how extended experience of a robot affects its ability to behave

proactively, that is, to act in an anticipatory and/or improvisational manner (Section 1.2.1).

Here, anticipation is to perform an assessment of the current situation, a prediction of the

future consequence of the situation, and the execution of an action to have a desired

outcome based on the determined assessment and prediction. Improvisation is to promptly

detect an unanticipated circumstance of the situation, find a fallback solution to deal with the

situation, and then execute an action to have a desired outcome. The primary research

question was investigated by exploring the following subsidiary questions (Section 1.2.2):

1. What common denominator do the processes of anticipation and improvisation for a robot share in terms

of recollection and exploitation of past experience?

2. What information should a robot extract from a current episode of experience to be remembered in order

for it to be utilized upon anticipation and improvisation in the future?

3. How should past episodes of experience be organized in the memory of a robot in order for them to be

utilized upon anticipation and improvisation?

4. Does a memory with integrated somatic markers help a robot achieve better anticipation and/or

 175

improvisation than without them?

5. What is the trade-off between promptness and the quality of anticipation/improvisation that a robot

performs?

These questions were addressed during the development of the main computational model

(Chapter 3) and the evaluation of the integrated system (Chapters 4 and 5). In the following

subsections, while reviewing how these subsidiary research questions were addressed, the

computational model and the integrated system are summarized.

6.1.1 Proactive Intelligence

A biologically-inspired computational model of proactive intelligent behavior for

robots, which integrates multiple levels of machine learning techniques to accomplish

anticipation and improvisation, was developed in Chapter 3. Regarding the first subsidiary

research question, this model has shown that the computation of anticipatory and

improvisational behaviors do share substantial common denominators: namely, the common

foundational data structure (Section 3.1) and the common processes of recollection (Section

3.2.1), event matching (Section 3.2.2), and behavior selection (Section 3.2.3). The most

primitive element of the foundational data structure is called an event, which also addresses

the issue raised by the second subsidiary research question: what information should be

extracted from the experience? An event represents the robot’s firsthand knowledge of the

world and consists of perceptual, behavioral, and reward signals. Here, the perceptual signal

is a set of raw sensor readings, the behavioral signal is a set of instantiated motor schemata,

and the reward signal is the output of the internal reward function (Section 3.3.2) that

determines the desirability of the robot’s current state. The reward signal also relates to the

fourth subsidiary research question (effectiveness of a somatic marker) and was further

investigated by one of the three experiments (reviewed in Section 6.2 below).

 176

Regarding the third subsidiary question (organization of the memory), our

foundational data structure was established based on how episodic memories are believed to

be organized in the mammalian hippocampus (Section 3.1). An episode consists of a series of

events, which are arranged in the order that the robot experienced them. As discussed in

Section 6.2 below, the behavioral computation was found to benefit significantly from this

unidirectional temporal linear-chain formation of events.

Events are sampled whenever there are characteristic changes in the incoming

perceptual signal (Section 3.1.1), and episodes are formed whenever there are characteristic

changes in the reward signal or goal signal (Section 3.1.2). If there are characteristic changes

in the behavioral signal, computational units called referent nodes are extracted (Section 3.1.3),

and later they are utilized during the computation of improvisation (Section 3.2.5).

Utilizing this foundational data structure, proactive behavior is computed through a

series of processes: namely, recollection (Section 3.2.1), event matching (Section 3.2.2), and

behavior selection (Section 3.2.3). Recollection is a process in which episodes that are

relevant to the current goal are retrieved from memory using instance-based learning

(Section 2.4.3). Event matching is a process in which a set of past events in the relevant

episodes that best describe the current state (collectively) are identified using a recursive

Bayesian filter. In the behavior-selection process, the behavior that is most beneficial for the

robot (measured in terms of expected utilities) is selected using a Markov decision process.

As noted above, whether it is for anticipation or improvisation, these three are the common

processes that are always performed whenever proactive behavior is computed.

The key difference between the anticipatory computation and the improvisational

computation is the assumption being made on the episodic contents. In anticipation, the

relevant episodes retrieved for the current goal (specified by the motivation function

 177

(Section 3.3.1)) are assumed to represent the current state space fairly accurately. Hence, by

executing the action computed based on those episodes, the robot is assumed to reach the

goal eventually. On the other hand, improvisation does not assume that the recalled episodes

are accurate representations of the current state space; hence, intermediate goals are

extracted from one of the relevant episodes in order to bring the robot closer to the main

goal state via multiple stages. To switch from the anticipation mode to the improvisation

mode, at each time cycle, how a matched event progresses in each episode is monitored by

the validation process (Section 3.2.4). When all of the relevant episodes are found invalid

(i.e., the event progress is found too slow), the recovery process (Section 3.2.5) is invoked to

select the intermediate goals.

6.1.2 AIR

The computational model developed in this dissertation is implemented within a

software architectural framework called AIR (Section 4.1) and a physically realized robotic

system (Section 4.2). AIR, written in Java, comprises two layers: deliberative and reactive

subsystems. The deliberative part implements the processes of the proactive behavior

computation (Section 4.1.2), and the reactive subsystem translates the behavioral output

from the deliberative layer into an appropriate set of motor commands based on the

implemented motor schemata (Section 4.1.3).

Three hardware configurations were implemented. In the first configuration, AIR

was interfaced with a real robot (ActivMedia’s Pioneer 2 DX) (Section 4.2.1). In the second

and third configurations, AIR was interfaced with high fidelity three-dimensional simulators:

namely, the University of Southern California’s Gazebo (Section 4.2.2) and the National

Institute of Standards and Technology’s USARSim (Section 4.2.3) respectively.

To investigate the third subsidiary research question (organization of the memory),

 178

using the Gazebo configuration, the foundational data structure was evaluated in terms of

required computational time for event matching with respect to the number of events in an

episode (Section 5.1). More specifically, because the events in an episode are organized in a

unidirectional temporal linear-chain fashion, an assumption was made to predict the range

the event can progress within a time cycle (Section 3.2.2). In other words, to implement the

transition model, the transition probability between two events can be approximated by the

Poisson probability density function. Since this probability was found to become essentially

zero if the distance between the two events is greater than a five-event length, the

computation of the transition model can be optimized, subsequently reducing the

computational time required for the event-matching process. This experiment has shown

that the event-matching time can be indeed reduced from an O(n2) time to an O(n) time.

The fourth subsidiary question (effectiveness of somatic markers) was investigated

by the second experiment (Section 5.2) using the real robot configuration. In the somatic

marker hypothesis [45] (Section 2.1.2), an animal’s internal emotional responses to

environmental stimuli are believed to be physically recorded in the episodic memory, so that

they can assist making intelligent decisions in the future. An actual gambling experiment [23]

using patients with damaged ventromedial prefrontal cortices (presumably a part of the

somatic marker circuitry) to test this hypothesis was adapted for our experiment in the

context of a robotic search-and-rescue scenario. In our framework, a somatic marker is the

reward signal embedded in a sampled event whose value was predominantly determined by

the associative rewarding states (Section 3.3.2). The experiment has demonstrated that the

somatic markers indeed help the robot to make advantageous decisions in the long run

although the robot has to have some minimal experience in the environment before reliably

making such advantageous decisions.

 179

The fifth subsidiary research question (trade-off between computational promptness

and quality of proactive behavior) was investigated by the third experiment (Section 5.3),

which was broken down into two parts: an anticipatory aspect and an improvisational aspect.

In the anticipatory part of the experiment, the Gazebo configuration was used. For a simple

navigational task, how the number of relevant episodes influences the time to compute the

event-matching process and consequently affects the quality of the behavior was

investigated. The experiment showed that the event-matching time did indeed increase

linearly with respect to the number of relevant episodes retrieved by the recollection process.

On the other hand, the quality of the behavioral performance (measured in terms of the path

length and task completion time) was not affected by the increase in the number of the

relevant episodes. This led to our conclusion that a cap can be imposed to limit the number

of the relevant episodes being processed in the event-matching process (i.e., the history

length can be trimmed) in order to reduce the computational time. While a linear increase in

the computation time is not as severe as a polynomial increase, being able to reduce the time

to compute event matching becomes especially crucial for sustaining behavioral performance

when the computational resource is limited as seen in the improvisational detour experiment

(discussed below). However, as observed in the somatic marker experiment (discussed

above), a minimal exposure to the environment is also necessary for the somatic markers to

work effectively in order to make an advantageous decision when there are multiple options

to explore. Therefore, the history length needs be selected sensibly in a way that it can fulfill

both of the requirements. Automatic trimming of the history length therefore needs to be

therefore addressed in future work.

To investigate the improvisational aspect of the fifth subsidiary question, a detour

experiment was set up in the USARSim environment. As in the anticipatory experiment

 180

(discussed above), the time to compute event matching was found to increase with respect to

the number of the episodes being processed in the event-matching process. Furthermore,

our preliminary analysis indicates that when the event-matching time exceeds the event-

sampling interval recorded in the episodic memories, the quality of the behavioral

performance (success rate) was found to be affected negatively. Although reducing the

operational speed does help improve the quality by easing the computational schedule, since

it substantially delays the overall time to complete a task, this solution is not generally

applicable for time sensitive tasks (e.g., search-and-rescue tasks). Hence, as discussed above,

processing of an extended amount of episodic memories does not necessary merit proactive

behavior; instead, adequate filtering (forgetting) of unwarranted episodes seems to be a key

to attain its success. This claim, however, needs to be further verified for a broad spectrum

of scenarios in future work.

6.2 Contributions

In addition to the development of the relationship between the extended experience

of a robot and its ability to anticipate/improvise (i.e., the primary research question)

discussed in the previous section, this dissertation provides several contributions. In this

section, these contributions are at first highlighted and then discussed in more detail in a

subsequent subsection.

6.2.1 Contribution Summary

• A computational model of proactive intelligent behavior for robots. Our

computational model (Chapter 3) identifies the necessary computational steps and

underlying data structure that allow robots to perform anticipation/improvisation, which

should benefit roboticists and artificial intelligence scientists who are interested in

 181

implementing such systems. While similar previous methods (e.g., [93, 107, 152])

construct world representations in terms of spatial (topological) maps (see Section 2.2.3),

our method develops the world model based on the robot’s own participated episodes

(see Section 3.1). Potentially applicable tasks are therefore not limited to spatial

navigation.

• An experimental result verifying the computational model. The successful

experimentation in Chapter 5 proves that our computational model is not just

theoretical, but it can be actually implemented and work in a real world setting. Although

the precursor of our computational model had been evaluated by Endo and Arkin [54] in

simulation, it is the first case in which the current version of our computational model

was examined by a series of experiments including the one using a real robot. Roboticists

and artificial intelligence scientists who are interested in the practicality of our

computational model should benefit from this result.

• An efficient world representation that reduces the POMDP computation load. As

discussed in Section 2.4.4, the current trend of POMDP research in the robotics

community is to propose an efficient way of computing POMDP solutions since real

robots often provide only limited computational resources. The world representation

utilized in our computational method is a contribution to this community since it was

shown to reduce the computational time associated with the state-estimation process

(Section 3.2.2) from O(n2) to O(n) (see Section 5.1). Furthermore, the advantage of our

method compared to others (e.g., [129, 130, 175, 176]) is that this representation can be

automatically constructed from the autonomously-acquired world knowledge using real

sensors (see Section 3.1).

• A robotic system capable of performing proactive navigational tasks without pose

 182

sensors. As demonstrated by all of the experiments in Chapter 5, since our robot

develops the world model based on episodes instead of spatial maps (Section 3.1), it can

arrive at a goal location without relying on pose sensors. Hence, roboticists who are

dealing with autonomous navigation of robots without adequate pose sensors for the

environment should benefit from this system. The advantage of our system over similar

previous systems (e.g., [93, 107, 152]) is the incorporation of the POMDP method

(Section 2.4.4); it can function even in a environment where the current state is not

directly observable.

• The first robotic implementation of the new hippocampal hypothesis by

Eichenbaum et al. [51]. Eichenbaum et al. [51] revolutionized the way of

understanding the hippocampal function by challenging the dominant traditional view

(e.g., [34, 66, 111, 138, 139, 144, 160]) in which the hippocampus was believed to

construct a two-dimensional geocentric map to represent the world; they instead

proposed that the hippocampus constructs the world model in terms of discrete episodic

memories (see Section 2.1.1). To the best of our knowledge, however, no roboticist had

implemented this hypothesis on a robotic system before our implementation (Section

3.1). Biologists who are interested in the relevance of biological theories outside biology

and roboticists who are interested in biologically inspired approaches in robotics should

benefit from this effort.

