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Abstract— Leveraging both the autonomy of robots and the
expert knowledge of humans can enable a multi-robot system
to complete missions in challenging environments with a high
degree of adaptivity and robustness. This paper proposes a
multi-modal task-based graphical user interface for controlling
a heterogeneous multi-robot team. The core of the interface is
an integrated multi-robot task allocation system to allow the
user to encode his/her intents to guide the heterogeneous multi-
robot team. The design of the interface aims to provide the
human operator continuous situational awareness and effective
control for rapid decision-making in time-critical missions.
Team CSIRO Data61 came in second place utilizing this
interface for the DARPA Subterranean (SubT) Challenge. The
ideas used for this user interface can apply to other multi-robot
applications.

I. INTRODUCTION

Heterogeneous multi-robot systems have drawn more at-
tention in recent years because of the unique capabilities in a
wide range of applications including exploration, search and
rescue, and hazardous area inspection, especially for envi-
ronments that are too dangerous or inaccessible to humans.
DARPA’s Subterranean Challenge (SubT) [1] was a multi-
year international challenge that aimed to encourage the
development of multi-robot systems deployed in unknown
underground environments. In SubT, a team of robots, super-
vised by a single human operator at a remote work station,
needed to navigate and locate artifacts (e.g., helmets, tools
and backpacks) in an unknown and unstructured underground
environment. These environments are challenging for robots
because of the unreliable communication, lack of GPS for
localization and difficult terrain. The goal of SubT was
to promote research on robots in an underground environ-
ment for time-critical missions (e.g., search and rescue).
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Team CSIRO Data61, composed of Emesent, Georgia Tech
and CSIRO, deployed a heterogeneous multi-robot team
including tracked robots, legged robots, and UAVs for the
challenge. Due to the nature of underground environments,
robots with a high level of autonomy can operate with limited
or even no human intervention, providing unique capabilities.
The overall approach of Team CSIRO Data61 in phase 1
(the Tunnel Circuit in August 2019) and phase 2 (the Urban
Circuit in February 2020) is detailed in [2].

Compared with fully autonomous systems, semi-
autonomous systems can take advantage of human expert
knowledge and contextual decision-making to achieve
better robustness and adaptivity. An unintuitive and poorly-
designed user interface could make the operator misinterpret
the situation and provide incorrect instructions to robots,
which would lead to mission failures. As a result, it
is critical to develop a user interface that can provide
continuous situational awareness and effective control
of multi-robot systems. To achieve this goal, we have
developed a multi-modal user interface for controlling a
heterogeneous multi-robot system. The interface provides
various levels of control options from task assignment
between robots to teleoperation. The operator can switch to
different control options seamlessly if needed. Task-based
control is the default mode of control. In task-based control,
robots are coordinated using multi-robot task allocation
(MRTA), where robots can acquire available tasks based
on their heterogeneous capabilities and execute them
automatically. Moreover, it avoids continuous control from
the operator, which reduces operator workload and allows
better decision-making. As a result, we developed the user
interface specifically for task-based control. In task-based
control, the interface displays tasks as pin markers and
robot models in a 3D map. The operator can interact with
these makers directly for intuitive control. Combined with
audio messages about robot states, the interface can provide
a clear overview of the current state of the environment and
robots continuously.

This multi-modal graphical user interface has been used
and tested in complex real-world environments. Team CSIRO
Data61 used this interface for SubT in multiple underground
environments including caves, tunnels and urban under-
ground. Team CSIRO Data61 achieved second place in the
final event and demonstrated the effectiveness of the user
interface. This interface can also be applied in various multi-
robot applications including exploration and reconnaissance.



Fig. 1: An overview of the task-based user interface, which includes an executive panel on the left and a map-based interface
on the right. The map is generated using local navigation data and SLAM data. The map shown is composed of a point
cloud map and a traversability map. The operator can use the executive panel to generate tasks and priority-regions, which
are shown on the map as pin markers and large gray shapes with markers on top respectively. Green colored markers are the
executing tasks and red colored ones are the unassigned tasks. Robots are highlighted by the green hexagons and connected
to their executing tasks (green colored markers). The area in the traversability map highlighted by purple spheres are the
prioritized by graph-based priority-region (the large gray sphere, labeled Task:r1/2).

