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Abstract— This paper introduces a novel approach to rep-
resenting and learning tool affordances by a robot. The tool
representation described here uses a behavior-based approach
to ground the tool affordances in the behavioral repertoire of
the robot. The representation is learned during a behavioral
babbling stage in which the robot randomly chooses different
exploratory behaviors, applies them to the tool, and observes
their effects on environmental objects. The paper shows how
the autonomously learned affordance representation can be
used to solve tool-using tasks by dynamically sequencing the
exploratory behaviors based on their expected outcomes. The
quality of the learned representation was tested on extension-
of-reach tool-using tasks.

Index Terms— Behavior-based robotics, tool affordances,
learning of affordances, autonomous tool use.

I. INTRODUCTION

The ability to use tools is one of the hallmarks of
intelligence. Tool use is fundamental to human life and
has been for at least the last two million years. We use
tools to extend our reach, to amplify our physical strength,
to transfer objects and liquids, and to achieve many other
everyday tasks. A large number of animals have also been
observed to use tools [1]. Some birds, for example, use
twigs or cactus pines to probe for larvae in crevices which
they cannot reach with their beaks. Sea otters use stones
to open hard-shelled mussels. Chimpanzees use stones to
crack nuts open and sticks to reach food, dig holes, or
attack predators. Orangutans fish for termites with twigs
and grass blades. Horses and elephants use sticks to scratch
their bodies. These examples suggest that the ability to use
tools is an adaptation mechanism used by many organisms
to overcome the limitations imposed on them by their
anatomy.

Despite the widespread use of tools in the animal world,
however, studies of autonomous robotic tool use are still
rare. There are industrial robots that use tools for tasks such
as welding, cutting, and painting, but these operations are
carefully scripted by a human programmer. Robot hardware
capabilities, however, continue to increase at a remarkable
rate. Humanoid robots such as Honda’s Asimo, Sony’s
Qrio, and NASA’s Robonaut feature motor capabilities
similar to those of humans. In the near future similar robots
will be working side by side with humans in homes, offices,
hospitals, and in outer space. It is difficult to imagine how
these robots that will look like us, act like us, and live
in the same physical environment like us, will be very

useful if they are not capable of something so innate to
human culture as the ability to use tools. Because of their
humanoid “anatomy” these robots undoubtedly will have
to use external objects in a variety of tasks, for instance, to
improve their reach or to increase their physical strength.
These important problems, however, have not been well
addressed by the robotics community.

Another motivation for studying robot tool behaviors is
the hope that robotics can play a major role in answering
some of the fundamental questions about tool-using abil-
ities of animals and humans. After ninety years of tool-
using experiments with animals (see next section) there
is still no comprehensive theory attempting to explain the
origins, development, and learning of tool behaviors in
living organisms.

Progress along these two lines of research, however, is
unlikely without initial experimental work which can be
used as the foundation for a computational theory of tool
use. Therefore, the purpose of this paper is to empirically
evaluate one specific way of representing and learning the
functional properties or affordances [2] of tools.

The tool representation described here uses a behavior-
based approach [3] to ground the tool affordances in the
existing behavioral repertoire of the robot. The represen-
tation is learned during a behavioral babbling stage in
which the robot randomly chooses different exploratory
behaviors, applies them to the tool, and observes their
effects on environmental objects. The quality of the learned
representation is tested on extension-of-reach tool tasks.
The experiments were conducted using a mobile robot
manipulator. As far as we know, this is one of the first
studies of this kind in the Robotics and Al literature.

II. RELATED WORK
A. Affordances and Exploratory Behaviors

A simple object like a stick can be used in numerous
tasks that are quite different from one another. For example,
a stick can be used to strike, poke, prop, scratch, pry, dig,
etc. It is still a mystery how animals and humans learn
these affordances [2] and what are the cognitive structures
used to represent them.

James Gibson defined affordances as “perceptual invari-
ants” that are directly perceived by an organism and enable
it to perform tasks [2]. Gibson is not specific about the
way in which affordances are learned but he suggests that



some affordances are learned in infancy when the child
experiments with objects. For example, an object affords
throwing if it can be grasped and moved away from one’s
body with a swift action of the hand and then letting it go.
The perceptual invariant in this case is the shrinking of the
visual angle of the object as it is flying through the air. This
highly interesting ‘“zoom” effect will draw the attention of
the child [2, p. 235].