• A novel evaluation method for robotic somatic markers. Bechara’s gambling

experiment [23], which evaluated Damasio’s somatic marker hypothesis [45] using

human subjects (see Sections 2.1.2 and 5.2), is best known for verifying the role of

emotion in decision-making (cited by over 1000 papers according to Google). Although

there are examples of robots incorporating this hypothesis (e.g., [30, 190]), before our

 183

experiment (Section 5.2), to the best of our knowledge, no roboticist had examined

robotic somatic markers through Bechara’s gambling experiment. Biologists who are

interested in the relevance of biological theories outside biology and roboticists who are

interested in biologically inspired approaches in robotics should benefit from this effort.

• A novel robotic system that performs practical (non-artistic) improvisation.

Although there are robots that perform musical/theatrical improvisation (e.g., [32, 196]),

to the best of our knowledge, no robot had yet performed practical (non-artistic)

improvisation before ours. (Anderson’s Waffler [7] performs practical improvisation in a

simulated kitchen, but it is an AI agent rather than a robot with actual sensors (see Section

2.3.3)). As demonstrated by the detour experiment (Section 5.3), our robot

autonomously acquires necessary world knowledge from sensors and processes the

information to perform practical improvisation (see Sections 3.2.4 and 3.2.5). Robotics

and artificial intelligence scientists who are interested in advancing intelligence and

applicability of robots should benefit from this system.

• A novel way to hybridize CBR and POMDP. To understand how far the method of

case-based reasoning can be extended, today, a number of researchers in the CBR

community are interested in hybridization of CBR with other machine learning methods

(e.g., [145, 159]). Our computational method is a contribution to this community since it

employs a memory-based approach to define the current state space (Section 3.2.1) and a

POMDP to find the best action (Sections 3.2.2 and 3.2.3). As discussed in Section 2.4.3,

comparing to the similar previous method by McCallum [109, 110], which employs a

model-free approach (Q-learning), our method has the advantage of employing a model-

based approach (e.g., requiring less experience [81]).

 184

6.2.2 Discussion

The contributions of this dissertation laid out above can be divided into two aspects:

practicality and novelty. For example, the general applicability of our computational model

can be considered one of the practical contributions. As mentioned above, unlike similar

previous methods that had realized anticipatory robot behavior (e.g., [93, 107, 152]) (see

Section 2.2.3), our method does not construct the world representation in terms of spatial

maps. Instead, the world model is constructed based on episodic memories, which is “a

sequence of event representations, with each event characterized by a particular combination

of spatial and nonspatial stimuli and behavioral actions,” defined by Eichenbaum et al. [51]

(see Section 3.1). Hence, the advantage of our computational model is that, theoretically, it

can be applied to tasks beyond navigation (to be empirically verified in future work).

Moreover, as demonstrated by every experiment in Chapter 5, even for a navigational task,

this map-free representation can direct the robot to arrive at a goal location even when no

pose sensor is available. This is also a practical contribution to the robotics community since

it can further expand the applicability of robots as a pose sensor is not necessary reliable or

even available in every situation. On the other hand, the disadvantage of our method in this

regard is that, by not incorporating maps, the robot lacks the ability to reason about spatial

relationships within the environment, for example, to compute an optimal path. As

discussed below (Section 6.3), this shortcoming should be resolved by adding a new layer to

the current computational model, which handles symbolic reasoning.

Note that this spatial map vs. episodic memory argument bears a resemblance to the

similar debate [121] taking place in the neuroscientific community, concerning hippocampal

functions. As discussed in Section 2.1.1, one traditional school of thought (e.g., [34, 66, 111,

138, 139, 144, 160]) advocates that, in the hippocampus, the environment is projected into a

 185

two-dimensional geocentric map (“cognitive map”), and path-integration is employed to

localize the animal with respect to this map. On the other hand, the other school, led by

Eichenbaum and his colleagues [51], argues that the hippocampus does not construct such a

spatial map; instead the hippocampus constructs a “memory space”, which is a collection of

discrete episodic memories, collectively modeling the world in terms of the animal’s

experience (see Section 2.1.1). As discussed in Section 3.4.1, the latter argument sounds

more plausible than the former if one considers the fact that various mammals in the wild

(monkeys, squirrels, and chipmunks, etc.) effectively navigate in a three-dimensional

environment. While some have already implemented the traditional “cognitive map” school

of thought on robots (e.g., [35, 114]), to the best of our knowledge, our robotic system is the

first attempt in robotics that incorporates Eichenbaum’s “memory space” hypothesis within

a robotic system. This is a contribution of novelty and should interest biologists who are

interested in the relevance of biological theories outside biology and roboticists who are

interested in biologically inspired approaches in robotics.

A similar group of researchers (i.e., biologists who are interested in robotic

applications and roboticists who are interested in biological inspiration) may also benefit

from our novel evaluation method on somatic markers (Section 5.2). The experiment was

designed based on Bechara’s well-cited (over 1000 papers according to Google) gambling

experiment [23] (Sections 2.1.2 and 5.2), which examined the role of emotion in decision

making in terms of Damasio’s somatic marker hypothesis [45] (Section 2.1.2). In their

experiment, patients with damaged ventromedial prefrontal cortices (a part of the presumed

“somatic marker circuitry”) were compared against the control subjects with normal brains

in terms of how their choices (drawing cards from multiple decks) would evolve in the

presence of different reward/punishment sequences. At the end, while the subjects with

 186

normal brains were able to figure out the truly profitable deck, the patients with defective

somatic marker circuitry were found not to be able to identify such an advantageous choice.

As shown in Section 5.2, we adapted Bechara’s experiment for a robotic search-and-rescue

scenario, and a similar result was observed; the robot with somatic markers made more

advantageous decisions than the one without somatic markers. Even though some

roboticists had already implemented robotic somatic markers (e.g., [30, 190]), to the best of

our knowledge, none of the robots was evaluated through Bechara’s gambling experiment.

Thus, our experiment is considered a contribution of novelty since it is the first attempt in

robotics to evaluate robotic somatic markers though the well-regarded experimental method

for the subject.

An important practical contribution of our computational model is the

computational efficiency that it provides. Recall that a combination of the event-matching

(Section 3.2.2) and behavior-selection (Section 3.2.3) processes implements a partially

observable Markov decision process (see Section 2.4.4). While POMDPs are notorious for

their computational burden, the world representation utilized in our computational model

offers reduction of the computational load through multiple ways. First, instead of using a

uniformly discretized map, a state space (episode) is partitioned into discrete states (events)

based on the predictability (saliency) of incoming perceptual signals (see Section 3.1.1).

Hence, the simpler the environment is, the smaller the state space can be to represent it.

Second, it utilizes an abstract notion of action to reduce the action space. As explained in

Section 3.1.1, instead of low-level motor commands (velocity, turning angle, etc.), action in

our computational model is represented in terms of Arkin’s motor schema [10, 11] (Move-To-

Goal, Avoid-Static-Obstacle, etc.). Pineau et al. [130], who worked on an elderly assistance

robot in a nursing home, argued that such a decomposition of action space is a key to solve

 187

high-level decision-making problems using POMDPs. Finally and most importantly, as

discussed on several occasions throughout this dissertation (Sections 3.1.2, 3.2.2, 5.1, 5.3.3,

and 6.1.2), since the events in an episode are organized in a unidirectional temporal linear-

chain fashion, the transition probability between two events can be approximated by the

Poisson probability density function (in the Bayesian-based event-matching process).

Subsequently, by ignoring the transition between two events that are farther than a five-

event length apart (since the probability in such case is known to become zero), the

computational time required for the event-matching process was reduced from an O(n2)

time to an O(n) time (Section 5.1). The significance of our approach is that, by interacting

with the world (with or without human supervision), a robot can automatically extract

necessary information from the experience and construct this efficient world representation

without human interpretation. Thus, this representation should benefit roboticists who are

interested in applying POMDPs to robotic tasks, especially those with limited computational

resources.

As mentioned above, a combination of the event-matching (Section 3.2.2) and

behavior-selection (Section 3.2.3) process serves as a POMDP in our computational model.

Furthermore, a combination of those two plus the recollection process (Section 3.2.1) can be

considered hybridization of CBR (see Section 2.4.2) and POMDP if one views that the

recollection process is a case-based reasoner. As discussed in Section 3.2.1, technically, the

recollection process is closer to instance-based learning (see Section 2.4.3) than CBR.

Nevertheless, our method employs a memory-based approach to define the current state

space (episode), and the POMDP determines the most advantageous action for the current

juncture. This hybridization effort should interest those in the CBR research community

who are interested in how far the method of case-based reasoning can be extended by

 188

hybridizing it with other machine learning methods. As reviewed in Section 2.4.2, there are

examples of CBR hybridization with reinforce learning, for example, to control simple

physical systems (e.g., pendulum) [145] or play a real-time strategy game [159]. As discussed

in Section 2.4.3, perhaps the most relevant hybridization effort to ours is McCallum’s work

[109, 110], in which a memory-based approach (instance-based learning) is applied to

identify the current state, and model-free reinforcement learning (Q-learning) is employed to

determine the optimal action. Note that our behavior-selection process determines action

through a model-based approach. As pointed out by Kaelbling et al. [81], a model-based

approach has an advantage over a model-free approach since it requires less experience to

attain sufficient performance [81]. On the other hand, a known disadvantage is that it

requires more computation time. As discussed above, by imposing a strong assumption on

how the state space is formed, our method attempts to ease this problem (Section 3.1.2).

Furthermore, our robotic system, which is able to perform practical (non-artistic)

improvisation, can be considered a contribution of both practicality and novelty to the

robotics and AI communities. It is practical because such ability can be expected to advance

intelligence and applicability of robots, and it is novel since it is the first robot that performs

practical improvisation. Recall that, in this dissertation, we have been defining improvisation

as the ability to promptly detect an unanticipated circumstance of the situation, find a fallback solution to

deal with the situation, and execute an action to have a desired outcome (Section 2.3). As reviewed in

the Section 2.3.3, in the current field of robotics or even artificial intelligence, examples of

robotic systems that can actually perform improvisation are very limited. Even those robots

that performed improvisation were limited to some artistic (theatrical/musical) purposes

(e.g., [32, 196]). However, to the best our knowledge, no robot had performed improvisation

for practical purpose before ours. Anderson’s simulated AI agent [7], Waffler, performed

 189

practical improvisation (making a cup of tea etc.) but was not an integrated robotic system

(see Section 2.3.3). On the other hand, our robot is a complete robotic system with sensors

(see Section 4.2). The detour experiment in Section 5.3 has demonstrated that our

computation framework does allow the robot to perform a special case of practical

improvisation; the robot could resolve a sudden obstruction to its initially intended route by

detecting the anticipatory failure (blocked route) and applying a fallback solution to the

failure (intermediate goal). The robot indeed reached its desired state (goal) when the

computational resource was adequately available.

Finally, in addition to providing the detailed description on how to implement the

computational model within a working robotic system (Chapter 4), this dissertation reports a

successful experimental result in Chapter 5, which confirms that our computational model is

not merely hypothetical, but it is certainly realizable as a functioning robot. We consider that

this result is a contribution of novelty to roboticists and artificial intelligence scientists who

are interested in the practicality of our computational model since nobody else has evaluated

it before (except its precursor being evaluated by Endo and Arkin [54]). One of the notable

findings is that while accumulation of episodic memories in the environment is necessary for

the robot to be able to behave advantageously (via somatic markers), the performance can be

negatively affected if processing of those episodes exhausts the computational resource and

estimation of the current state could no longer be processed punctually. Although our

computational framework attempts to optimize such computational time in various ways as

discussed above, this problem becomes inevitable if the robot accumulates the episodes

extensively through out its lifetime. As discussed in the previous section (Section 6.1.2),

filtering or forgetting of unnecessary episodes therefore would become essential if the robot

has to be operated in real-time.

 190

6.3 Future Work

As mentioned above, our robot was able to compute navigational POMDP solutions

without ever incorporating odometry information. Hence, it can reasonably assume that our

approach is applicable to a variety of mobile platforms or situations in which such sensors

are not readily available (e.g., hexapod robot, underwater robot, etc.). This hypothesis should

be verified in a subsequent experiment.

Although we have demonstrated that our robot was able to behave in an

anticipatory/improvisational fashion autonomously, in order for the robot to be self-

sustaining in the environment, several issues need to be addressed. First, our auxiliary

functions (Section 3.3) are still incomplete. The motivation function (Section 3.3.1) has to be

able to adjust the motivational value automatically using a more sophisticated scheme, so

that the current goal can be chosen more intelligently. The reward function (Section 3.3.2)

also needs to be enhanced, so that, for example, the weight for the similarity between the

current observation and an associative rewarding state can be determined automatically.

These enhancements should be made in a way that the robot can automatically acquire a

necessary sequence of behaviors to accomplish a complex task solely from prior episodes in

which simpler tasks had been solved. In other words, the aspect of developmental learning

should be also investigated.

