Visualization of Multi-level Neural-based Robotic Systems
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Abstract’

Autonomous biological systems are very
complex in their nature. Their study,
through  both  experimentation and
computation, provides a means to
understand the underlying mechanisms in
living systems while inspiring the
development of technological applications.
Experimentation, consisting of data
gathering, generates predictions to be
validated by experimentation on artificial
systems. Computational models provide the
understanding for the underlying dynamics,
and serve as basis for simulation and
further  experimentation. The  work
presented here involves analyzing how
predictive models can be generated from
biological systems and then be used to drive
robotic experiments; and conversely, how
can results from robotic experiments drive
additional neuroethological data gathering.
This process requires a variety of
visualization techniques in modeling and
simulation of increasingly complex systems.

1 Introduction

The study of autonomous biological systems
comprises a cycle of biological experimentation,
computational modeling and Tobotics
experimentation, as depicted in Figure 1. This cycle
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serves as framework for the study of the underlying
neural mechanisms responsible for behavior in
animals and the inspiration for designing
autonomous robotic systems.
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Figure 1. Framework for the study of living
organisms through cycles of biological
experimentation, computational modeling, and
robotics experimentation.

‘While much work has been done on
experimentation on living animals and the
development of biological and artificial neural
models in developing behavioral models for robotics;
there exists a very limited effort to integrate across
the different modeling levels currently applied to
the study biological systems in a single unified
approach. Two existing projects, "Fcological Robots:
A Schema-theoretic Approach” [ Arkin ef al, 19971
and "Multi-level Simulation Methodology: A
Computational and KExperimental Approach to
Neural Systems" [Weitzenfeld et al, 1998b], have the
goal to develop a multi-level simulation
methodology to answer some of the questions arising
in highly complex neural systems which single level



models cannot. These biological neural systems are
studied primarily with respect to four different
levels of analysis: autonomous tobotic agents,
behavior, neural networks, and detailed neurons, as
shown in Table 2.

Levels of Analysis Theoretical Approach:
Simulation Tool
1. Autonomous robotic | Sensors/Actuators:
agents MissionLab
(GeorgiaTech)
2. Behavior Schemas:
ASLATAM),
MissionLab
(GeorgiaTech)
3. Neural Networks Neural Elements:
NSL TAM-USC)
4. Neurons Compartmental models,
Cable Theory, Hodgkin-
Huxley, ion channels:
GENESIS [Bower and
Beeman, 19941,
NEURON [Hines, 19941
Table 2. Multi-level analysis for the
understanding of autonomous biological
systems.

* At the highest level, autonomous robotic agents
are designed to interact with the world via
sensors and actuators. These agents are
simulated in virtual robots and implemented in
real robots with systems such as MissionlLab
[MacKenzie et al, 1997]. Autonomous robotic
agents are exemplified by biologically inspired
systems, such as the computational frog ( rana
computatrix) [Arbib, 19871, the computational
praying mantis [Cervantes ef al, 1993al, the
computational cockroach [Beer, 19901, and the
computational hoverfly [CIiff, 1992].

* At the behavior level, neuroethological data
from living animals is gathered to generate
single and multi-agent systems to study the
relationship between an agent and its
environment, giving emphasis to aspects such as
cooperation and competition between agents. In
our project, agent behavior is described in terms
of perceptual and motor schemas [ Atbib, 19921
decomposed and refined in a recursive fashion.
Behaviors, and their corresponding schemas, are
simulated via the abstract simulation language
ASL  [Weitzenfeld, 1993]. FExamples of
behavioral models include the praying mantis
Chantlitlaxia (search for a proper habitat)
[Cervantes et al, 1993al and the frog and toad
prey acquisition and predator avoidance models
[Cobas and Arbib, 1992].