Gibson defines tools as detached objects that are gras-
pable, portable, manipulable, and usually rigid [2, p. 40].
A hammer, for example, is an elongated object that is
graspable at one end, weighted at the other end, and affords
hitting or hammering. A knife, on the other hand, is a
graspable object with a sharp blade that affords cutting.
A writing tool like a pencil leaves traces when applied to
surfaces and thus affords trace-making [2, p. 134].

The related work on animal object exploration indicates
that animals use stereotyped exploratory behaviors when
faced with a new object [4], [5]. This set of behaviors
is species specific and may be genetically predetermined.
For some species of animals these tests include almost
their entire behavioral repertoire: “A young corvide bird,
confronted with an object it has never seen, runs through
practically all of its behavioral patterns, except social and
sexual ones.” [5, p. 44].

Recent studies with human subjects also suggest that
the internal representation for a new tool used by the brain
might be encoded in terms of specific past experiences [6].
Furthermore, these past experiences consist of brief feed-
forward movement segments used in the initial exploration
of the tool [6]. A tool task is later solved by dynamically
combining these sequences [6].

Thus, the properties of a tool that an animal is likely to
learn are directly related to the behavioral and perceptual
repertoire of the animal. Furthermore, the learning of these
properties should be relatively easy since the only require-
ment is to perform a (small) set of exploratory behaviors
and observe their effects. Based on the results of these
“experiments” the animal builds an internal representation
for the tool and the actions that it affords. Solving tool
tasks in the future is based on dynamically combining the
exploratory behaviors based on their expected results.

Section III formulates a behavior-grounded computa-
tional model of tool affordances based on these principles.

B. Experiments with Primates

According to Beck [1], whose taxonomy is widely
adopted today, most animals use tools for four different
functions: 1) to extend their reach; 2) to amplify the
mechanical force that they can exert on the environment;
3) to enhance the effectiveness of antagonistic display
behaviors; and 4) to control the flow of liquids. This paper
focuses only on the extension of reach mode of tool use.

Extension of reach experiments have been used for the
last 90 years to test the intelligence and tool-using abilities

of primates [7], [8], [9]. In these experiments the animal
is prevented from getting close to an incentive and thus it
must use one of the available tools to bring the incentive
within its sphere of reach.

Wolfgang Kohler was the first to systematically study the
tool behaviors of chimpanzees. He performed a large num-
ber of experiments from 1913 to 1917. The experimental
designs were quite elaborate and required use of a variety
of tools: straight sticks, L-sticks, T-sticks, ladders, boxes,
rocks, ribbons, ropes, and coils of wire. The incentive for
the animal was a banana or a piece of apple which could
not be reached without using one or more of the available
tools. The experimental methodology was to let the animals
freely experiment with the available tools for a limited time
period. If the problem was not solved during that time, the
experiment was terminated and repeated at some later time.

In more recent experimental work, Povinelli et al. [8]
replicated many of the experiments performed by Kohler
and used statistical techniques to analyze the results. The
main conclusion was that chimpanzees solve these tasks
using simple rules extracted from experience like “contact
between objects is necessary and sufficient to establish
covariation in movement” [8, p. 305]. Furthermore, it was
concluded that chimpanzees do not reason about their own
actions and tool tasks in terms of abstract unobservable
phenomena such as force and gravity. Even the notion of
contact that they have is that of “visual contact” and not
“physical contact” or “support” [8, p. 260]. Similar results
have been reported by Visalberghi and Trinca [9].

The conclusions of these studies were used to guide the
design of the robot’s perceptual routines (see Section IV).

C. Related Work in Robotics and Al

Krotkov [10] notes that relatively little robotics research
has been geared towards discovering external objects’
properties other than shape and position. Some of the
exploration methods employed by the robot in Krotkov’s
work use tools coupled with sensory routines to discover
object properties. For example, the “whack and watch”
method uses a wooden pendulum to strike an object in
order to estimate its mass and coefficient of sliding friction.
The “hit and listen” method uses a blind person’s cane
to determine the acoustic properties of objects. Fitzpatrick
et al. [11] used a similar approach to program a robot
to poke objects with its arm (without using a tool) and
learn the rolling properties of the objects from the resulting
displacements.