Another enhancement that can be made to the whole system is to add a new layer

that handles symbolic reasoning or planning. For example, as discussed in Section 3.1.3, the

concept of the computational units called referents was designed in a way that some classical

planning algorithm can be applied to plan a sequence of actions (behaviors). Allowing the

symbolic layer to handle spatial reasoning may also benefit the robot in a way that, for

example, it can find an optimal path in a maze-like environment. Furthermore, the symbolic

 191

layer should also allow the robot to recognize the human languages; hence, high-level

interactions with humans can become part of the episodic memories, enabling more

sophisticated proactive-behavior to be performed.

Finally, recall Murphy’s Law: anything that can go wrong will go wrong [1] (Chapter 1). Our

model was developed based on a premise that the only way for a robot to counteract this

curse is to act proactively. After enhancing the system by placing all those improvements

suggested above, our robot when equipped with the right kind of experience should

ultimately be able to handle any critical task through a combination of proper anticipation

and improvisation: in the precisely the same way that Capt. Murphy’s engineering team had

safely completed their extremely risky engineering project.

 192

APPENDIX A

DERIVATION

A.1 Derivation of the Recursive Bayes Filter (Equation 3.16)

Given a sequence of observations (τo) and executed behaviors (τb), the posterior

probability of the robot being at some event (eq) in the past can be calculated by the

recursive Bayes filter (Equation 3.16). As explained in [177] by Thrun, the equation can be

derived by applying the Bayes’ rule once, the Markov assumptions twice, and the law of the

total probability once to the posterior.

),|(ττ boep q),,|(1 ττ
τ booep q

−=

),|(),,|(11

ττττ
τη boepboeop qq

−−= ··· Baye’s Rule

),|()|(1

ττ
τη boepeop qq

−= ···
The Markov
Assumption

 ∑
∈

−
−−

−

−

=
Ee

qq boepeboepeop
1

),|(),,|()|(1

11

1

τ

ττ
ττ

ττ
τη

···
The Law of the
Total Probability

 ∑
∈

−−
−−

−

=
Ee

qq boepebepeop
1

),|(),|()|(11

11

τ

ττ
ττττη

···
The Markov
Assumption

where η is a scale (or normalization) factor that ensures the sum of all the possible

posteriors becomes 1.

 193

APPENDIX B

PSEUDOCODE

B.1 Goal Manager

B.1.1 Selection of the Current Goal

// First, find the motivation with the highest magnitude.

HighestMagnitude = negative infinity

for each Motivation in the list of available motivations

 if Motivation’s magnitude > HighestMagnitude then

 SelectedMotivation = Motivation

 end if

end for

// The current goal is the goal of the selected motivation.

CurrentGoal = SelectedMotivation’s goal

B.2 Reward Manager

B.2.1 Computation of the Current Reward Value

// First, check the similarity between the current observation

// (CurrentPerception) and the current goal (CurrentGoal), and multiply

// it with a predefined constant (K1). SimilarityFunc() is the

// implementation of Equation 3.14.

Value1 = K1 * SimilarityFunc(CurrentPerception, CurrentGoal)

// Next, check the similarity between the current and predicted

// observations. Multiply it with a constant (K2) as well.

// MathcedRelevantEpisodeList is a list of all relevant episodes

// that are successfully matched (see Section B.5.2).

 194

HighestSimilarity = negative infinity

for each episode in MatchedRelevantEpisodeList

 Prediction = predicted observation based on the event progress

 Similarity = SimilarityFunc(CurrentPerception, Prediction)

 if Similarity > HighestSimilarity then

 HighestSimilarity = Similarity

 end if

end for

Value2 = K2 * HighestSimilarity

// Check the similarities of all the associative rewarding states

// with respect to the current observation.

Value3 = 0

for each RewardingState in the associative rewarding state list

 tmp = (K3 * SimilarityFunc(CurrentPerception, RewardingState))

 Value3 = Value3 + tmp

end for

// Finally, the current reward value is a sum of the three.

CurrentRewardValue = Value1 + Value2 + Value3

B.3 Event Sampler

B.3.1 Sampling a New Event

// First, predict the current observation by multiplying the value of

// last sensor readings with the weights computed by TD(λ) (Equation

// 3.4).

Prediction = LastPerception whose readings multiplied by Weights

 195

// Compute the root-mean-squared differences (CurrentError) between the

// current observation (CurrentPerception) and the predicted one.

CurrentError = RMSDiff(CurrentPerception, Prediction)

if (CurrentError < LastError) and (LastError > LastLastError) then

 // The error peaked. Remember the current state as a new event.

 Event’s observation = CurrentPerception

 Event’s behavior = CurrentBehavior from the behavior manager

 Event’s reward = CurrentRewardValue from the reward manager

 notify the episode compiler module about this new Event

end if

// Finally, update the weights for the next time cycle.

// Note: UpdateWeightsFunc() is the implementation of the TD(λ) update

// rule (Equation 3.5).

Weights = UpdateWeightsFunc(Weights, Perception, Prediction)

B.4 Episode Compiler

B.4.1 Purposive Contextualization

// Check if the current goal is different from the previous time cycle.

// If different, instantiate a new episode. In this case, the previous

// goal is the episode’s context.

if CurrentGoal != LastGoal then

 instantiate a new Episode

 Episode’s context = LastGoal

Episode’s events = the recorded events since LastGoal started

 send Episode to the episodic memory repository

end if

 196

B.5 Anticipatory Processor

B.5.1 Recollection

// First, check the similarity between the current goal (CurrentGoal)

// and the context of each episode. As before, SimilarityFunc() is an

// implementation of Equation 3.14.

Counter = 1

for each Episode in the episodic memory repository

similarity = SimilarityFunc(CurrentGoal, Episode’s context)

if similarity >= predefined threshold then

 add Episode to RelevantEpisodeList

end if

increment Counter

if Counter > the predefined maximum number then

 // It reached the maximum number.

end the for-loop

end if

end for

B.5.2 Event Matching

// Compute the posterior probability of every event in every relevant

// episode through Equation 3.16.

for each Episode in RelevantEpisodeList

Index = 0

// Note: Posteriors and PreviousPosteriors are arrays of double,

// storing the current and previous posterior probabilities,

// respectively. The size of the arrays is the number of events

// in Episode.

for each Event in Episode

 197

// First, get the sensor model (Equation 3.17)

SM = SimilarityFunc(CurrentPerception, Event’s observation)

// Next, compute the transition model, and multiply the

value

// with the previous posterior probability. This code

// supports the computational optimization method discussed

// in Section 3.2.2. TransitionFunc() is the implementation

// of Equation 3.18.

Sum = 0

EventDistance = 1

while EventDistance <= 5

 PastIndex = Event’s index – EventDistance

 PastEvent = the event whose index is PastIndex

 MM = TransitionFunc(

Event, CurrrentBehavior, PastEvent)

 Sum = SUM + MM * PreviousPosteriors[PastIndex]

 increment EventDistance

end while

// The (unnormalized) posterior probability is the

// multiplication of the two.

Posteriors[Index] = SM * Sum

increment Index

end for // each Event in Episode

normalize Posteriors

// Finally, check the entropy of the posterior probabilities.

// CompEntropy() is the implementation of Equation 3.20. If the

 198

// entropy is the below the predefined threshold, the event with

// the highest posterior probability is the matched event for

// this episode.

entropy = CompEntropy(Posteriors)

if the entropy of Posteriors <= predefined threshold then

 MatchedEvent = Event with the highest posterior value

 add Episode to the list of MatchedRelevantEpisodeList

end if

end for // each Episode in RelevantEpisodeList

B.5.3 Computation of the Utility Values

// Compute the utility of every event in a relevant episode. This

// in fact needs to be done only once when the episode is formed.

// Note: Utilities is an array of double, storing the utility values

// of the events. Its size is the number of events (NumEvents) in the

// episode.

Index1 = NumEvents – 1

while Index1 >= 0

 Event1 = the event whose index is Index1

 Behavior = behavior of the event whose index is Index1 + 1

 Index2 = NumEvents – 1

 Value = 0

 while Index2 >= 0

if Index2 <= Index1

 end the inner while-loop

end if

Event2 = the event whose index is Index2

Probability = TransitionFunc(Event2, Behavior, Event1)

Value = Value + Probability * Utilities[Index2]

 199

 decrement Index2

 end while // Index2 >= 0

 Utilities[Index1] = Event’s reward + Value

 decrement Index1

end while // Index1 >= 0

B.5.4 Behavior Selection

// First, find the expected utility values for each relevant behavior

for each Episode in MatchedRelevantEpisodeList

ExpectedUtility = 0

 MatchedEvent = the matched event in Episode

 NextBehavior = the behavior executed just after MatchedEvent

 for each Event in Episode

 ExpectedUtility = ExpectedUtility +

Utilities[Event’s index] * TransitionFunc(

Event, NextBehavior, MatchedEvent)

 end for // each Event in Episode

 // Check to see if this behavior already exists in the list

// created before

 Index = 0

 BehaviorExists = false

 for each Behavior in BehaviorList

 if Behavior = NextBehavior then

 // Check how many times this behavior was counted so

 // far in this routine.

 NumBehaviors = NumBehaviorsList[Index]

 // Update the averaged expected utility associated

 200

// with this behavior

 Value = AveragedExpectedUtilities[Index]

 Value = ((Value * NumBehaviors) + ExpectedUtility) /

 (NumBehaviors + 1)

AveragedExpectedUtilities[Index] = Value

NumBehaviorsList[Index] = NumBehaviors + 1

 BehaviorExists = true

end the for-loop

 end if

 increment Index

 end for // each Behavior in BehaviorList

if BehaviorExists = false then

 // New behavior. Create new entries in the lists.

 Index = the size of BehaviorList so far

 BehaviorList[Index] = NextBehavior

 AveragedExpectedUtilities[Index] = ExpectedUtility

NumBehaviorsList[Index] = 1

 end if

end if // each Episode in MatchedRelevantEpisodeList

// Find the behavior with the highest expected utility value.

HighestExpectedUtility = negative infinity

SelectedBehavior = null

Index = 0

while Index < the size of BehaviorList

 ExpectedUtility = AveragedExpectedUtilities[Index]

 if (ExpectedUtility > HighestExpectedUtility) then

 HighestExpectedUtility = ExpectedUtility

 201

 SelectedBehavior = BehaviorList[Index]

 end if

 increment Index

end while

send SelectedBehavior to the behavior subsystem

B.6 Improvisational Reasoner

B.6.1 Validation

// If the event progress is delayed according to the schedule recorded

// in the episode, remove the episode from the list.

for each Episode in MatchedRelevantEpisodeList

 LatestEvent = the event sampled most recently

 MatchedEvent = the matched event in Episode

 NextEvent = the event in Episode saved just after MatchedEvent

 // Compute the delay via Equation 3.26.

 delay = -1 + ((CurrentTime – LatestEvent’s timestamp) /

 (NextEvent’s timestamp – MatchedEvent’s timestamp))

 if delay <= the predefined threshold then

 remove Episode from MatchedRelevantEpisodeList

 end if

end for

// If no episode is left in the list, start the recovering process.

if MatchedRelevantEpisodeList = empty then

 invoke the recover process

end if

 202

B.6.2 Construction of a Referent

// Inspect every event in the episode. If the behavior type changes

// from one event to another, a new node is started. The observations

// recorded in the beginning and end of this behavior instantiation are

// the nodal precondition and effect, respectively.

Precondition = the first event’s observation

Effect = the first event’s observation

Behavior = the first event’s behavior

ReferentNodeIndex = 0

EventIndex = 1

while EventIndex < the number of events in Episode

 NextEvent = the event whose index is EventIndex

 NextBehavior = Event’s behavior

 if Behavior != NextBehavior then

 // Save the node.

 Node’s behavior = Behavior

 Node’s precondition = Precondition

 Node’s effect = Effect

Referent’s nodes[ReferentNodeIndex] = Node

// Set up the next node.

Precondition = Effect

Behavior = NextBehavior

increment ReferentNodeIndex

 end if

 Effect = NextEvent’s observation

 increment EventIndex

end while

 203

B.6.3 Selection of a Primary Referent

// The current MatchedRelevantEpisodeList (from Section B.5.2) is

// empty since the validation process (Section B.6.1) eliminated

// invalid episodes (hence improvisation was invoked). Thus, we utilize

// the previous MatchedRelevantEpisodeList.