II. BACKGROUND

Multi-robot task allocation (MRTA) is a critical part
of multi-robot coordination to improve the overall system
performance. In multi-robot task allocation, each robot is
assigned to a subset of tasks for efficient task execution.
For SubT, Team CSIRO Data61 developed a decentralized
task allocation framework for multi-robot coordination us-
ing consensus-based decentralized auctions [3]. Since it is
difficult for multi-robot teams to operate fully autonomously
in real-world environments, incorporating human knowledge
and supervision can improve the robustness and performance
of the overall system [4], [5]. The task allocation framework
offers specific ways to inject human knowledge, which will
be covered in the following section.

Human multi-robot interaction and interfaces are the key
part of human supervised multi-robot teams. However, con-
trolling multiple robots simultaneously is challenging for the
human operator due to the high workload [6] and context
switching [7]. Researchers have developed various graphical
user interfaces for different scenarios from hazardous envi-
ronment intervention [8] to search and rescue [9]. In addition
to conventional graphical user interfaces, various alternative
interaction approaches have been proposed including gesture-
based control [10], dialogue-based control [11], multi-figure
touch [12] and virtual reality (VR) [13], [14]. VR can be an
alternative to conventional graphical user interfaces since it

helps increase users’ situational awareness. However, context
switching between different robots with various levels of
control can cause disorientation, which makes it unsuitable
for this application.

III. INTERFACE DESIGN

As mentioned above, SubT requires each team to deploy
a team of robots supervised by a single human operator
to locate as many artifacts (e.g., survivors, helmets, tools
and backpacks) as possible within a time limit to mimic
time-critical missions. During missions, the operator needs to
make critical decisions in a timely manner. It is crucial for the
user interface to provide both continuous situational aware-
ness and effective control of a heterogeneous multi-robot
team. As a result, we design the user interface to be able
to provide a clear overview of the current progress including
robot state, available tasks and the map of the environment,
and allow the operator to inject human knowledge to guide
the multi-robot team for successful mission completion.

To avoid continuous low-level control of each robot (which
is impractical in a communication-constrained environment
and inefficient for multi-robot systems), robots need to have
a high-level of autonomy for coordination. Based on the HRI
level framework from [15], our graphical user interface (Fig.
1) provides options from supervisor level for multi-robot
coordination control to mechanical level for teleoperation as
a backup option for a higher degree of robustness. There



are two modes of interaction at the supervisor level: task
mode and command mode. Task mode as the default mode
of operation formulates multi-robot coordination as a multi-
robot task allocation (MRTA) problem, where the mission is
automatically decomposed to tasks for robots to complete,
and the operator (optionally) manages robots by influencing
the task allocation process. The command mode allows the
operator to create and send a list of commands to a selected
robot to follow. The overall system is ROS-based; RVIZ and
QT libraries are used to implement the interface.

Fig. 2: The state transition diagram of a task. The task can be
controlled by the autonomous robot actions (brown circles)
and manual operator override actions (blue circles). For the
assign action, the operator can assign the task to a robot even
it is already assigned to another robot or it is executing.

The heterogeneous multi-robot team of CSIRO Data61
includes three types of robots: tracked robots (BIA5 Ozbot
All-Terrain Robots or ATRs) which can carry and deploy
communication nodes to build a mesh communication net-
work; legged robots (Boston Dynamic Spots) which can nav-
igate through challenging terrain and narrow cave corridors;
and drones (Emesent Hovermaps) which can search areas
inaccessible for ground robots.

In task allocation, a decentralized market-based approach
was implemented. Based on the Consensus-Based Bundle
Algorithm (CBBA) [3], robots use a consensus procedure
to perform decentralized auctions of tasks and maintain a
consistent task set. For unassigned tasks, robots submit bids
based on their task execution cost, time-discounted reward
and failure history. Bids from any robot are broadcast to
connected agents, and each robot performs the same auction
logic internally to determine the winner. As long as robots
are communicating, they will form a consensus on who owns
which tasks. This enables the task allocation to continue
even when a subset of robots is disconnected from the
communication network. While these disconnected groups
may create conflicting assignments (e.g., two different agents
own the same task), when communication is re-established
the consensus rules will resolve the conflict (e.g., the agent
with the lower bid drops the task). During the task allocation
process, robots continuously bid on tasks and add them

to their task bundle, which is an ordered list of tasks to
complete. These tasks are generated by both the robots
autonomously and the operator. Fig. 2 shows how robots
change the state of a task to achieve effective coordination.
Four types of tasks were used in SubT, where two of them
can only be created by the operator:

• Explore task: perform frontier exploration.
• Sync task: perform data sync between robots and the

base station.
• Drop node task (manually generated): drop a commu-

nication node for expanded communication coverage.
• Goto task (manually generated): drive to an assigned

location.
The bid on a task is comprised of both a reward that

represents the utility of the given robot executing the task,
and a priority level. A higher priority is equivalent to an
infinitely higher reward, and higher priority tasks will always
be executed first. Priority levels offer a useful lever for
operators, as estimating accurate rewards can be laborious
even offline. Rather than adjusting rewards on the fly, the
operator can change the priority level to ensure that certain
tasks are completed first or last.

The operator’s base station runs a modified version of the
task allocation process using the same consensus protocol to
maintain a consistent task set with the robots in the team, and
forward bids between agents. The task allocator in the base
station can relay task information including task status, task
location and task type. Moreover, the operator can interact
with the task allocators of robots via the task allocator in
the base station to update the task set (create new tasks,
change the status of existing tasks, and adjust priorities of
tasks), and these changes are then broadcast to the robots.
However, since the base station cannot execute tasks like
robots, its task allocator will not bid on the tasks itself.

Fig. 1 shows an overview of the graphical user interface
that includes a map-based interface and the executive panel.
The map-based interface provides an intuitive visualization
of tasks and robots within a representation of the world,
allowing the operator to see their location and other state
information at a glance. The map is generated using SLAM
and navigation data in real-time during missions. The ex-
ecutive panel contains four main parts: the robot selection
subpanel, mission subpanel, task subpanel, and a robot state
table. Since task mode is the default mode of operation,
the human operator primarily uses the task subpanel. The
robot selection subpanel is used to select the corresponding
robot(s) for the action the human operator wants to perform.
The mission subpanel is for setting the time threshold for
operating out of communications, and a final mission curfew
time, to control when robots will generate a sync task and
bring data back to the base station. This feature enables the
operator to balance between deep exploration and updating
the base station, as the mission requires. The task subpanel
is for creating tasks and prioritization regions. Prioritization
regions can change the priority of multiple tasks. The robot
state table is to show the current state of robots.

With tasks shown in a 3D map as pin markers, the



operator can control task allocation at both a single-task level
interacting with task markers in the 3D map and a region
(multi-task) level using prioritization regions to modify the
priorities of included tasks. The flow of control on a task is
shown in Fig. 3. For creating a new task, the operator selects
the task type from the task subpanel and its location in the 3D
map. For controlling an existing task, the operator needs to
select an operation in the context menu of the corresponding
task marker. The control flow at the region (multi-task) level
has a similar structure without setting the task type, instead,
the operator needs to set the region type and priority.

Fig. 3: The task-based control flow at a single-task level.
The blue nodes are the actions and decisions made by the
operator, while the green nodes are the actions executed by
the base station and the robots automatically. Each operator
action is shown with the corresponding part of the GUI. To
create a new task, the operator first selects the task type from
the task subpanel (a). Then, the operator will choose the task
location in the 3D map using the pre-task marker. The pre-
task marker (b) previews the task location and the task type
before sending the task to the robots. To act on a task, the
operator will use the context menu of the corresponding task
marker (c). The control flow at a region (multi-task) level has
a similar structure without setting the task type.

A. Situation Awareness Enhancement

One of the main goals of this multi-modal graphical user
interface is to provide the operator with continuous situation
awareness about the mission progress and the environment.
Compared to a camera-based user interface, a map-based user
interface requires a lower operator workload on multi-robot
navigation tasks [16]. Furthermore, since the use of models
and markers has been shown to be effective for providing
the operator perception and comprehension of important
information of the environment [17], [18], the interface

adapts a map-based approach, where the 3D map of the
environment shows locations and state information through
task markers and robot models. The 3D map is generated and
updated continuously using SLAM data and navigation data
from robots. Each task marker is an interactive marker and
represents a task, where the color of the marker indicates
the state of the task and the text above the marker shows
the name of the task. The name of the task contains the
information about task type, task creator, and task ID. For in-
stance, EXPLORE(r1/1/10) indicates this is an exploration
task represented by task type equals to 1, and it is created
by the robot r1 with the task ID of 10. Left-clicking a task
marker shows additional information including its assigned
robot, its bid value and its priority as shown in Fig. 5a. Blue
line segments are used to connect tasks in a robot’s task
bundle to indicate their execution order (Fig 1). In the case
of only one task in the robot’s task bundle, there will be a
single blue line segment connecting the robot to its executing
task. In the case of multiple tasks in the robot’s task bundle,
there will be a path containing multiple blue line segments
to connect the robot model and its bundle’s tasks (executing
task and assigned tasks) in execution order. This map-based
interface allows the operator to have a clear overview of
the multi-robot team’s current progress in a complex and
partially unknown environment.