e At the neural network level, neuroanatomical
and neuronphysiological data are used to
generate perceptual and motor neural network
models corresponding to the schema models
developed at the behavioral level. These models
try to explain the underlying mechanisms for
sensorimotor integration. Neural networks are
simulated via the neural simulation language
NSL [Weitzenfeld and Arbib,
19941 Weitzenfeld et al, 1998al. Neural network
models are exemplified by the prey acquisition
and predator avoidance mneural models
[Cervantes et al, 1993bl. These models have the
particular  characteristic of incorporating
adaptation and learning, such as the retino-
tectal-pretectal neural circuitry modulated by
learning processes responsible for habituation
[Flores, 19971.

e At the detailed neural level, electrochemical
neural mechanisms are studied to understand
different neural phenomena, such as presynaptic
inhibition in the control of synaptic selectivity
[Eguibar et al, 1994]. These detailed neural
model intends to provide refined mneural
mechanism where simplified ones are not
enough, such as in gating networks [Jacobs et a/,
19911.

‘While single level modeling involves by itself a great
complexity, the grand challenge in this multi-level
methodology is to integrate across the different
modeling levels in order to explain phenomena
which single levels cannot. From a system's
standpoint, it is necessary to integrate between the
different simulation and experimentation tools
[Weitzenfeld et al, 1998cl. From a modeler's
perspective, it is essential to comprehend the
simulation's response, particularly challenging
when involving highly complex models. Tools
currently used to support this process include
compiled languages for modeling, scripting
languages for simulation, visual programming
languages, graphical interfaces, visualization
techniques, concurrent and distributed processing,
numerical methods, analysis tools and simulation
methodologies. Visualization plays a critical role
both in synthesizing new models, using a top-down
and bottom-up approach, and in analyzing the
model's simulation results. FEach analysis level
involves its own complexity, requiring appropriate
visualization techniques. Furthermore, there is the
additional complexity of integrating across the
different modeling levels.



2 Modeling

2.1 Autonomous Robotic Agents

Autonomous robotic agents can be either simulated
in a virtual world or executed in the real world. The
MissionLab architecture is specially suited for this

task, since the model built needs only to be bound to
the corresponding environment without any changes

to the model itself. This is achieved by performing
sensors and actuator
hardware devices, independent from model
construction. MissionLab, as a simulation and
execution system, incorporates graphical

interfaces, reusable software libraries, a simulation
facility, and the capability to download executable
robot code for a range of real mobile platforms,
ranging from teams of small robots to human sized
vehicles [Arkin and Balch, 1997], as shown in
Figure 3.

Figure 3. Variety of real world .é;uomous
robotic agents supported by the MissionLab
system.

In terms of virtual worlds, Figure 4 shows an
example of computational frogapa computatrix
pursuing a prey (worm), interposed by a batrrier.

Figure 4. Computational frog in a prey and
barrier set up.

2.2 Behaviors

Behaviors are generally described by ethogram, as
the one shown in Figure 4, corresponding to the
praying mantis' Chantlitlaxia [Cervantes el al,
1993al. This conduct takes place when exploring the

binding to software or

user

praying mantis explores its environment (when not
mating, hunting, ete.).
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Figure 5. Praying Mantis' Chantlitlaxia
Ethogram.

Another example of behavior is shown in Figure 6.

These two figures are taken from the prey
acquisition with detour model [ Corbacho and Arbib,
19951, corresponding to Figure 4. When the barrier
in front of the prey is wide and high enough, the

agent (in this case the toad) will advance directly

into the barrier in an attempt to catch the prey.

After many trials learning takes place and the agent

is able to detour directly around the barrier.

cccg\ccpcucccu

Figure 6. Left: Toad advances directly to middle
of barrier, trying repeatedly to go through one of
the gaps between adjacent posts. This continues
until the toad reaches the edge of the barrier
from where it advances directly to the prey.
Right: After learning, toad advances to barrier's
edge, avoiding hitting the barrier, and thus,
successfully completing the detour behavior.