ExpectedUtility = negative infinity

for each Episode in the previous MatchedRelevantEpisodeList

ExpectedUtility = 0

 MatchedEvent = the matched event in Episode

 NextBehavior = the behavior executed just after MatchedEvent

 for each Event in Episode

 ExpectedUtility = ExpectedUtility +

Utilities[Event’s index] * TransitionFunc(

Event, NextBehavior, MatchedEvent)

 end for // each Event in Episode

 // If its expected utility value is higher than others, its

 // referent is the primary referent.

 if ExpectedUtility > HighestExpectedUtility then

 PrimaryReferent = the referent that belongs to this Episode

 ExpectedUtility = ExpectedUtility

 end if

end for

B.6.4 Selection of an Intermediate Goal

// First, identify the active node that coincides with the last

// known matched event’s timestamp.

EventTime = the timestamp of the last known matched event

for each Node in the primary referent

 204

 StartTime = Node’s timestamps[0]

 EndTime = Node’s timestamps[1]

 if (StartTime < EventTime) and (EventTime <= EndTime) then

 ActiveNode = Node

 end the for-loop

 end if

end for

// The intermediate goal is the nodal effect of the active node.

IntermediateGoal = ActiveNode’s effect

inject IntermediateGoal into the recollection process

// It is possible that this IntermediateGoal may not find any

// relevant episode in the memory. In this case, select more

// intermediate goals from the neighboring nodes.

sleep for 1 second

SearchRange = 1;

while no relevant episode is recalled by the recollection process

 Node1 = the node in the primary referent whose index is the

 ActiveNode’s index + SearchRange

 IntermediateGoal = Node1’s effect

inject IntermediateGoal into the recollection process

 Node2 = the node in the primary referent whose index is the

 ActiveNode’s index – SearchRange

 IntermediateGoal = Node2’s effect

inject IntermediateGoal into the recollection process

sleep for 1 second

 205

increment SearchRange

end while

B.7 Motor Schemata

B.7.1 Avoid-Static-Obstacle

// Generate a repulsive vector from each obstacle, and linearly sum

// them up.

OutputX = 0 // X: The direction of the robot’s current heading.

OutputY = 0 // Y: Perpendicularly left of the robot’s heading.

if SensorType is sonar or laser then

 Index = 0

 while Index < the number of data points in the reading

 Distance = reading’s values[Index]

 Angle = reading’s phi_angles[Index]

 // Create a vector opposite of the obstacle

 Angle = Angle + 180 degree

 if Distance <= SAFETY_MARGINE then

 // The obstacle is within a safety margin. Generate

 // the maximum repulse.

 Magnitude = MAXIMUM_MAGNITUDE

 else

 // The repulse is stronger as the robot gets closer

 // to the obstacle.

 Magnitude = MAXIMUM_MAGNITUDE *

(MAXIMUM_RANGE – Distance) /

(MAXIMUM_RANGE – SAFETY_MARGINE)

 end if // Distance <= SAFETY_MARGINE

 206

 // Add the vectors linearly.

OutputX = OutputX + Magnitude * cos(Angle)

OutputY = OutputY + Magnitude * sin(Angle)

increment Index

 end while

end if // SensorType is sonar or laser

B.7.2 Enter-Opening

// First, group neighboring sonar/laser points together as a segment if

// their distances are close enough.

if SensorType is sonar or laser then

 SegIndex = 0

 SegStartDistance = reading’s values[0]

 SegStartAngle = reading’s phi_angles[0]

 SegEndDistance = reading’s values[0]

 SegEndAngle = reading’s phi_angles[0]

ValueIndex = 1

 while Index < the number of data points in the reading

 Distance = reading’s values[ValueIndex]

 Angle = reading’s phi_angles[ValueIndex]

 // Check to see if this point belongs to the current

 // segment.

 Diff = Absolute(Distance - SegEndDistance)

 if Diff < MINUMUM_SEGMENT_SEPARATION then

 // It belongs to the current segment

 SegEndDistance = Distance

 207

 SegEndAngle = Angle

 else

 // The point is away form the current segment. Save

 // the current segment, and start a new one.

 SegStartDistanceList[SegIndex] = SegStartDistance

 SegStartAngleList[SegIndex] = SegStartAngle

 SegEndDistanceList[SegIndex] = SegEndDistance

 SegEndAngleList[SegIndex] = SegEndAngle

 increment SegIndex

 SegEndDistance = Distance

 SegEndAngle = Angle

 SegStartDistance = Distance

 SegStartAngle = Angle

 end if // Diff < MINUMUM_SEGMENT_SEPARATION

increment ValueIndex

 end while

end if // SensorType is sonar or laser

// Next, find two segments that are closest to the robot but not next

// to each other. The opening is between two segments.

OpeningStartDistance = the first closest segment’s ending distance

OpeningStartAngle = the first closest segment’s ending angle

OpeningEndDistance = the second closest segment’s starting distance

OpeningEndAngle = the second closest segment’s starting angle

OpeningCenterDistance = (OpeningStartDistance + OpeningEndDistance)/2

OpeningCenterAngle = (OpeningStartAngle + OpeningEndAngle)/2

// Finally, perform the docking behavior [10, 13].

if OpeningCenterDistance > CONTROLLED_RADIUS then

 208

 // Ballistic region

 Magnitude = MAXIMUM_MAGNITUDE * BALLISTIC_GAIN

Angle = OpeningCenterAngle

 OutputX = Magnitude * cos(Angle)

 OutputY = Magnitude * sin(Angle)

else

 // Controlled region

 DockAngle = an angle perpendicular to the line drawn from the

 opening’s start point to its end point

AngleDiff = OpeningCenterAngle – DockAngle

if Absolute(AngleDiff) < (CONE_ANGLE/2) then

 // Approach zone

 TangentWeight = Absolute/(CONE_ANGLE/2)

 MoveToWeight = 1.0

else

 // Coercive zone

 TangentWeight = 1.0

 MoveToWeight = OpeningCenterDistance/CONTROLLED_RADIUS

end if // Absolute(AngleDiff) < (CONE_ANGLE/2)

 // Construct the tangential vector

Magnitude1 = MAXIMUM_MAGNITUDE * CONTROLLED_GAIN * TangentWeight

if AngleDiff > 0 then

 Angle1 = OpeningCenterAngle + 90

else

 Angle1 = OpeningCenterAngle - 90

end if // AngleDiff > 0

// Construct a move-to vector

 209

Magnitude2 = MAXIMUM_MAGNITUDE * CONTROLLED_GAIN * MoveToWeight

Angle2 = OpeningCenterAngle

// Sum the two vectors.

 OutputX = Magnitude1 * cos(Angle1) + Magnitude2 * cos(Angle2)

 OutputY = Magnitude1 * sin(Angle1) + Magnitude2 * sin(Angle2)

end if // OpeningCenterDistance > CONTROLLED_RADIUS

B.7.3 Move-Backward

// Generate a vector towards the direction that is opposite to the

// current heading.

OutputX = - MAXIMUM_MAGNITUDE

OutputY = 0

B.7.4 Move-Forward

// Generate a vector towards the current heading.

OutputX = MAXIMUM_MAGNITUDE

OutputY = 0

B.7.5 Move-Leftward

// Generate a vector towards the direction that is perpendicularly left

// of the current heading.

OutputX = 0

OutputY = MAXIMUM_MAGNITUDE

B.7.6 Move-Rightward

// Generate a vector towards the direction that is perpendicularly

// right of the current heading.

OutputX = 0

OutputY = - MAXIMUM_MAGNITUDE

 210

B.7.7 Move-To-Big-Blob

// Generate a vector towards the biggest blob in the field of view.

if SensorType is a blob detector then

 MaxBlobSize = 0

 Index = 0

 while Index < the number of data points in the reading

 BlobSize = reading’s values[Index]

 if BlobSize > MaxBlobSize then

 Angle = reading’s phi_angles[Index]

 MaxBlobSize = BlobSize

 end if

 increment Index

 end while

OutputX = MAXIMUM_MAGNITUDE * cos(Angle)

OutputY = MAXIMUM_MAGNITUDE * sin(Angle)

end if // SensorType is a blob detector

B.7.8 Stop

// Generate a vector whose elements are all zeros.

OutputX = 0

OutputY = 0

B.7.9 Swirl-Obstacle

// Generate a vector in a direction that is perpendicular to the

// direction of the closest obstacle (tangential to the surface of the

// obstacle).

if SensorType is sonar or laser then

 Index = 0

 ClosestDistance = infinity

 211

 while Index < the number of data points in the reading

 Distance = reading’s values[Index]

 if Distance < ClosestDistance then

 Angle = reading’s phi_angles[Index]

 end if // Distance < ClosestDistance

 increment Index

 end while

 // Create the tangential vector

 if Angle > 0 then

 Angle = Angle – 90 degree

 else

 Angle = Angle + 90 degree

 end if // Angle > 0

 if Distance <= SAFETY_MARGINE then

 // The obstacle is within a safety margin. Make the vector

 // have the maximum strength.

 Magnitude = MAXIMUM_MAGNITUDE

 else

 // The vector is stronger as the robot gets closer to the

// obstacle.

 Magnitude = MAXIMUM_MAGNITUDE *

(MAXIMUM_RANGE – Distance) /

(MAXIMUM_RANGE – SAFETY_MARGINE)

 end if // Distance <= SAFETY_MARGINE

 // Finally, construct the output vector.

OutputX = Magnitude * cos(Angle)

 212

OutputY = Magnitude * sin(Angle)

end if // SensorType is sonar or laser

B.8 Behavioral Coordinator

B.8.1 Cooperative Coordinator

// Linear sum the output vector from each active motor schema. Save

// the output in the output data structure, Action (Table 24).

Action’s speed_x = 0

Action’s speed_y = 0

for each MotorSchema in the list of the active motor schemata

 Action’s speed_x = Action’s speed_x + MotorSchema’s OutputX

 Action’s speed_y = Action’s speed_y + MotorSchema’s OutputY

end for

B.8.2 Subsumptive Coordinator

// Assuming motor schemata are organized in hierarchical layers,

// pick the highest layer that contains active motor schemata, and use

// the output from this layer.

LayerNumber = the number of the top layer (i.e., the highest priority)

while LayerNumber >= 0

 Layer = the layer whose number is LayerNumber

 if there is active MotorSchema in Layer then

 // The highest active layer found. Use this output.

 Action’s speed_x = sum all active motor schemata’s OutputX

 in this layer (cf. Section B.8.1)

 Action’s speed_y = sum all active motor schemata’s OutputY

 in this layer (cf. Section B.8.1)

end the for-loop

 end if

 213

 decrement LayerNumber

end while

 214

APPENDIX C

DATA

C.1 Experimental Constants

Table 37: The predefined constants utilized in the experiments in Chapter 5.

1 2 3A 3B

TD(λ) learning rate 3.5 α 0.001 0.001 0.001 0.001

TD(λ) eligibility trace 3.5 λ 0.1 0.1 0.1 0.1

Recollection similarity

function variance
3.14  1.0 1.0 1.0 25.0

Recollection similarity

function threshold
3.15 0.95 0.95 0.95 0.95

Sensor model similarity

function variance
3.17 1.0 25.0 1.0 25.0

The behaviroal discount

factor for the motion model
3.18 κ m 0.5 0.9 0.5 0.9

Localizer posterior entropy

threshold
3.21 θ H 10.0 2.5 10.0 2.5

Allowable dealy factor

threshold
3.27

 5.0 

2.0 (Full)

4.0 (Half)

Avoid-Obstacle safety

margin (m)
  1.0 1.5 1.0 

Avoid-Obstacle sphere of

influence (m)
  5.0 5.0 5.0 

Drive speed (m/s)   1.0 0.2 1.0
1.0 (Full)

0.5 (Half)

Steer speed (deg/s)   15.0 10.0 15.0
30.0 (Full)

15.0 (Half)

Experiment NumberRelevant

Equation
SymbolDescription

∆θ

ρθ

∆θ

 215

C.2 Experimental Results

C.2.1 Efficiency of the Foundational Data Structure

Table 38: Numerical results for the limited transitions vs. full transitions (Figure 44).

Total Sensor Model Trans. Model Total Sensor Model Trans. Model

20 1.35 1.14 0.18 1.50 1.07 0.41

30 1.77 1.47 0.24 2.26 1.40 0.81

40 2.37 2.04 0.27 3.39 2.18 1.17

50 2.86 2.37 0.42 4.16 2.30 1.80

60 3.54 2.98 0.48 5.31 2.87 2.36

70 3.90 3.27 0.52 6.58 3.40 3.08

80 4.55 3.78 0.64 7.84 3.79 3.92

90 4.91 4.14 0.61 9.01 4.46 4.40

100 5.61 4.75 0.68 10.35 4.69 5.52

110 6.03 5.11 0.81 11.82 5.38 6.30

120 6.80 5.79 0.80 13.14 5.80 7.12

130 7.14 6.09 0.82 14.97 6.35 8.44

140 7.89 6.75 0.97 16.26 6.73 9.31

150 8.32 7.11 1.00 17.62 7.29 10.12

160 8.83 7.62 0.97 19.41 7.67 11.57

170 9.52 8.18 1.06 21.69 8.28 13.16

180 9.99 8.50 1.22 23.10 8.90 13.94

190 10.78 9.16 1.29 25.17 9.56 15.32

200 11.19 9.52 1.32 26.65 9.78 16.53

Limited Transitions Full Transitions

Computation Time (ms)

of Events

Table 39: The constants and correlation coefficients of the trendlines for the limited transitions vs. full
transitions graph (Figure 44).