Bogoni and Bajcsy describe a system that evaluates the
applicability of differently shaped pointed objects for cut-
ting and piercing operations [12], [13]. A robot manipulator
is used to move the tool into contact with various materials
(e.g., wood, sponge, plasticine) while a computer vision
system tracks the outline of the tool and measures its
penetration into the material. The outlines of the tools are
modeled by superquadratics and clustering algorithms are



used to identify interesting properties of successful tools.
This work is one of the few examples in the robotics
literature that has attempted to study object functionality
with the intention of using the object as a tool by a robot.

Several computer vision projects have focused on the
task of recognizing objects based on their functionality
[14], [15]. Hand tools are probably the most popular object
category used to test these systems. One problem with
these systems, however, is that they try to reason about
the functionalities of objects without actively interacting
with the objects.

III. BEHAVIOR-GROUNDED TOOL REPRESENTATION
A. Robots, Tools, and Tasks

Several definitions for tool use have been given in the
literature. Arguably, the most comprehensive definition is
the one given by Beck [1, p. 10]:

“Tool use is the external employment of an
unattached environmental object to alter more
efficiently the form, position, or condition of
another object, another organism, or the user
itself when the user holds or carries the tool
during or just prior to use and is responsible for
the proper and effective orientation of the tool.”

The notion of robotic tool use brings to mind four things:
1) a robot; 2) an environmental object which is labeled a
tool; 3) another environmental object to which the tool is
applied (labeled an attractor); and 4) a tool task. For tool
use to occur all four components need to be present. In
fact, it is meaningless to talk about one without taking
into account the other three. What might be a tool for one
robot may not be a tool for another because of differences
in the robots’ capabilities. Alternatively, a tool might be
suitable for one task (and/or object) but completely useless
for another. And finally, some tasks may not be within the
range of capabilities of a robot even if the robot is otherwise
capable of using tools. Thus, the four components of tool
use must always be taken into consideration together.

This is compatible with Gibson’s claim that objects af-
ford different things to people with different body sizes. For
example, an object might be graspable for an adult but may
not be graspable for a child. Therefore, Gibson suggests
that a child learns “his scale of sizes as commensurate
with his body, not with a measuring stick” [2, p. 235]. For
example, an object is graspable if it has opposable surfaces
the distance between which is less than the span of the hand
[2, p. 133].

Because of these arguments, any tool representation
should take into account the robot that is using the tool. In
other words, the representation should be grounded in the
behavioral and perceptual repertoire of the robot. The main
advantage of this approach is that the tool’s affordances
are expressed in concrete terms (i.e., behaviors) that are
available to the robot’s controller. Note that this is in sharp
contrast with other theories of intelligent systems reasoning

about objects in the physical world [16], [14]. They make
the assumption that object properties can be expressed in
abstract form (by a human) without taking into account the
robot that will be using them.

Another advantage of the behavior-grounded approach
is that it can handle changes in the tool’s properties over
time. For example, if a familiar tool becomes deformed
(or a piece of it breaks off) it is no longer the same tool.
However, the robot can directly test the accuracy of its
representation by executing the same set of exploratory
behaviors that was used in the past. If any inconsistencies
are detected in the resulting observations they can be used
to update the tool’s representation. Thus, the accuracy of
the representation can be directly tested by the robot.

B. Theoretical Formulation

The previous sections presented a justification for the
behavior-grounded affordance representation. This section
formulates these ideas using the following notation.

Let B¢, , Be,, - - -, B¢, be the set of exploratory behaviors
available to the robot. Each behavior, has one or more
parameters that modify its outcome. Let the parameters
for behavior 3., be given as a parameter vector E; =
[ef, €3, .. €p;], Where p(i) is the number of parameters
for this behavior. The behaviors, and their parameters,
could be learned by imitation, programmed manually, or
learned autonomously by the robot. For the purposes of
this paper, however, the issue of how these behaviors are
selected and/or learned will be ignored.