The robot state table in the executive panel shows the
current state of each robot through four columns: elapsed
indicates time passed since the last message received by
the base station, E-stop indicates if the emergency stop is
activated; status represents the current action the robot is
performing; and error contains additional information if the
robot encounters errors. Cells in each table will be filled
with various colors to reflect the state, where green signifies
a normal state, yellow signifies a warning state, and red
signifies an error state. As a result, the operator can have
a good understanding of the robot state at a glance.

Since the multi-modal user interface can improve human
operator concurrent task processing efficiency by leveraging
multi-channel communication [19], the multi-modal interface
will send an audio message when the robot is in a warning
or error state. This reminds the operator to switch back to
supervise the multi-robot team from artifact identification.
Since the audio message contains information about which
robot is in a warning or error state, it also helps the operator
to examine the robot needing attention when focusing on a
different robot.

These features aid the operator’s understanding about
the current state of tasks and robots in the environment
intuitively without the need of context switching between
robots as recommended by the guidelines in [18] on creating
an at-a-glance display and using multi-modal alert techniques
to maintain situational awareness.

B. Injecting Operator Knowledge

Along with providing good situation awareness, another
goal of the graphical user interface is to allow the operator
to inject his/her knowledge conveniently during the mission



for effective control. To do so, the operator can use the
interface to manipulate tasks at both the single-task level
and the region level to influence task allocation and guide
the multi-robot team.

(a) Task tab (b) Priority tab

Fig. 4: The task subpanel of the executive panel contains a
task tab for create tasks and a priority tab for creating the
prioritization regions

Robots automatically generate tasks during a mission,
and the operator can also generate tasks using the task
tab (Fig. 4a). These manually created tasks have a higher
priority by default. To control single tasks, other than left-
clicking it for additional information (Fig. 5a), the operator
can create/cancel/assign/unassign a task directly using the
context menu of the corresponding interactive task marker
by right-clicking it (Fig. 5b). These actions will change the
state of a task during the task allocation process as shown
in Fig. 2. Before the introduction of interactive markers, an
operator needed to rely on the task table in the executive
panel to find the corresponding task from the map and control
it using the buttons in the task tab. This improvement makes
single-task level control more intuitive and streamlines the
control process.

(a) Left-clicking (b) Right-clicking

Fig. 5: To interact with the task marker, left-clicking shows
additional information while right-clicking allows task-level
operations.

The operator can create prioritization regions using the
priority tab of the task subpanel (Fig. 4b) to change the
priorities of multiple tasks. These regions can be specified
for a specific type of task or a specific subset of robots using
the agent selection subpanel. This method can attract robots

(a) Geometric (b) Graph-based

Fig. 6: The two types of prioritization regions: geometric
prioritization regions and graph-based prioritization regions.
Geometric prioritization regions modify the priorities of
tasks within its geometric shape, whereas graph-based pri-
oritization regions modify the priorities of tasks near the
highlighted topometric graph vertices.

to execute tasks in an area the operator believes is important
by setting a high-prioritization region, or repel robots from
executing tasks in an unimportant or dangerous area using
a low-prioritization region. There are two types of priori-
tization regions. One of them is a geometric prioritization
region (Fig. 6a), represented either as a cube or half-plane
to specify an exact volume or infinite boundary respectively.
These modify the priority of tasks within the region. The
other type is a graph-based prioritization region (Fig. 6b)
represented as a sphere region. It modifies the priorities
of tasks that are inside or downstream of the prioritization
region in the topometric graph commencing from the origin
(the location of the base station in SubT). The topometric
graph is a coarse representation of traversability through the
world used for planning, and is generated by combining
local navigation data and SLAM data sequentially. Fig. 6b
highlights the vertices of the topometric graph impacted
by the prioritization region, where tasks located near these
vertices will be prioritized.