Total Sensor Model Trans. Model Total Sensor Model Trans. Model

n 2 0.0000 0.0000 0.0000 0.0003 0.0000 0.0003

n 0.0550 0.0473 0.0061 0.0769 0.0491 0.0315

n 0 0.1201 0.0511 0.0757 -0.2611 -0.0413 -0.4311

R2 0.9990 0.9988 0.9839 0.9996 0.9980 0.9991

Limited Transitions Full Transitions

Trendline Constants (n 2, n , n 0) and Squared Correlation Coefficient (R2)

Term

 216

Table 40: Standard error measurements for the limited transitions vs. full transitions (Figure 44).

Total Sensor Model Trans. Model Total Sensor Model Trans. Model

20 0.053 0.056 0.041 0.038 0.047 0.037

30 0.039 0.050 0.022 0.046 0.058 0.053

40 0.040 0.055 0.033 0.035 0.065 0.075

50 0.021 0.048 0.035 0.029 0.107 0.096

60 0.039 0.057 0.047 0.035 0.081 0.074

70 0.039 0.060 0.058 0.043 0.117 0.111

80 0.035 0.059 0.045 0.028 0.146 0.145

90 0.019 0.054 0.051 0.066 0.153 0.157

100 0.039 0.063 0.046 0.039 0.102 0.102

110 0.031 0.057 0.046 0.072 0.089 0.120

120 0.029 0.066 0.048 0.045 0.254 0.258

130 0.039 0.093 0.069 0.073 0.096 0.113

140 0.031 0.061 0.059 0.141 0.120 0.164

150 0.050 0.074 0.065 0.075 0.125 0.096

160 0.035 0.089 0.062 0.076 0.178 0.196

170 0.056 0.097 0.070 0.166 0.188 0.260

180 0.063 0.130 0.075 0.109 0.210 0.188

190 0.081 0.080 0.094 0.141 0.105 0.175

200 0.063 0.105 0.079 0.102 0.185 0.187

Limited Transitions Full Transitions

Standard Error Measurement (ms)

of Events

C.2.2 Effectiveness of Somatic Markers

Table 41: Sequences of box choices made by the robot with somatic markers.

Visit # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Test Set 1 A A C B C C C C C C D C D C D D D D D D

Test Set 2 B B D D D D A A A A D D D D D D A D D D

Test Set 3 C

Test Set 4 A A D D A C A C A A C C C C C C C C C C

Test Set 5 A A B A B D D D D D D D D D D D D D D D

Test Set 6 D D C C C C C C C C C C C C C C C C C C

Test Set 7 B C B C C C A C C C C C C C C C C C C C

Test Set 8 C C A B B A D C C C C C A D A B C B B B

 217

Table 42: Sequences of box choices made by the robot without somatic markers.

Visit # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Test Set 1 C A A A A A A A A A A A A A A A A A A A

Test Set 2 B

Test Set 3 C A A A A A A A A A A A A A A A A A A A

Test Set 4 D C D B B B B B B B B B B B B B B B B B

Test Set 5 B

Test Set 6 A

Test Set 7 D D D C C A A A A A A C A A A A A A A A

Test Set 8 D C C C D D D B B D B B B A B B B B B B

Table 43: The rate of the robot taking advantageous choices with respect to the number of the trials
(visit number) and the standard error measurements (S.E.M.) (Figure 48).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Advantageous

Choices (%)
38 50 63 63 63 88 63 88 75 75 100 100 88 100 88 88 88 88 88 88

S.E.M. 18 19 18 18 18 13 18 13 16 16 0 0 13 0 13 13 13 13 13 13

Advantageous

Choices (%)
63 38 38 25 25 13 13 0 0 13 0 13 0 0 0 0 0 0 0 0

S.E.M. 18 18 18 16 16 13 13 0 0 13 0 13 0 0 0 0 0 0 0 0

Robot with

Somatic

Markers

Robot

without

Somatic

Markers

Visit Number

Table 44: The numerical values and the standard error
measurements (S.E.M.) of the average distribution of 20
consecutive box-visits over four box types (A, B, C, and
D) by the robot with somatic markers (Figure 49).

Mean S.E.M.

A 2.63 0.80

B 1.63 0.71

C 10.50 2.74

D 5.25 2.11

of Selection Over 20 Trials
Type

Table 45: The numerical values and the standard error
measurements (S.E.M.) of the average distribution of 20
consecutive box-visits over four box types (A, B, C, and
D) by the robot without somatic markers (Figure 50)

Mean S.E.M.

A 9.13 3.41

B 8.50 3.36

C 1.13 0.44

D 1.25 0.67

of Selection Over 20 Trials
Type

 218

Table 46: The numerical values of the difference between the robot with
somatic markers and the robot without them in terms of its advantageous
choices minus disadvantageous ones (Figure 51).

Mean S.E.M.

With Somatic Marker 11.50 2.44

Without Somatic Marker -15.38 2.20

of Advantageous Minus # of

Disadvantageous ChoicesType

C.2.3 Promptness of Proactive Behavior Computation

Table 47: The numerical values of the average computation time required for the event-
matching process (and the standard error measurements) in the anticipatory
experiment with respect to the number of episodes in the memory (Figure 56)

Mean S.E.M. Mean S.E.M.

5 30.80 0.48 30.58 0.54

6 30.54 0.53 37.03 0.46

7 32.52 0.39 44.42 0.44

8 32.52 0.48 51.95 0.76

9 34.47 0.68 59.10 0.83

10 35.15 0.72 68.13 0.73

11 35.30 0.35 76.67 1.30

12 34.41 0.55 85.90 0.81

Full History

Event-Matching Time (ms)

of Episodes
Limited History

Table 48: The numerical values of the average path length (and the standard error
measurements) in the anticipatory experiment with respect to the number of episodes
in the memory (Figure 57).

Mean S.E.M. Mean S.E.M.

5 25.32 0.07 25.32 0.05

6 25.40 0.05 25.32 0.06

7 25.38 0.10 25.40 0.07

8 25.39 0.09 25.36 0.09

9 25.41 0.04 25.40 0.07

10 25.35 0.08 25.34 0.05

11 25.37 0.07 25.33 0.04

12 25.37 0.08 25.40 0.09

Full History

Path Length (m)

of Episodes
Limited History

 219

Table 49: The numerical values of the average duration (and the standard error
measurements) in the anticipatory experiment with respect to the number of episodes
in the memory (Figure 58).

Mean S.E.M. Mean S.E.M.

5 508.8 3.4 501.5 4.9

6 516.5 0.1 509.8 7.2

7 519.0 6.9 499.0 9.8

8 515.5 28.3 528.0 3.9

9 507.8 13.0 534.5 10.5

10 525.3 18.4 526.0 5.9

11 502.8 7.3 518.5 6.2

12 500.8 31.2 584.5 13.1

Full History

Duration (s)

of Episodes
Limited History

Table 50: The numerical values of the average computation time required for event matching and
the average event-sampling interval in the improvisational experiment with respect to the number
of episodes in the memory (Figure 61).

Mean S.E.M. Mean S.E.M. Mean S.E.M.

I 3 358.48 9.75 375.15 7.17 492.17 13.18

II 5 616.30 33.90 389.84 15.22 495.79 10.83

III 7 674.97 61.48 408.71 12.93 501.55 12.04

Avg. Event-Matching Time (ms)
of

Episodes
Cond.

Avg. Event-Sampling

Interval (ms)Full Speed Half Speed

Table 51: The numerical values of the time to reach the goal
location (duration) in the improvisational experiment and their
standard error measurements (Figure 60).

Mean S.E.M. Mean S.E.M.

172.82 7.67 260.75 1.68

Duration of Successful Runs (s)

Full Speed Half Speed

Table 52: The numerical values of the difference between
the successful and unsuccessful runs in terms of the
excessive event-matching time (Figure 62).

Mean S.E.M.

Success -104.77 29.63

Failure 129.26 37.16

Excessive Event-Matching Time (ms)
Runs

 220

REFERENCES

[1] Merriam-Webster's Collegiate Dictionary, 10th ed. Merriam-Webster, Springfield, Mass.,
1993.

[2] Open Source Computer Vision Library: Referene Manual. Intel Corporation, 2001.

[3] J. P. Aggleton and A. W. Young, "The Enigma of the Amygdala: on Its Contribution
to Human Emotion," in Cognitive Neuroscience of Emotion, R. D. Lane and L. Nadel, eds.,
Oxford Univ. Press, New York, 2000, pp. 106-128.

[4] P. Agre, "The Dynamic Structure of Everyday Life," Massachusetts Inst. Technology,
Technical Report AITR-1085, 1988.

[5] P. Agre and D. Chapman, "What Are Plans for?," in Designing Autonomous Agents:
Theory and Practice from Biology to Engineering and Back, P. Maes, ed., MIT Press, 1991, pp.
17-34.

[6] D. W. Aha, D. Kibler, and M. K. Albert, "Instance-Based Learning Algorithms,"
Machine Learning, vol. 6, 1991, pp. 37-66.

[7] J. E. Anderson, Constraint-Directed Improvisation for Everyday Activities, PhD Dissertation,
Dept. Computer Science, Univ. of Manitoba, 1995

[8] J. E. Anderson and M. Evans, "Constraint-Directed Improvisation for Complex
Domains," Proc. the 11th Biennial Conf. the Canadian Soc. for Computational Studies of
Intelligence on Advances in Artificial Intelligence, Toronto, Springer-Verlag, 1995, pp. 1-13.

[9] M. A. Arbib, "Schema Theory," in The Handbook of Brain Theory and Neural Networks,
M. A. Arbib, ed., MIT Press, Cambridge, Mass., 1998, pp. 830-834.

[10] R. C. Arkin, Behavior-Based Robotics. MIT Press, Cambridge, Mass., 1998.

[11] R. C. Arkin, "Motor Schema-Based Mobile Robot Navigation," Int'l J. Robotics Research,
vol. 8, 1989, pp. 92-112.

[12] R. C. Arkin, "Moving Up the Food Chain: Motivation and Emotion in Behavior-
based Robots," in Who Needs Emotions: The Brain Meets the Robot, J. Fellous and M.
Arbib, eds., Oxford University Press, 2005, pp. 245-270.

 221

[13] R. C. Arkin and R. R. Murphy, "Autonomous Navigation in a Manufacturing
Environment," IEEE Trans. Robotics and Automation, vol. 6, 1990, pp. 445-454.

[14] R. C. Arkin, E. Riseman, and A. Hanson, "AuRA: An Architecture for Vision-based
Robot Navigation," Proc. DARPA Image Understanding Workshop, Los Angeles, 1987,
pp. 417-431.

[15] C. G. Atkeson, A. W. Moore, and S. Schaal, "Locally Weighted Learning," Artificial
Intelligence Review, vol. 11, 1997, pp. 11-73.

[16] C. G. Atkeson, A. W. Moore, and S. Schaal, "Locally Weighted Learning for Control,"
Artificial Intelligence Review, vol. 11, 1997, pp. 75-113.

[17] D. Bailey, Improvisation: Its Nature and Practice in Music. Da Capo Press, 1993.

[18] C. Balkenius and B. Johansson, "Anticipatory Models in Gaze Control: a
Developmental Model," Cognitive Processing, vol. 8, 2007, pp. 167-174.

[19] R. Bar-On, D. Tranel, N. L. Denburg, and A. Bechara, "Exploring the Neurological
Substrate of Emotional and Social Intelligence," Brain, vol. 126, 2003, pp. 1790-1800.

[20] A. G. Barto, R. S. Sutton, and C. J. C. H. Watkins, "Learning and Sequential Decision
Making," in Learning and Computational Neuroscience: Foundations of Adaptive Networks, M.
Gabriel and J. Moore, eds., MIT Press, Cambridge, Mass., 1990, pp. 539-602.

[21] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, "A Maximization Technique
Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains,"
The Annals of Mathematical Statistics, vol. 41, 1970, pp. 164-171.

[22] T. Bear, "Murphy's Law Was Invented Here," Desert Wings, 1978, pp. 3.

[23] A. Bechara, A. R. Damasio, H. Damasio, and S. W. Anderson, "Insensitivity to Future
Consequences Following Damage to Human Prefrontal Cortex," Cognition, vol. 50,
1994, pp. 7-15.