In a similar fashion, let 8y, , Bp,, - - ., O, be the set of
binding behaviors available to the robot. These behaviors
allow the robot to attach tools to its body. The most
common binding behavior is grasping. However, there are
many examples in which a tool can be controlled even if
it is not grasped. Therefore, the term binding will be used.
The parameters for binding behavior 5, are given as a
parameter vector B; = [b%, b}, . .. bé(i)].

Furthermore, let the robot’s perceptual routines provide
a stream of observations in the form of an observation
vector O = [01,02,...,0,]. It is assumed that the set of
observations is rich enough to capture the essential features
of the tasks to which the tool will be applied.

A perceptual function, 7 (O(t'),O(t")) — {0,1}, that
takes two observation vectors as parameters is also defined.
This function determines if an “interesting” observation
was detected in the time interval [¢',¢"]. In the current set
of experiments 7 = 1 if the attractor was moving during
the execution of the last exploratory behavior.

With this notation in mind, the functionality of a tool
can be represented with an Affordance Table of the form:

Binding Binding Expl. Expl. [0k o° Times Times
Behavior Params

Behavior Params Used Suce

In each row of the table, the first two entries represent
the binding behavior that was used. The second two entries



represent the exploratory behavior and its parameters. The
next two entries store the observation vector at the start
and at the end of the exploratory behavior. The last two
entries are integer counters used to estimate the probability
of success of this sequence of behaviors.

The meanings of these entries are best explained with
an example. Consider the following sample row

Binding Binding Expl. Expl. [0k (0 Times Times

Beh. Params Beh. Params Used Suce
7l 53 3 (4! (411

B, by Bes | €1,65 | O(t') | O") 4 3

in which the binding behavior 3;, which has one parameter
was performed to grasp the tool. The specific value of
the parameter for this behavior was B} (a” sign is used
to represent a specific fixed value). Next, the exploratory
behavior 3., was performed with specific values & and é3
for its two parameters. The value of the observation vector
prior to the start of 3., was O(t') and it value after f3.,
has completed was O(t"). This sequence of behaviors was
performed 4 times. It resulted in observations similar to the
first time this row of the affordance table was created in 3
of these instances, i.e., its probability of success is 75%.
Initially the affordance table is blank. When the robot
is presented with a tool it performs a behavioral babbling
routine which picks binding and exploratory behaviors at
random, applies them to the tools and objects, observes
their effects, and updates the table. New rows are added to
the table only if 7 was on while the exploratory behavior
was performed. During learning, the integer counters of all
rows are set to 1. They are updated during testing trials.

IV. EXPERIMENTAL ENVIRONMENT

A. Mobile Manipulator

All experiments were performed using a CRS+ A251
manipulator arm (Figure 1). The robot has 5 degrees of
freedom (waist roll, shoulder pitch, elbow pitch, wrist pitch,
wrist roll) plus a gripper. In addition to that, the arm
was mounted on a Nomad 150 robot which allows the
manipulator to move sideways.

The robot’s wrist, the tools, and the attractor were color
coded so that their positions can be uniquely identified and
tracked using computer vision. The camera was mounted
above the robot’s working area. The robot control code and
the color tracker were run on a Pentium IV machine (2.6
GHz, 1 GB RAM), running RedHat Linux 9.0.

B. Tools and Attractor Object

Five tools were used in the experiments: stick, L-stick,
L-hook, T-stick, and T-hook (Figure 1). An orange hockey
puck was used as an attractor object. The choice of tools
was motivated by the similar tools that Kohler’s used in
his experiments with chimpanzees[7].

Fig. 1. The figure shows the CRS+ A251 mobile manipulator, the five
tools, and the hockey puck that were used in the experiments.

C. Exploratory Behaviors

All behaviors used here were encoded manually from
a library of motor schemas and perceptual triggers [3]
developed for this specific robot. The behaviors result in
different arm movement patterns as described below.

Parameters
offset_distance
offset_distance
Slide arm left offset_distance
Slide arm right offset_distance
Position wrist X,y

Exploratory Behaviors
Extend arm
Contract arm

The first four behaviors move the arm in the indicated
direction while keeping the wrist perpendicular to the table
on which the tool slides. These behaviors have a single
parameter which determines how far the arm will travel
relative to its current position. Two different values for this
parameter were used (2 and 5 inches). The position wrist
behavior moves the manipulator such that the centroid of
the attractor is at offset (x,y) relative to the wrist.