2.3 Sechemas

Schemas are the primitive entities for modeling
behaviors in autonomous robotic agents. In order to
support complex adaptive behaviors, schemas define
a hierarchical distributed model for action-
perception control, where each schema incorporates
its own structure and control mechanisms. Such a



schema model is supported by MissionLab, with
particular emphasis on autonomous robotic agents
(virtual or real), and the more general Abstract
Schema Language(ASL). ASL provides a
multithreading distributed architecture for the
execution of a large number of schemas described
via compiled code, an interactive shell console and
visualization tools [ Calderas and Marmol, 19961. In
particular, ASL incorporates thility to integrate
with neural networks processing through its
integration to the Neural Simulation Language
NSL. Both
correspond more to a specification language rather
than to an explicit programming language. At the
higher abstraction levels, the detailed schema
implementation is left unspecified, only specifying
what is to be achieved. At a lower level, schema are
implemented, where different implementations may
correspond to a single schema, in particular neural
networks The schemacomputational model is
shown in Figure 7.
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Figure 7. Schema hierarchical computational model.

At the top, a high level schema is shown decomposed
into two lower level schemas. This hierarchical
modeling is the basis for composition, known as
schema aggregates, or assemblages. When at the
same level, schemas are interconnected (solid
arrows), or when at different levels, have their task
delegated (dashed arrows). Schema interface consists
of multiple unidirectional control/data, input and
output ports, and a body where schema behavior is
specified. Communication is in the form of

asynchronous message passing, hierarchically
managed, internally, through anonymous port
reading and writing, and externally, through

dynamic port connections and relabelings. When

in MissionLab and ASL, schemas

methodology enables the development of distributed
architectures where schemas may be designed and
implemented independently and without prior
knowledge of the complete model or their final
execution environment, encouraging component
reusability. This approach supports both top-down
and bottom-up system design.
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Figure 8. Schema model hierarchy for the toad's
prey acquisition and predator avoidance
behaviors.

Figure 8 shows the schema model hierarchy
corresponding to the toad's prey acquisitions and
prey avoidance model [ Cobas and Arbib, 19921. The
highest level, schema level 1, describes the different
behaviors being modeled, prey approach and
predator avoid, and the perceptual and motor
schemas, in this case, visual input and four types of
motor action: forward, orient, snap and duck .. Tasks
at this level are delegated to the next level down,
schema level 2, where schemas perform more refined
tasks. In this model, both the prey approach and the
predator avoid schemas, delegate their tasks to a
schema assemblage composed of a prey/predator
Tecognizer, a prey/predator selector, depth and
heading translators and maps. Next level down, the
different neural networks implement the neural
tasks by means of neural processing. Schemas
delegating to neural processes are known as neural
schemas. In particular the neural schemas in this
model are implemented by a Fetina [Teeters and

Arbib, 19911, 7Tbctum [Cervantes at al 1985],
Maximum Selector [Didday, 19761, and Cue
Interaction [House, 1989] neural model.

Schema  model complexity depends most

importantly on the intrinsic complexity of the

doing connections, output ports from one schemaystem being model. This complexity can be

are connected to input ports from other schema

and when doing relabelings, ports of similar type
from schemas at different levels are linked to each
other. The hierarchical port management

managed by modularizing the model into as many
schemas and abstraction levels as desired. The key
challenge for the modeler is to be able at all times to

comprehend the complete model and its detailed



components by being able to interact with them as a
group as well as individually. The following set of
figures is an example of the inherent complexity of
some of these models. The model described in Figure
9 describes the highest schema level corresponding to
the control of saccades in primate oculomotor
behavior [Dominey and Arbib, 19921.
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Figure 9. Schemas corresponding to multiple
brain regions involved in sequential saccade
generation: retina, brain stem, visual cortex,
posterior parietal cortex, front eye fields,
superior culliculus, medial thalamus, and basal

ganglia.