[24] A. Bechara, D. Tranel, H. Damasio, and A. R. Damasio, "Failure to Respond
Autonomically to Anticipated Future Outcomes Following Damage to Prefrontal
Cortex," Cerebral Cortex, vol. 6, 1996, pp. 215-225.

 222

[25] R. E. Bellman, Dynamic Programming. Princeton University Press, Princeton, 1957.

[26] P. F. Berliner, Thinking in Jazz: the Infinite Art of Improvisation. The Univ. of Chicago
Press, 1994.

[27] P. J. Best and A. M. White, "Placing Hippocampal Single-Unit Studies in a Historical
Context," Hippocampus, vol. 9, 1999, pp. 346-351.

[28] M. Boddy and T. Dean, "Solving Time-Dependent Planning Problems," Proc. Int'l Joint
Conf. Artificial Intelligence, 1989, pp. 979-984.

[29] C. Breazeal, "A Motivational System for Regulating Human-Robot Interaction," Proc.
Nat'l Conf. Artificial intelligence, 1998, pp. 54-62.

[30] C. Breazeal, "Robot in Society: Friend or Appliance?," Proc. Autonomous Agents
Workshop on Emotion-Based Agent Architectures, Seattle, 1999, pp. 18-26.

[31] R. Brooks, "A Robust Layered Control System for a Mobile Robot," IEEE J. Robotics
and Automation, vol. 2, 1986, pp. 14-23.

[32] A. Bruce, J. Knight, S. Listopad, B. Magerko, and I. R. Nourbakhsh, "Robot Improv:
Using Drama to Create Believable Agents," Proc. IEEE Int'l Conf. Robotics and
Automation, 2000, pp. 4002-4008.

[33] M. Bunsey and H. Eichenbaum, "Conservation of Hippocampal Memory Function in
Rats and Humans," Nature, vol. 379, 1996, pp. 255-257.

[34] N. Burgess, S. Becker, J. A. King, and J. O'Keefe, "Memory for Events and Their
Spatial Context: Models and Experiments," Philosophical Trans. the Royal Soc. , vol. 356,
2001, pp. 1493-1503.

[35] N. Burgess, J. G. Donnett, and J. O'Keefe, "Using a Mobile Robot to Test a Model of
the Rat Hippocampus," Connection Science, vol. 10, 1998, pp. 291-300.

[36] N. Burgess, E. A. Maguire, and J. O'Keefe, "The Human Hippocampus and Spatial
and Episodic Memory," Neuron, vol. 35, 2002, pp. 625-641.

[37] H. Burianova and C. L. Grady, "Common and Unique Neural Activations in

 223

Autobiographical, Episodic, and Semantic Retrieval," J. Cognitive Neuroscience, vol. 19,
2007, pp. 1520-1534.

[38] J. Busby, Z. Parrish, and J. VanEenwyk, Mastering Unreal Technology: The Art of Level
Design. Sams, Indianapolis, 2005.

[39] M. V. Butz and D. E. Goldberg, "Generalized State Values in an Anticipatory
Learning Classifier System," in Anticipatory Behavior in Adaptive Learning Systems:
Foundations, Theories, and Systems, vol. 2684, M. V. Butz, O. Sigaud, and P. Gerard, eds.,
Springer, Berlin, 2004, pp. 282-301.

[40] M. V. Butz and J. Hoffmann, "Anticipations Control Behavior: Animal Behavior in
an Anticipatory Learning Classifier System," Adaptive Behavior, vol. 10, 2002, pp. 75-
96.

[41] M. V. Butz, O. Sigaud, G. Pezzulo, and G. Baldassarre, "Anticipations, Brains,
Individual and Social Behavior: An Introduction to Anticipatory Systems," in
Anticipatory Behavior in Adaptive Learning Systems, vol. 4520, G. Baldassarre, G. Pezzulo,
C. Balkenius, M. V. Butz, and M. Grinberg, eds., Springer, Berlin, 2007, pp. 1-18.

[42] W. H. Calvin, "Evolving Improvisational Intelligence," 1995;
http://faculty.washington.edu/wcalvin

[43] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, "Bridging the Gap
Between Simulation and Reality in Urban Search and Rescue," in RoboCup 2006: Robot
Soccer World Cup X, vol. 4434, G. Lakemeyer, E. Sklar, D. G. Sorrenti, and T.
Takahashi, eds., Springer, Berlin, 2007.

[44] A. R. Cassandra, L. P. Kaelbling, and M. L. Littman, "Acting Optimally in Partially
Observable Stochastic Domains," Proc. Nat'l Conf. Artificial Intelligence, 1994, pp. 1023-
1028.

[45] A. R. Damasio, Descartes' Error: Emotion, Reason, and the Human Brain. G.P. Putnam,
New York, 1994.

[46] A. R. Damasio, "The Somatic Marker Hypothesis and the Possible Functions of the
Prefrontal Cortex," Philosophical Trans. the Royal Soc. of London. Series B, Biological Sciences,
vol. 351, 1996, pp. 1413-1420.

[47] N. Dussault, "iRobot At a Glance," 2007; http://www.irobot.com.

 224

[48] H. Eichenbaum, "Hippocampus: Cognitive Processes and Neural Representations
that Underlie Declarative Memory," Neuron, vol. 44, 2004, pp. 109-120.

[49] H. Eichenbaum, "Is the Rodent Hippocampus Just for 'Place'?," Current Opinion in
Neurobiology, vol. 6, 1999, pp. 187-195.

[50] H. Eichenbaum and N. J. Cohen, From Conditioning to Conscious Recollection: Memory
Systems of the Brain. Oxford Univ. Press, 2001.

[51] H. Eichenbaum, P. Dudchenko, E. Wood, M. Shapiro, and H. Tanila, "The
Hippocampus, Memory, and Place Cells: Is It Spatial Memory or a Memory Space?,"
Neuron, vol. 23, 1999, pp. 209-226.

[52] R. B. Emery, T., "Behavior-Based Control of a Non-Holonomic Robot in Pushing
Tasks," Proc. IEEE Int'l Conf. Robotics and Automation, 2001, pp. 2381- 2388.

[53] Y. Endo, "Anticipatory and Improvisational Robot via Recollection and Exploitation
of Episodic Memories," Proc. 2005 AAAI Fall Symp.: From Reactive to Anticipatory
Cognitive Embodied Systems, 2005, pp. 57-64.

[54] Y. Endo and R. C. Arkin, "Anticipatory Robot Navigation by Simultaneously
Localizing and Building a Cognitive Map," Proc. IEEE Int'l Conf. Intelligent Robots and
Systems 2003, pp. 460-466.

[55] Y. Endo, D. C. MacKenzie, and R. C. Arkin, "Usability Evaluation of High-Level
User Assistance for Robot Mission Specification," IEEE Trans. Systems, Man, and
Cybernetics, vol. 34, 2004, pp. 168-180.

[56] R. Falcone, "MIND RACES: from Reactive to Anticipatory Cognitive Embodied
Systems," Information Society Technology, Mind RACES Periodic Management
Report N1, 2006.

[57] R. E. Fikes and N. J. Nilsson, "STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving," Artificial Intelligence, vol. 2, 1971, pp. 189-208.

[58] N. J. Fortin, K. L. Agster, and H. B. Eichenbaum, "Critical Role of the Hippocampus
in Memory for Sequences of Events," Nature Neuroscience, vol. 5, 2002, pp. 458-462.

[59] N. J. Fortin, S. P. Wright, and H. Eichenbaum, "Recollection-Like Memory Retrieval

 225

in Rats is Dependent on the Hippocampus," Nature, vol. 431, 2004, pp. 188-191.

[60] D. J. Foster, R. G. M. Morris, and P. Dayan, "Models of Hippocampally Dependent
Navigation, Using the Temporal Difference Learning Rule," Hippocampus, vol. 10,
2000, pp. 1-16.

[61] M. Fyhn, S. Molden, S. Hollup, M. Moser, and E. Moser, "Hippocampal Neurons
Responding to First-Time Dislocation of a Target Object," Neuron, vol. 35, 2002, pp.
555-566.

[62] Georgia Tech Mobile Robot Laboratory, MissionLab: User Manual for MissionLab 7.0.
College of Computing, Georgia Institute of Technology, Atlanta, Ga, 2006.

[63] A. K. Goel, K. S. Ali, M. W. Donnellan, A. G. d. S. Garza, and T. J. Callantine,
"Multistrategy Adaptive Path Planning," IEEE Expert, vol. 9, 1994, pp. 57-65.

[64] A. K. Goel, E. Stroulia, Z. Chen, and P. Rowl, "Model-Based Reconfiguration of
Schema-Based Reactive Control Architectures," presented at AAAI Fall Symposium on
Model-Directed Autonomous Systems, Boston, 1997.

[65] M. Grachten, "JIG: Jazz Improvisation Generator," Proc. Workshop on Current Research
Directions in Computer Music, 2001, pp. 1-6.

[66] A. Guazzelli, M. Bota, and M. A. Arbib, "Competitive Hebbian Learning and the
Hippocampal Place Cell System: Modeling the Interaction of Visual and Path
Integration Cues," Hippocampus, vol. 11, 2001, pp. 216-239.

[67] K. J. Hammond, Case-Based Planning: Viewing Planning as a Memory Task. Academic
Press, Boston, 1989.

[68] M. E. Hasselmo, "The Role of Hippocampal Regions CA3 and CA1 in Matching
Entorhinal Input with Retrieval of Associations Between Objects and Context:
Theoretical Comment on Lee et al. (2005)," Behavioral Neuroscience, vol. 119, 2005, pp.
342-345.

[69] M. E. Hasselmo, E. Schnell, and E. Barkai, "Dynamics of Learning and Recall at
Excitatory Recurrent Synapses and Cholinergic Modulation in Rat Hippocampal
Region CA3," J. Neuroscience, vol. 15, 1995, pp. 5249-5262.

 226

[70] B. Hayes-Roth and L. Brownston, "Multiagent Collaboration in Directed
Improvisation," Proc. the First Conf. Multi-Agent Systems, San Francisco, 1994, pp. 148-
154.

[71] R. Held, "Exposure-History as a Factor in Maintaining Stability of Perception and
Coordination," J. Nervous and Mental Disease, vol. 132, 1961, pp. 26-32.

[72] J. Hoffmann, "Anticipatory Behavioral Control," in Anticipatory Behavior in Adaptive
Learning Systems: Foundations, Theories, and Systems, vol. 2684, M. V. Butz, O. Sigaud, and
P. Gerard, eds., Springer, Berlin, 2003, pp. 44-65.

[73] S. A. Hollup, S. Molden, J. G. Donnett, M. B. Moser, and E. I. Moser, "Accumulation
of Hippocampal Place Fields at the Goal Location in an Annular Watermaze Task," J.
Neuroscience, vol. 21, 2001, pp. 1635-1644.

[74] B. Hommel, J. Musseler, G. Aschersleben, and W. Prinz, "The Theory of Event
Coding (TEC): a Framework for Perception and Action Planning," Behavioral and Brain
Sciences, vol. 24, 2001, pp. 849-878.

[75] R. C. Honey, A. Watt, and M. Good, "Hippocampal Lesions Disrupt an Associative
Mismatch Process," J. of Neuroscience, vol. 18, 1998, pp. 2226-2230.

[76] M. R. James, S. Singh, and M. L. Littman, "Planning with Predictive State
Representations," Proc. Int'l Conf. Machine Learning and Applications, 2004, pp. 304-311.

[77] W. James, The Principles of Psychology. Dover, New York, 1950.

[78] B. Johansson and C. Balkenius, "An Experimental Study of Anticipation in Simple
Robot Navigation," in Anticipatory Behavior in Adaptive Learning Systems, vol. 4520, G.
Baldassarre, G. Pezzulo, C. Balkenius, M. V. Butz, and M. Grinberg, eds., Springer,
Berlin, 2007, pp. 365-378.

[79] B. Johansson and C. Balkenius, "Robots with Anticipation and Attention," in Advances
in Artificial Intelligence in Sweden, P. Funk, T. Rognvaldsson, and N. Xiong, eds.,
Malardalen Univ., Vasteras, Sweden, 2005, pp. 202-204.

[80] P. N. Johnson-Laird, "How Jazz Musicians Improvise," Music Perception, vol. 19, 2002,
pp. 415-442.

 227

[81] L. P. Kaelbling, M. L. Littman, and A. W. Moore, "Reinforcement Learning: A
Survey," Journal of Artificial Intelligence Research, vol. 4, 1996, pp. 237-285.

[82] R. E. Kalman, "A New Approach to Linear Filtering and Prediction Problems," J.
Basic Engineering, vol. 82, 1960, pp. 35-45.

[83] B. Kernfeld, What to Listen For in Jazz. Yale Univ. Press, New Haven, 1995.