These two types of prioritization regions are suitable for
different scenarios. Geometric prioritization regions are more
suitable for known environments. The operator can create a
geometric prioritization region over an important/dangerous
area so that robots will prioritize/deprioritize tasks within the
region. Alternatively, graph-based prioritization regions are
more suitable for partially unknown environments. Robots
prioritize both the tasks within the graph-based prioritization
region and tasks downstream of the region deeper into the
environment. This is particularly useful for exploration in
complex environments like tunnels. A graph-based prioriti-
zation will continue to guide robots deep into the unknown
environment for exploration.

IV. RESULTS

The user interface has been tested in various challenging
environments and demonstrated its advantages in maintaining
situational awareness and high-level control to aid the human
operator for rapid decision-making. Team CSIRO Data61



achieved second place in the Systems Track using this
interface.

Fig. 7: The heterogeneous multi-robot team of Team CSIRO
Data61 for the DARPA Subterranean Challenge Final Event:
two BIA5 OzBot ATRs (tracked robots), two Boston Dy-
namics Spots (legged robots) and two Emesent Hovermap
drones.

Robot Autonomous Guided Control Direct Control
Rat-r1 (ATR) 65.84% 4.13% 30.03%
Bear-r3 (ATR) 12.46% 15.53% 72.01%
Bluey-r2 (Spot) 14.11% 72.76% 13.13%
Bingo-r5(Spot) 10.50% 72.94% 16.56%

TABLE I: The distributions of various levels of controls
(autonomous, guided control, direct control) in runtime for
each ground robot during the final runs. At the autonomous
level, the robot was executing default tasks autonomously
without any human interventions. A robot under guide con-
trol indicates it was executing tasks guided by the operator
via task-based control (manual tasks and prioritized tasks).
A robot under direct control indicates it was executing
commands from the operator or being teleoperated.

A. DARPA Subterranean Challenge Finals

The DARPA Subterranean Challenge Final Event was
hosted in the Louisville Mega Cavern. The underground
environments include tunnels, urban settings, and caves
which are challenging due to tough terrain and limited
communication. Each system track team needed to deploy
its multi-robot team supervised by a single human operator
to locate and identify artifacts correctly with a 60-minute
time limit. Team CSIRO Data61 used a heterogeneous multi-
robot team (Fig. 7) including two BIA5 OzBot ATRs (tracked
vehicles named Bear and Rat), two Boston Dynamics Spots
(legged vehicles named Bingo and Bluey), and two Emesent
Hovermap drones. Only the ground robots (ATRs and Spots)
were controlled by the task-based approach, while the drones
were launched by operator commands and independently
explored afterwards.

Fig. 8 contains the timetable of each ground robot in
the SubT final run, respectively. Each timetable illustrates
the robot’s current operation at each time step. During the
final event, Bluey and Bingo (Spots) entered the environment
first. To avoid Bluey (Spot) entering the dangerous area

Fig. 8: The activities of each ground robot during the final
run. Prioritized tasks were the tasks modified by prioritiza-
tion regions; manual tasks were the tasks manually assigned
to the robot by the operator, default tasks were the tasks with
unchanged priorities. Note that Rat failed to operate after 40
minutes and Bingo failed to operate after 20 minutes due to
inability to recover from falls.

(like the railway tunnel where it had tripped in preliminary
runs), it was controlled by the operator using waypoint
commands periodically in the beginning. Then, both robots
autonomously executed prioritized tasks in prioritization
regions or tasks assigned to the robot by the operator,
autonomously exploring distant parts of the course before
falling outside the communication range. Rat (ATR) was
mainly executing tasks autonomously until hardware failures.
Bear (ATR) was controlled using waypoint commands after
the communication with Bingo was lost around 20 minutes
in. Since Bluey also lost communication later in the run,
the operator used waypoint commands to guide Bear to act
as a mobile relay point to attempt to regain communication
with Bingo and Bluey while dropping communication nodes
to maintain communication with the base station. Table I
summarizes the distributions of how robots operated under
various levels of control. These results shows that our inter-
face provided the operator a clear overview of the situation
to allow robots to run with a high level of autonomy, and
enabled effective high-level control to guide the multi-robot
team in a complex and challenging environment.