Figure 10 describes more detailed schemas for the
brain stem saccade generator.
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Figure 10. Schemas corresponding to brain stem

saccade generator one level down: motor schemas

forleft, right, up and down eye movements, long

lead burst neurons (1lbn), frontal eye field gates
(fef switch gate), and tonic neurons (eye tn)
to generate actual eye movement.

Figure 11 describes more detailed schemas

corresponding to the motor schema belonging to the

brain stem saccade generator, two levels down from

the top schema level. Figure 12 describes schemas

corresponding to the motor schema i#rig pause
belonging to the brain stem saccade generator, three

levels down from the top schema level.
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Figure 11. Schemas corresponding to each motor
belonging to the brain stem saccade generator:
excitatory burst neuron (ebn), motor lead burst
neuron (mlbn), and a pause trigger
(trig_pause). This diagram is two levels down
from the top level.
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Figure 12. Schemas corresponding to pause
trigger (trig pause) in motor schema. This
diagram is three levels down from the top level.
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Figure 13. Schemas corresponding to brain stem
saccade generator tonic neurons (eye tn), two
levels down from main schema level.

Figure 13 describes more detailed schemas
corresponding to the tonic neuron schemas
belonging to the brain stem saccade generator, three
levels down from the top schema level. Figure 14
describes the main tonic neuron ( tn__ main) schemas,
four levels down from the top schema level.



ebnl ebn2 f‘efsac
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Figure 15 describes more detailed schemas
corresponding to the front eye field schema, while
Figure 16 describes more detailed schemas
corresponding to the superior culliculus. complex

Pp(44) PPV thmem Figure 17. Neural schema hierarchy showing

fef 1x1 S 9x9 task delegation to neural networks processing,

simple

fefvis

At this level, neural networks are composed of

interconnected neuron, each of which corresponds to
fefon fefmem a simple processing unit, having many inputs and a
single output, as shown in Figure 18.
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Figure 15. Schemas corresponding to front eye | | |
field (fef), one level down from main level. |

snrsac fefsac fon retina ppqv saccademask input Reon outpt
9x9 9x9 9x9| 9x9 9x9 9x9 TFigure 18. Simple neural element as basic
component at the neural network level.
An example of a neural network is shown in Figure
seeac sesup scav 19, corresponding to the maximum selector network
l l [Didday, 19761.
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Figure 16. Schemas corresponding to the
superior culliculus (sc), one level down from
main schema level.
. . Figure 19 The neural network shown
The previous diagrams are an example of some of

corresponds to the architecture of the Maximum
the intrinsic complexity in schema modeling. The

Selector model, where #; and v represent neural
actual model for the control of saccades in primates membrane potentials, U5 and V represent neural
15 more complex. Cpmplex1ty 18 muc_h more firing rates, Sj represent inputs to the network,
significant when considering more behaviors and and w; represent connection weights.
other brain regions [ Arbib, et al, 1998]. !



A more complex neural network is shown in Figure
20, corresponding to the cue interaction model
[House, 1989].
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Figure 20. Neural Network for cue interaction
model, layers S and M represent the disparity
effects from binocular vision, and layers
represent the accommodation effects from
monocular vision.

The Neural Schema Language (NSL) provides the
linkage to ASL by enabling the integration of
neural networks processing. Models in NSL are
described via a compiled language, where graphics
displays and a scripting language provide the
interfacing mechanisms between the model and the
user. Two implementations of the system currently
exist: NSLC in C++ and NSLJ in Java, where a
major current thrust is to provide a library of
models for direct simulation from the web
[Weitzenfeld et al, 1998al.

2.5 Neurons

The neural schema model not only enables the
incorporation of neural networks processing, but
also provides an extended model where neurons
themselves may have their task delegated by neural
implementations of different levels of detail, from
the very simple neuron models to the very complex
ones [ Weitzenfeld and Arbib, 19911.