[84] Z. Kira and R. C. Arkin, "Forgetting Bad Behavior: Memory for Case-Based
Navigation," Proc. IEEE Int'l Conf. Intelligent Robots and Systems, 2004, pp. 3145-3152.

[85] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by Simulated
Annealing," Science, vol. 220, 1983, pp. 671-680.

[86] K. Kiryazov, G. Petkov, M. Grinberg, B. Kokinov, and C. Balkenius, "The Interplay
of Analogy-Making with Active Vision and Motor Control in Anticipatory Robots,"
in Anticipatory Behavior in Adaptive Learning Systems, vol. 4520, G. Baldassarre, G.
Pezzulo, C. Balkenius, M. V. Butz, and M. Grinberg, eds., Springer, Berlin, 2007, pp.
233-253.

[87] N. Koenig and A. Howard, "Design and Use Paradigms for Gazebo, an Open-Source
Multi-Robot Simulator," Proc. IEEE Int'l Conf. Intelligent Robots and Systems, 2004, pp.
2149- 2154.

[88] S. Koenig and R. Simmons, "Xavier: A Robot Navigation Architecture Based on
Partially Observable Markov Decision Process Models," in Artificial Intelligence Based
Mobile Robotics: Case Studies of Successful Robot Systems, D. Kortenkamp, R. Bonasso, and
R. Murphy, eds., MIT Press, 1998, pp. 91-122.

[89] J. Kolodner, Case-Based Reasoning. Morgan Kaufmann, San Mateo, Calif., 1993.

[90] J. L. Kolodner, Retrieval and Organizational Strategies in Conceptual Memory: a Computer
Model. Yale Univ., New Haven, Conn., 1980.

[91] J. L. Kolodner and D. Leake, "A Tutorial Introduction to Case-Based Reasoning," in
Case-Based Reasoning: Experiences, Lessons and Future Directions, D. Leake, ed., MIT Press,
Cambridge, Mass., 1996, pp. 31-65.

[92] M. Kruusmaa, "Global Navigation in Dynamic Environments Using Case-Based

 228

Reasoning," Autonomous Robots, vol. 14, 2003, pp. 71-91.

[93] B. Kuipers and Y. T. Byun, "A Robot Exploration and Mapping Strategy Based on
Semantic Hierarchy of Spatial Representations," J. Robotics and Autonomous Systems, vol.
8, 1991, pp. 47-63.

[94] P. R. Kumar and P. Varaiya, Stochastic Systems: Estimation, Identification and Adaptive
Control. Prentice-Hall, Upper Saddle River, N.J., 1986

[95] J. LeDoux, "Cognitive-Emotional Interactions: Listen to the Brain," in Cognitive
Neuroscience of Emotion, R. D. Lane and L. Nadel, eds., Oxford Univ. Press, New York,
2000, pp. 129-155.

[96] J. E. LeDoux, The Emotional Brain: the Mysterious Underpinnings of Emotional Life. Simon
& Schuster, New York, 1996.

[97] I. Lee, M. R. Hunsaker, and R. P. Kesner, "The Role of Hippocampal Subregions in
Detecting Spatial Novelty," Behavioral Neuroscience, vol. 119, 2005, pp. 145-153.

[98] W. Y. Lee, Spatial Semantic Hierarchy for a Physical Mobile Robot, doctoral dissertation,
Dep. Computer Sciences, The Univ. of Texas at Austin, Austin, 1996

[99] R. Lienhart and J. Maydt, "An Extended Set of Haar-Like Features for Rapid Object
Detection," Proc. Int'l Conf. Image Processing, 2002, pp. 900-903.

[100] M. Likhachev, M. Kaess, and R. C. Arkin, "Learning Behavioral Parameterization
Using Spatio-Temporal Case-based Reasoning," Proc. IEEE Int'l. Conf. Robotics and
Automation, Washington, D.C., 2002, pp. 1282-1289.

[101] M. Littman, R. Sutton, and S. Singh, "Predictive Representations of State," Advances in
Neural Information Processing Systems, vol. 14, 2002, pp. 1555-1561.

[102] M. L. Littman, N. Ravi, E. Fenson, and R. Howard, "An Instance-based State
Representation for Network Repair," Proc. Nat'l Conf. Artificial Intelligence, 2004, pp.
287-292.

[103] J. Lovell and J. Kluger, Apollo 13. Houghton Mifflin, Boston, 2000.

 229

[104] D. M. Lyons and M. A. Arbib, "A Formal Model of Computation for Sensory-Based
Robotics," IEEE Trans. Robotics and Automation, vol. 5, 1989, pp. 280-293.

[105] E. A. Maguire, D. G. Gadian, I. S. Johnsrude, C. D. Good, J. Ashburner, R. S. J.
Frackowiak, and C. D. Frith, "Navigation-Related Structural Change in the
Hippocampi of Taxi Drivers," Proc. Nat'l Academy of Sciences, vol. 97, 2000, pp. 4398-
4403.

[106] S. Massoud Amin and B. F. Wollenberg, "Toward a Smart Grid: Power Delivery for
the 21st Century," IEEE Power and Energy Magazine, vol. 3, 2005, pp. 34-41.

[107] M. J. Mataric, "A Distributed Model for Mobile Robot Environment-Learning and
Navigation," MIT Artificial Intelligence Laboratory, technical report AITR-1228,
1990.

[108] M. J. Mataric, "Navigation with a Rat Brain: a Neurobiologically-Inspired Model for
Robot Spatial Representation," Proc. Int'l Conf. Simulation of Adaptive Behavior, MIT
Press, 1990, pp. 169-175.

[109] A. K. McCallum, Reinforcement Learning with Selective Perception and Hidden State, PhD
Dissertation, Dept. Computer Science, Univ. of Rochester, 1995

[110] R. A. McCallum, "Hidden State and Reinforcement Learning with Instance-Based
State Identification," IEEE Trans. Systems, Man and Cybernetics, Part B, vol. 26, 1996,
pp. 464-473.

[111] B. L. McNaughton, C. A. Barnes, J. L. Gerrard, K. Gothard, M. W. Jung, J. J.
Knierim, H. Kudrimoti, Y. Qin, W. E. Skaggs, M. Suster, and K. L. Weaver,
"Deciphering the Hippocampal Polyglot: the Hippocampus as a Path Integration
System," J. Experimental Biology, vol. 199, 1996, pp. 173-185.

[112] D. Mendonca, "Decision Support for Improvisation in Response to Extreme Events:
Learning from the Response to the 2001 World Trade Center Attack," Decision Support
Systems, vol. 43, 2007, pp. 952-967.

[113] D. J. Mendonca and W. A. Wallace, "A Cognitive Model of Improvisation in
Emergency Management," IEEE Trans. Systems, Man and Cybernetics, Part A, vol. 37,
2007, pp. 547-561.

[114] M. J. Milford, G. F. Wyeth, and D. Prasser, "RatSLAM: a Hippocampal Model for

 230

Simultaneous Localization and Mapping," Proc. IEEE Int'l Conf. Robotics and
Automation, 2004, pp. 403-408.

[115] T. M. Mitchell, Machine Learning. McGraw-Hill, New York, 1997.

[116] M. C. Moraes and A. C. da Rocha Costa, "Improvisational Multi-Agent Organization:
Using Director Agent to Coordinate Improvisational Agents," Proc. Int'l Conf. Intelligent
Agent Technology, 2005, pp. 463- 466.

[117] R. Morris, "Developments of a Water-Maze Procedure for Studying Spatial Learning
in the Rat," J. Neuroscience Methods, vol. 11, 1984, pp. 47-60.

[118] R. G. M. Morris, "Spatial Memory and the Hippocampus: the Need for Psychological
Analyses to Identify the Information Processing Underlying Spatial Learning," in
Perception, Memory and Emotion: Frontiers in Neuroscience, Pergamon Studies in Neuroscience, T.
Ono, B. L. McNaughton, S. Molotchnikoff, E. T. Rolls, and H. Nishijo, eds., Elsevier
Science, Oxford, 1996, pp. 319-342.

[119] E. I. Moser and O. Paulsen, "New Excitement in Cognitive Space: Between Place
Cells and Spatial Memory," Current Opinion in Neurobiology, vol. 11, 2001, pp. 745-751.

[120] L. Moshkina, Y. Endo, and R. C. Arkin, "Usability Evaluation of an Automated
Mission Repair Mechanism for Mobile Robot Mission Specification," Proc. Proc. the 1st
ACM SIGCHI/SIGART Conf. Human-Robot Interaction, Salt Lake City, Utah, 2006, pp.
57-63.

[121] L. Nadel and H. Eichenbaum, "Introduction to the Special Issue on Place Cells,"
Hippocampus, vol. 9, 1999, pp. 341-345.

[122] J. O'Keefe, "Do Hippocampal Pyramidal Cells Signal Non-Spatial as Well as Spatial
Information?," Hippocampus, vol. 9, 1999, pp. 352-364.

[123] J. O'Keefe and L. Nadel, The Hippocampus as a Cognitive Map. Clarendon Press, Oxford,
1978.

[124] L. E. Parker, "ALLIANCE: an Architecture for Fault Tolerant Multirobot
Cooperation," IEEE Trans. Robotics and Automation, vol. 14, 1998, pp. 220-240.

[125] I. P. Pavlov, Conditioned Reflexes: an Investigation of the Physiological Activity of the Cerebral

 231

Cortex, G. V. Anrep ed. Dover, New York, 1960.

[126] G. Pezzulo, G. Baldassarre, M. V. Butz, C. Castelfranchi, and J. Hoffmann, "From
Actions to Goals and Vice-Versa: Theoretical Analysis and Models of the Ideomotor
Principle and TOTE," in Anticipatory Behavior in Adaptive Learning Systems, vol. 4520, G.
Baldassarre, G. Pezzulo, C. Balkenius, M. V. Butz, and M. Grinberg, eds., Springer,
Berlin, 2007, pp. 73-93.

[127] G. Pezzulo and G. Calvi, "Schema-Based Design and the AKIRA Schema Language:
An Overview," in Anticipatory Behavior in Adaptive Learning Systems, vol. 4520, G.
Baldassarre, G. Pezzulo, C. Balkenius, M. V. Butz, and M. Grinberg, eds., Springer,
Berlin, 2007, pp. 128-152.

[128] J. Piaget, The Psychology of Intelligence. Routledge & Paul, London, 1951.

[129] J. Pineau, G. Gordon, and S. Thrun., "Point-Based Value Iteration: An Anytime
Algorithm for POMDPs," Proc. Int'l Joint Conf. Artificial Intelligence, 2003, pp. 1025-
1032.

[130] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun, "Towards Robotic
Assistants in Nursing Homes: Challenges and Results," Robotics and Autonomous
Systems, vol. 42, 2003, pp. 271-281.

[131] A. Ploghaus, I. Tracey, S. Clare, J. S. Gati, J. N. P. Rawlinsdagger, and P. M.
Matthews, "Learning about Pain: the Neural Substrate of the Prediction Error for
Aversive Events," Proc. the Nat'l Academy of Sciences, vol. 97, 2000, pp. 9281-9286.

[132] J. Pressing, "Cognitive Processes in Improvisation," Cognitive Processes in the Perception of
Art, 1984, pp. 345-363.

[133] J. Pressing, "Improvisation: Methods and Models," Generative Processes in Music, 1987,
pp. 129-178.

[134] J. Pressing, "Psychological Constraints on Improvisational Expertise and
Communication," in In the Course of Performance: Studies in the World of Musical
Improvisation, B. Nettl and M. Russell, eds., Univ. Chicago Press, 1998, pp. 47-67.

[135] L. Rabiner and B. Juang, "An Introduction to Hidden Markov Models," IEEE ASSP
Magazine, vol. 3, 1986, pp. 4-16.

 232

[136] A. Ram, R. C. Arkin, K. Moorman, and R. J. Clark, "Case-Based Reactive Navigation:
a Case-Based Method for On-Line Selection and Adaptation of Reactive Control
Parameters in Autonomous Robotic Systems," IEEE Trans. Systems, Man, and
Cybernetics, Part B, vol. 27, 1997, pp. 376-394.

[137] A. Ram and J. C. Santamaria, "Continuous Case-Based Reasoning," Artificial
Intelligence, vol. 90, 1997, pp. 25-77.

[138] A. D. Redish and D. S. Touretzky, "Cognitive Maps Beyond the Hippocampus,"
Hippocampus, vol. 7, 1997, pp. 15-35.

[139] A. D. Redish and D. S. Touretzky, "Modeling Interactions of the Rat's Place and
Head Direction Systems," Advances in Neural Information Processing Systems, vol. 8, 1996,
pp. 61-67.

[140] A. D. Redish and D. S. Touretzky, "The Role of the Hippocampus in Solving the
Morris Water Maze," Natural Computation, vol. 10, 1998, pp. 73-111.