The graph-based prioritization region has proven to be a
powerful tool for the operator to guide robots in a high-level
interface. Since graph-based prioritization regions not only
change the priorities of tasks within the regions, but also
the tasks extended from the region based on the topometric
graph, this makes it suitable for exploration where the bound-
aries are unknown. Fig. 9 provides a scenario showing how
the operator used graph-based prioritization regions to guide
the exploration of Bear (r3) to the area on the right, since
the operator speculated that there was a large unexplored
area. To do so, he created a low-prioritization region on
the left to deprioritize exploration tasks that were extended
to the left and a high-prioritization region on the right to
prioritize exploration tasks that were extended to the right.
As a result, task EXPLORE(r3/1/130) was deprioritized
and task EXPLORE(r3/1/110) and EXPLORE(r3/1/111)
were prioritized. Bear (r3) executed EXPLORE(r3/1/111)
to keep exploring the area on the right. Later, Bear (r3)
found a large cave area, which confirmed the operator’s
speculations. These results demonstrate that prioritization
regions and interactive markers are effective for an operator
to provide high-level control on the multi-robot team.

Fig. 9: A partial snapshot of the interface on how the operator
created two graph-based prioritization regions to guide the
exploration of Bear (r3) during the SubT Final Event. The
operator created a low-prioritization region on the left and
a high-prioritization region on the right so that exploration
tasks on the right were prioritized.

B. Operator Feedback

After the DARPA Subterranean Challenge Final Event, the
operator provided insightful feedback regarding the interface.
Overall, the operator thought the interface was effective and
did not feel limited when interacting with the robot at a high
level. Specific feedback included:

• Because of the nature of the graph-based prioritization
regions, they were effective for multi-robot exploration
in an unknown environment of the SubT final event.

• The audio can convey precise information about which
robot and whether it was a warning or an error, so that
the operator can have a clear idea of the situation. More
interestingly, since the previous missed message played
when robots reconnected to the base station, the operator

used audio cues as alerts for regaining communications,
which turned out to be beneficial.

• The task interactive markers in the 3D map allowed
direct control while providing full awareness about the
states and locations of tasks.

V. DISCUSSION

The design of user interface has evolved as our team
learned more throughout the DARPA Subterranean (SubT)
Challenge. In the earlier events (tunnel circuit in 2019),
the control of the multi-robot team relied on waypoint
command and teleoperation. However, this approach was
challenging for the operator to maintain full situational
awareness, especially when the environment was complex
and the number of robots increased. In the following event
(urban circuit in 2020), robots maintained a high level of
autonomy during exploration without operator interventions.
However, we learned that the human operator could provide
useful instructions (e.g., interesting regions to explore) and
low-level control in unexpected situations. As a result, we
designed our multi-modal user interface to contain various
levels of control from high-level guidance (default mode) to
low-level teleoperation for different situations.

VI. FURTHER IMPROVEMENTS

The multi-modal task-based graphical user interface has
demonstrated its effectiveness on allowing an operator to
control a multi-robot team in an unknown environment for
time-sensitive missions. However, several areas of the inter-
face could be further improved. First, the interface could have
an optional high-detail task overlay to display information
regarding why a task is selected or not: whether it causes
conflict between robots; whether it is affected by any prioriti-
zation regions, and whether it is manually assigned by the op-
erator. This overlay could explain task selections of robots, so
the operator does not need to speculate why selections were
made during the run. Second, the interface needs to have an
explicit audio cue when a robot loses/regains communication.
This has been shown to be critical for situational awareness
in a communication-constrained environment. Third, since
the operator sometimes fails to make the prioritization re-
gion fully cover the region he/she is interested in, robots
may select tasks unintended by the operator. Therefore, the
interface needs to have a more intuitive way of drawing 3D
prioritization regions that can fully cover the regions and be
able to adjust the prioritization regions after sending them to
the robot.

VII. CONCLUSION

In this paper, we have presented a multi-modal task-based
graphical user interface for controlling a multi-robot team
in an unknown environment. The interface leverages audio
cues and a map-based interface with task markers to provide
the human operator with continuous situational awareness.
Moreover, interactive task markers and prioritization regions
provide the human operator with effective high-level control
at both the single-task level and region (multi-task) level.



Team CSIRO Data61 has used the interface to prioritize re-
gions for different robots for more efficient artifact searching
in the DARPA SubT Challenge Final event and achieved
second place, which shows the interface can aid the human
operator on rapid decision-making effectively in time-critical
scenarios. The designs of this interface can also extend to a
wide-range of multi-robot applications.
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