Neuron models vary in their detail, depending of the
particular mechanism simulated. At the highest
level a neuron is a single cell with a very simple
behavior, described , for example by the leaky
integrator model [ Arbib, 19891, composed of a soma
(nucleus of the neuron), an axon (output of the
neuron), and dendrites (input to the neuron).
Connections between neurons take place through
synapses from the axon of one neuron to the
dendrites of another neuron. Synapses are the main
mechanism for plasticity in neuron, and can be
further refined into much more detail, as shown in
Figure 21.
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Figure 21. Neural modeling at different levels of
details.

A number of models are used depending of the
mechanisms simulated, such as the compartmental
model, where a single axon is divided in
compartments [Rall, 19591, and the ion kinetics
model, where chemical concentration responsible for
electric current is simulated [Hodgkin and Huxley
19521.

Figure 22 shows a detail neural model for the
study of presynaptic inhibition in the selective
control of neural pathways [Rodriguez, 19981.
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Figure 22. Detailed neural model of presynaptic
inhibition for the control of neural pathways.

3 Simulation

Interpreting the output of complex models
generating vast amounts of data requires appropriate
visualization techniques applied to the different
modeling levels and across levels.

3.1 Behavior

An autonomous 7robotic agent, simulated or
embodied, senses its external environment and its
internal state in order to produce behavior. While
sensor input and motor output can be seen as data
detail, appropriate behavior is analyzed by



visualizing the animated agent's interaction with its
virtual environment or the real robot when in the
real world. Two dimension worlds are designed for
simpler models, and three dimensions for the more
complex ones. Simple output from the prey
acquisition with detour model [ Corbacho and Arbib,
19951 is shown in Figure 23 as seen from
MissionLab's console.

SPg
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Figure 23. Missionlab console view of agent
response to detour behavior.

One particular visualization technique for
navigation paths is be means of vector fields
describing attraction and repulsion between agents
[Arkin, 19891.

3.2 Schemas

At the behavior level, perception and action define
external interaction. In trying to understand why an
agent behaved in a particular a manner,
corresponding schema behavior has to be analyzed.
Since schemas are recursive, input and output data
analysis is required for each schema in a recursive
fashion, together with data passed between
connected schemas at the same level or between
delegated schemas at different levels.
Synchronization plays a key role in concurrent and
distributed environments, affecting also
visualization of data produced under different time
constraints and granularities.
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Figure 24. ASL's view of saccade's thalamus
schema, with linkage between schema levels.
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Figure 24 shows ASL's view of schema
internals, taken from the saccade model [ Dominey
and Arbib, 19921.

Figure 25 shows MissionlLab's view of schema
network, taken from the prey acquisition with
detour model [ Corbacho and Arbib, 19951.
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Figure 25. MissionLab's view of schema
network for prey acquisition with detour model.
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3.3 Neural Networks

At the neural network level, visualization takes the
form of temporal and spatial graphs of various
dimensions and forms, corresponding to neural
input, output (firings) and membrane potentials.
Time intervals play a major issue across multiple
neural networks.

Figure 26 shows spatial and temporal output
from the maximum selector model [ Didday, 19761.
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Figure 26. NSL spatial and temporal displays
from maximum selector model.

Figure 27 shows two dimensional and three
dimensional spatial output from the prey
acquisition with detour model [ Corbacho and Arbib,
19951.



Figure 27. NSL two and three dimensional
spatial displays from prey acquisition with
detour model.

3.4 Neurons

At the detailed neural level, anatomical and
electrical responses are the main visualization
concern. Visualization takes the form of temporal
graphs displaying electrical parameters, such as
voltage and ionic concentrations. Time intervals are
even finer.

Figure 28 shows sample temporal outputs taken
from the presynaptic inhibition model for the
selective control of neural pathways [Rodriguez,
19981.

T genesis =l genesis

visualize and control more aspects of a simulated
environment at once. Furthermore, a virtual reality
approach would provide a way for the modeler to
take part in the actual experiment by virtually
interacting with all other virtual autonomous
Tobotic agents in the simulated world.
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4 Discussion

The work presented here shows the intrinsic
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