D. Grasping Behavior

There are multiple ways in which a tool can be grasped.
These represent a set of affordances which we will call
binding affordances, i.e., the different ways in which the
robot can attach the tool to its body. These affordances
are different from the output affordances of the tool, i.e.,
the different ways in which the tool can act on other
objects. This paper focuses only on output affordances,
so the binding affordances were specified with only one
grasping behavior. The behavior takes as a parameter the
location of a single grasp point located at the lower part of
the tool’s handle.

E. Observation Vector

The observation vector has 12 real-value components. In
groups of three, they represent the position of the attractor
object in camera-centric coordinates, the position of the
object relative to the wrist of the robot, the color of the
object, and the color of the tool.



Observation Meaning

01,02,03 X,Y,Z positions of the object (camera-centric)
04,05, 06 X.,Y,Z positions of the object (wrist-centric)
07, 08,09 R,G,B color components of the object

010,011,012 R.G,B color components of the tool

The perceptual function 7 was defined with the first
three components, 01, 02, 03. To determine if the attractor is
moving, 7 calculates the Euclidean distance and thresholds
it with an empirically determined value (0.5 inches). The
times-successful counter is incremented if the observed
attractor movement is within 40 degrees of the expected
movement stored in the affordance table.

V. LEARNING TRIALS

During the learning trials the robot was allowed to freely
explore the properties of the tools. The exploration consists
of trying different behaviors, observing their results, and
filling up the affordance table. The initial positions of the
attractor and the tool were random. If the attractor was
pushed out of tool reach then it was manually placed in a
new random position. The learning trials were limited to
one hour of run time for every tool.

A. What Is Learned

A good way to visualize what the robot learns is with
graphs like the ones shown in Figure 2. The figures show
the observed outcomes of the exploratory behaviors when
the T-hook tool was applied randomly to the hockey puck.

—
-— — T
Extend Arm Extend Arm Slide Left Slide Left
(2 inches) (5 inches) (2 inches) (5 inches)

T

Slide Right
(2 inches)

Slide Right
(5 inches)

Contract Arm
(5 inches)

Contract Arm
(2 inches)

Fig. 2. Visualizing the affordance table. Each figure shows the observed
movements of the attractor object after a specific exploratory behavior
was performed multiple times. The start of each arrow corresponds to
the position of the attractor in wrist-centered coordinates (i.e., relative to
the tool’s grasp point) just prior to the start of the exploratory behavior.
The arrow represents the total distance and direction of movement of the
attractor in camera coordinates at the end of the exploratory behavior.

B. Querying the Affordance Table

After the affordance table is populated with values it can
be queried to dynamically create behavioral sequences that
solve a specific tool task. The behaviors in these sequences
are the same behaviors that were used to fill the table.

The query method that was adopted uses empirically de-
rived heuristics to perform multiple nested linear searches
through the affordance table. Each successive search is
performed only on the rows that were not eliminated by the
previous searches. Four nested searches were performed:

o Select all rows that have observation vectors consistent
with the colors of the current tool and object.

o From the remaining rows select those with probability
of success greater than 50%.

o Sort the remaining rows by their likelihood to move
the object in the desired direction.

o From the top 20% of the sorted rows choose one row
which minimizes the re-positioning of the tool relative
to its current location.

The output of the query is a sequence of 1-3 behaviors.
The length depends on whether on not the tool needs to
be re-grasped and/or re-positioned. These conditions are
determined directly from the observation vectors stored in
the selected row. Each of these two steps, if used, takes one
behavior. The last behavior that is alway returned by the
query is the exploratory behavior that was used to generate
the data in the selected row.

VI. EXPERIMENTS

Two types of experiments were performed. They mea-
sured the quality of the learned representation and its
adaptation abilities when the tool is deformed, respectively.

A. Extension of Reach

In this experiment the robot was required to pull the
attractor over a color coded goal region. Four different goal
positions were defined. The first goal is shown in Figure
1 (the dark square in front of the robot). The second goal
was located farther away from the robot. To achieve it the
robot had to push the attractor away from its body. Goals
3 and 4 were placed along the mid-line of the table to the
left and right of the robot’s position shown in Figure 1.