[141] E. T. Rolls, S. M. Stringer, and T. P. Trappenberg, "A Unified Model of Spatial and
Episodic Memory," Proc. the Royal Soc. B, vol. 269, 2002, pp. 1087-1093.

[142] R. Ros, R. Lopez de Mantaras, C. Sierra, and J. L. Arcos, "A CBR System for
Autonomous Robot Navigation," in Artificial Intelligence Research and Development, vol.
131, Frontiers in Artificial Intelligence and Applications, B. Lopez, J. Melendez, P. Radeva,
and J. Vitria, eds., IOS Press, Amsterdam, 2005, pp. 299-306.

[143] R. Rosen, Anticipatory Systems: Philosophical, Mathematical, and Methodological Foundations,
1st ed. Pergamon Press, Oxford, 1985.

[144] A. Samsonovich and B. L. McNaughton, "Path Integration and Cognitive Mapping in
a Continuous Attractor Neural Network Model," J. Neuroscience, vol. 17, 1997, pp.
5900-5920.

[145] J. C. Santamaria, R. S. Sutton, and A. Ram, "Experiments with Reinforcement
Learning in Problems with Continuous State and Action Spaces," Adaptive Behavior,
vol. 6, 1997, pp. 163-217.

[146] T. Sawada, T. Takagi, Y. Hoshino, and M. Fujita, "Learning Behavior Selection
Through Interaction Based on Emotionally Grounded Symbol Concept," Proc. Int'l
Conf. Humanoid Robots, Los Angeles, 2004, pp. 450-469.

 233

[147] S. Schaal and C. G. Atkeson, "Robot Juggling: Implementation of Memory-Based
Learning " IEEE Control Systems Magazine, vol. 14, 1994, pp. 57-71.

[148] R. C. Schank, Dynamic Memory Revisited. Cambridge Univ. Press., Cambridge, 1999.

[149] R. C. Schank, Dynamic Memory: a Theory of Reminding and Learning in Computers and People.
Cambridge Univ. Press., Cambridge, 1982.

[150] N. A. Schmajuk, "The Psychology of Robots," Proc. the IEEE, vol. 84, 1996, pp. 1553-
1561.

[151] N. A. Schmajuk, "Role of the Hippocampus in Temporal and Spatial Navigation: an
Adaptive Neural Network," Behavioural Brain Research, vol. 39, 1990, pp. 205-229.

[152] N. A. Schmajuk and A. D. Thieme, "Purposive Behavior and Cognitive Mapping: a
Neural Network Model," Biological Cybernetics, vol. 67, 1992, pp. 165-174.

[153] W. Schultz, "Predictive Reward Signal of Dopamine Neurons," J. Neurophysiology, vol.
80, 1998, pp. 1-27.

[154] W. Schultz, P. Dayan, and P. R. Montague, "A Neural Substrate of Prediction and
Reward," Science, vol. 275, 1997, pp. 1593-1599.

[155] C. E. Schwartz, C. I. Wright, L. M. Shin, J. Kagan, and S. L. Rauch, "Inhibited and
Uninhibited Infants 'Grown Up': Adult Amygdalar Response to Novelty," Science, vol.
300, 2003, pp. 1952-1953.

[156] W. B. Scoville and B. Milner, "Loss of Recent Memory after Bilateral Hippocampal
Lesions," J. Neurology, Neurosurgery, and Psychiatry, vol. 20, 1957, pp. 11-21.

[157] C. E. Shannon, "Prediction and Entropy of Printed English," The Bell System Technical
Journal, vol. 30, 1950, pp. 50-64.

[158] M. L. Shapiro and H. Eichenbaum, "Hippocampus as a Memory Map: Synaptic
Plasticity and Memory Encoding by Hippocampal Neurons," Hippocampus, vol. 9,
1999, pp. 365-384.

[159] M. Sharma, M. Holmes, J. Santamaria, A. Irani, C. Isbell, and A. Ram, "Transfer

 234

Learning in Real-Time Strategy Games Using Hybrid CBR/RL," Proc. Int'l Joint Conf.
Artificial Intelligence, Hyderabad, India, 2007, pp. 1041-1046.

[160] P. E. Sharp, "Complimentary Roles for Hippocampal versus Subicular/Entorhinal
Place Cells in Coding Place, Context, and Events," Hippocampus, vol. 9, 1999, pp. 432-
443.

[161] L. Shastri, "A Computational Model of Episodic Memory Formation in the
Hippocampal System," Neurocomputing, vol. 38-40, 2001, pp. 889-897.

[162] S. Singh, M. R. James, and M. R. Rudary, "Predictive State Representations: A New
Theory for Modeling Dynamical Systems," Proc. Uncertainty in Artificial Intelligence, 2004,
pp. 512-519.

[163] S. Singh, M. Littman, N. Jong, D. Pardoe, and P. Stone, "Learning Predictive State
Representations," Proc. Int'l Conf. Machine Learning, 2003, pp. 712-719.

[164] R. Smith, " Open Dynamics Engine: v0.5 User Guide," 2006; http://www.ode.org.

[165] L. R. Squire, "Memory and the Hippocampus: a Synthesis from Findings with Rats,
Monkeys, and Humans," Psychological Review, vol. 99, 1992, pp. 195-231.

[166] L. R. Squire and S. Zola-Morgan, "The Medial Temporal Lobe Memory System,"
Science, vol. 253, 1991, pp. 1380-1386.

[167] W. Stolzmann, "An Introduction to Anticipatory Classifier Systems," in Learning
Classifier Systems: From Foundations to Applications, P. L. Lanzi, W. Stolzmann, S. W.
Wilson, R. E. Smith, A. Bonarini, T. Kovacs, R. L. Riolo, and L. B. Booker, eds.,
Springer, Berlin, 2000, pp. 175-194.

[168] W. Stolzmann, "Latent Learning in Khepera Robots with Anticipatory Classifier
Systems," Proc. Genetic and Evolutionary Computation Conf. Workshop Program, 1999, pp.
290-297.

[169] A. Stoytchev and R. C. Arkin, "Combining Deliberation, Reactivity, and Motivation in
the Context of a Behavior-Based Robot Architecture," Proc. IEEE Int'l Symp.
Computational Intelligence in Robotics and Automation, Banff, Alberta, 2001, pp. 290-295.

[170] R. S. Sutton, "Learning to Predict by the Methods of Temporal Differences," Machine

 235

Learning, vol. 3, 1988, pp. 9-44.

[171] R. S. Sutton and A. G. Barto, Reinforcement Learning: an Introduction. MIT Press,
Cambridge, Mass., 1998.

[172] R. S. Sutton and A. G. Barto, "Time-Derivative Models of Pavlovian Reinforcement,"
in Learning and Computational Neuroscience: Foundations of Adaptive Networks, M. Gabriel
and J. Moore, eds., MIT Press, Cambridge, Mass., 1990, pp. 497-537.

[173] G. Tesauro, "Programming Backgammon Using Self-Teaching Neural Nets," Artificial
Intelligence, vol. 134, 2002, pp. 181–199.

[174] G. Tesauro, "Temporal difference learning and TD-Gammon," Communications of the
ACM, vol. 38, 1995, pp. 58-68.

[175] G. Theocharous and S. Mahadevan, "Approximate Planning with Hierarchical
Partially Observable Markov Decision Process Models for Robot Navigation," Proc.
IEEE Int'l Conf. Robotics and Automation, 2002, pp. 1347-1352.

[176] S. Thrun, "Monte Carlo POMDPs," Proc. Advances in Neural Information Processing
Systems 12, MIT Press, 2000, pp. 1064-1070.

[177] S. Thrun, "Probabilistic Algorithms in Robotics," in AI Magazine, vol. 21, 2000, pp.
93-109.

[178] S. Thrun, "Robotic Mapping: A Survey," in Exploring Artificial Intelligence in the New
Millenium, Morgan Kaufmann, 2002.

[179] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press, Cambridge, Mass.,
2005.

[180] E. C. Tolman, "Cognitive Maps in Rats and Man," in Behavior and Psychological Man,
Univ. of California Press, 1951.

[181] E. C. Tolman, Purposive Behavior in Animals and Men. Univ. of California Press, 1951.

[182] E. C. Tolman and C. H. Honzik, "'Insight' in Rats," Univ. California Publications in
Psychology, vol. 4, 1930, pp. 215-232.

 236

[183] N. Tomatis, I. Nourbakhsh, and R. Siegwart, "Hybrid Simultaneous Localization and
Map Building: a Natural Integration of Topological and Metric," Robotics and
Autonomous Systems, vol. 44, 2003, pp. 3-14.

[184] E. Tulving, "Episodic and Semantic Memory," in Organization of Memory, E. Tulving
and W. Donaldson, eds., Academic Press, New York, 1972.

[185] E. Tulving, "How Many Memory Systems Are There?," American Psychologist, vol. 40,
1985, pp. 385-398.

[186] E. Tulving, "Neurocognitive Processes of Human Memory," in Basic Mechanisms in
Cognition and Language with Special Reference to Phonological Problems in Dyslexia, Wenner-
Gren International, C. v. Euler, I. Lungberg, and R. R. Llinas, eds., Elsevier,
Amsterdam, 1998.

[187] E. Tulving, H. J. Markowitsch, F. I. M. Craik, R. Habib, and S. Houle, "Novelty and
Familiarity Activations in PET Studies of Memory Encoding and Retrieval," Cerebral
Cortex, vol. 6, 1996, pp. 71-79.

[188] University of Birmingham, "Hippocampus," 2002;
http://www.neuroscience.bham.ac.uk/neurophysiology/research/hippocampus.htm.

[189] H. Van de Water and J. C. Willems, "The Certainty Equivalence Property in
Stochastic Control Theory," IEEE Trans Automatic Control, vol. 26, 1981, pp. 1080-
1087.

[190] J. D. Velasquez, "An Emotion-Based Approach to Robotics," Proc. IEEE Int'l Conf.
Intelligent Robots and Systems, 1999, pp. 235-240.

[191] M. M. Veloso and J. G. Carbonell, "Derivational Analogy in PRODIGY: Automating
Case Acquisition, Storage, and Utilization," Machine Learning, vol. 10, 1993, pp. 249 -
278.

[192] O. S. Vinogradova, "Hippocampus as Comparator: Role of the Two Input and Two
Output Systems of the Hippocampus in Selection and Registration of Information,"
Hippocampus, vol. 11, 2001, pp. 578-598.

[193] H. Voicu and N. Schmajuk, "Exploration, Navigation and Cognitive Mapping,"
Adaptive Behavior, vol. 8, 2000, pp. 207-224.

 237

[194] E. von Holst, "Relations between the Central Nervous System and the Peripheral
Organs," The British J. Animal Behavior, vol. 2, 1954, pp. 89-94.

[195] G. Weinberg and S. Driscoll, "Toward Robotic Musicianship," Computer Music J., vol.
30, 2006, pp. 28-45.

[196] G. Weinberg, M. Godfrey, A. Rae, and J. Rhodes, "A Real-Time Genetic Algorithm in
Human-Robot Musical Improvisation," Proc. Int'l Computer Music Conf., Copenhagen,
2007, pp. 192-195.

[197] M. A. Wheeler, "Episodic Memory and Autonoetic Awareness," in The Oxford
Handbook of Memory, E. Tulving and F. I. M. Craik, eds., Oxford University Press,
Oxford, 2000, pp. 597-608.

[198] E. R. Wood, P. A. Dudchenko, R. J. Robitsek, and H. J. Eichenbaum, "Hippocampal
Neurons Encode Information about Different Types of Memory Episodes Occurring
in the Same Location," Neuron, vol. 27, 2000, pp. 623-633.

[199] C. I. Wright, H. Fischer, P. J. Whalen, S. C. McInerney, L. M. Shin, and S. L. Rauch,
"Differential Prefrontal Cortex and Amygdala Habituation to Repeatedly Presented
Emotional Stimuli," Neuroreport, vol. 12, 2001, pp. 379-383.

[200] B. Young and H. Eichenbaum, "What Do Hippocampal Neurons Encode?," in
Perception, Memory and Emotion: Frontiers in Neuroscience, Pergamon Studies in Neuroscience, T.
Ono, B. L. McNaughton, S. Molotchnikoff, E. T. Rolls, and H. Nishijo, eds., Elsevier
Science, Oxford, 1996, pp. 229-249.

[201] S. Zilberstein, "Using Anytime Algorithms in Intelligent Systems," in The AI magazine,
vol. 17, 1996, pp. 73-83.

[202] S. Zilberstein and S. Russell, "Approximate Reasoning Using Anytime Algorithms," in
Imprecise and Approximate Computation, vol. 318, S. Natarajan, ed., Kluwer Academic,
Boston, 1995, pp. 43-62.