In addition to that there were 4 initial attractor positions
per goal (located along the mid-line of the table, 6 inches
apart). The tool was always placed in the center of the table.
A total of 80 experiments were performed (4 goals x 4
attractor positions x 5 tools). The table below summarizes
the results. The values represent the number of successful
solutions per goal, per tool. Four is the possible maximum.

Tool Near Far Left Right
Goal Goal Goal Goal
Stick 0 2 4 4
L-stick 4 2 4 4
L-hook 4 3 4 4
T-stick 3 3 4 4
T-hook 4 4 4 4

As can be seen from the table, the robot was usually
able to solve this task. The most common failure condition
was due to pushing the attractor out of tool’s reach. A



notable exception is the Stick tool which could not be used
to pull the object back to the near goal. The robot lacks the
required exploratory behavior (furn-the-wrist-at-an-angle-
and-then-pull) which can detect this affordance of the stick.
Adding the capability to learn new exploratory behaviors
can resolve this problem.

B. Adaptation After a Tool Breaks

The second experiment was designed to test the flexibil-
ity of the representation in the presence of uncertainties.
The uncertainly in this case was a tool that can break.

To simulate a broken tool, the robot was presented with a
tool that has the same color as another tool with a different
shape. More specifically, the learning was performed with a
T-hook which was then replaced with an L-hook. Because
color is the only feature used to recognize tools the robot
believes that it is still using the old tool. The task of the
robot was the same as described in the previous subsection
(i.e., 16 experiments = 4 goals x 4 attractor positions).

The two tools differ in their upper right sections. When-
ever the robot tried to use affordances associated with the
missing parts of the tool they did not produce the expected
attractor movements. Thus, their probability of success was
reduced and they were excluded from further consideration.

The robot was successful in all 16 experiments.

VII. CONCLUSIONS AND FUTURE WORK

This paper introduced a novel approach to representing
and learning tool affordances by a robot. The affordance
representation is grounded in the behavioral and perceptual
repertoire of the robot. More specifically, the affordances
of different tools are represented in terms of a set of
exploratory behaviors and their resulting effects. It was
shown how this representation can be used to solve tool-
using tasks by dynamically sequencing exploratory behav-
iors based on their expected outcomes.

The behavior-grounded approach represents the tool’s
affordances in concrete terms (i.e., behaviors) that are
available to the robot’s controller. Therefore, the robot
can directly test the accuracy of its tool representation by
executing the same set of exploratory behaviors that was
used in the past. If any inconsistencies are detected in the
resulting observations they can be used to update the tool’s
representation. Thus, the accuracy of the representation can
be directly tested by the robot. It was demonstrated how
the robot can use this approach to adapt to changes in the
tool’s properties over time, e.g., tools that can break.

A shortcoming of the behavior-grounded approach is that
there are tool affordances that are unlikely to be discovered
since the required exploratory behavior is not available to
the robot. This problem has also been observed in animals,
e.g., macaque monkeys have significant difficulties learning
to push an object with a tool away from their bodies
because this movement is never performed in their normal
daily routines [17]. This problem can be resolved, however,
if the ability to learn new exploratory behaviors is added.

There are some obvious extensions to this work that are
left for future work. First, the current implementation starts
the exploration of a new tool from scratch even though
it may be similar to an already explored tool. Adding
the ability to rapidly infer the affordances of a new tool
from its shape similarity to previous tools would be a nice
extension.

Second, the current implementation uses a purely ran-
dom behavioral babbling exploration procedure. Different
strategies that become less random and more focused as in-
formation is structured by the robot during the exploration
could be used to speed up the learning process.

Third, the behavior-grounded approach should be com-
pared experimentally with planners for pushing objects
(e.g.[18]). We expect that the behavior-grounded method
would approach asymptotically the accuracy of these plan-
ners as the number and diversity of the exploratory be-
haviors is increased. We also expect, however, that our
approach would excel in situations that cannot be predicted
by the planners, e.g., tools that can break or objects whose
center of mass can shift between trials.
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