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Abstract—We explore the ethologically guided design of a
robotic controller, inspired by sloth and slow loris behavior.
These animals manage their energy expenditure efficiently under
resource constrained environments through a combination of
thermoregulatory and behavioral strategies. This has potential
implications for the design of energy efficient mobile robots (or
Slowbots) for long-term applications such as Precision Agricul-
ture and Surveillance. In this paper, we compare two different
behavioral coordination strategies, namely, Action Selection and
Behavioral Fusion and evaluate their performances to determine
the relative merits of each coordination strategy on the design of
the Slowbot and its energy consumption.

I. INTRODUCTION

Sloths and slow lorises are some of the few mammals that
have carved out an exclusively arboreal niche. McFarland has
advocated the concept of an agent’s ecological niche which
mandates that for a successful robotic implementation the
agent must find its place in the environment, i.e, its niche
[1]. Ethological modeling methods can encode the agent-
environment relationship allowing the agent to identify its
place in the ecosystem [2]. Ethologically guided/constrained
design is one of the approaches for specifying and designing
robotic behaviors; the others being situated activity-based
design and experimentally-driven design [3]. This paper ex-
plores the ethologically-guided design of a robotic controller,
inspired by sloth and slow loris ethology. Owing to the slow
metabolic rates of these mammals, they continue to thrive
on the limited resources on trees for most of their life,
without actively searching for food [4]. Pauli et al. in [5]
characterize the three-toed sloth’s arboreal niche as highly
energy constrained. As stated in their work, “the reduced
energy expenditure [in sloths] is the result of thermoregulatory
and behavioral strategies rather than a proportionate reduction
in BMR [Basal Metabolic Rate]”. Hence, it is our contention
that the ethologically-inspired design of robots, will allow
these machines to persist for prolonged periods of time (and
accomplish meaningful tasks) in an environment characterized
by resource constraints, much like the sloths and slow lorises.
As highlighted by in [6] and [7], such robots or Slowbots
can carry out routine and meaningful tasks (for instance, pest
removal from crops) with minimal or no human intervention
while sustaining themselves in their environment for extended
periods of time by efficiently utilizing their energy. This paper
focuses on three specific behaviors that are potentially useful
for designing such agents along with a comparison of different

coordination mechanisms to identify their relative merits in
the Slowbot design. The choice of coordination mechanism is
an important step in designing the Slowbot architecture and
hence is a crucial precursor to the overall design process. The
quantitative results obtained from this preliminary analysis can
serve as a guide in designing a complete Slowbot architecture
encompassing all relevant behaviors.

II. RELATED WORK

Prior research has considered energy-efficient path planning
under resource constraints. Mei et al. in [8] discuss energy-
efficient path planning for robots operating under limited
energy. Their method attempts to maximize the total coverage
area by minimizing repeated coverage in structured and ran-
dom environments. They extend the methodology to multiple
agents in [9] as a means of increasing the coverage area when
each individual agent operates under resource constraints. They
discuss the number of agents to be deployed to accomplish a
given task under time and energy constraints. Similarly, Strimel
et al. [10] discuss the robot coverage problem and introduce a
new sweeping path planning algorithm as a means of achieving
best coverage in a small area given limited fuel. There has also
been research considering the use of solar powered robots and
efficient path planning for them as a means of best utilizing
the limited input solar energy. Plonski et al. in [11] discuss the
construction of a solar map on which effective path planning
approaches can be applied to achieve energy-efficient task
completion [12].

Significant research has been conducted in behavioral and
bio-inspired robotics as well. For example, within our lab
Arkin et al. [2] have designed a behavioral controller in-
spired by praying mantis ethology. The implemented behav-
iors included prey acquisition, predator avoidance, mating
and chantlitaxia with three internal variables, namely, hunger,
fear and sex-drive. In another implementation, Arkin et al.
explored the design of a behavioral controller for human-
robot interaction for Sony’s AIBO, inspired by dog ethol-
ogy [13]. Other implementations also explored the realm
of multi-robot systems inspired by hunting wolf packs [14]
or a navigation algorithm inspired by primates [15]. This
paper also incorporates attachment behavior as implemented
in [16], inspired by Bowlby’s theory of attachment [17].
The overall process of transforming ethological models to a
working robotic system is shown in Figure 1 [3]. We focus
on the first four steps, namely: Description of the ethograms



derived from ethological literature of sloths and slow lorises
(in consultation with Dr. Jonathan Pauli, from the University of
Wisconsin), the description of the model extracted from these
ethograms followed by importing the model to a robot and
running robotic experiments in simulation. We implement three
behaviors from the ethogram and compare the performances
of different coordination mechanisms for these behaviors.
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Figure 1: Ethologically guided/constrained design for
robotic systems [3]

III. SLOTH AND SLOW LORIS ETHOGRAMS

Based on existing ethological studies, ethograms highlight-
ing the various behaviors of sloths and slow lorises can
be drawn and behaviors relevant to the design of a robotic
controller can be identified. Research described in [18], [19]
and [20] serves as a resource for sloth behaviors among several
others regarding sloth ethology. For slow lorises, a primary
reference regarding behaviors includes the work of Nekaris
[21] and Wiens [22]. [23] also summarizes various slow loris
behaviors compiled from different sources in the literature.
There is significant overlap between the behavioral ethograms
of the sloth and slow loris with one of the primary differences
being the presence of social behaviors in slow lorises. How-
ever, these social behaviors are not applicable in the context of
the design of a single agent for our purposes concurrently, in
the context of precision agriculture and surveillance operations.
Hence, a unified ethogram highlighting the behaviors used for
our research among the others is shown in Figure 2.

We now discuss the three highlighted behaviors and their
implementation. Each behavior has an associated stimulus and
motivational/internal variable requirements [3]. The output of
each behavior consists of a response vector with an associated
vector magnitude Vi,qgnitude and direction, Viirection. Each
behavior also has an associated gain denoted as G.
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Figure 2: Slow Mammal Ethogram. The implemented
behaviors are shown highlighted

A. Ingestive or Charging Behavior

For the Charging behavior, the associated stimulus is the
presence of a food source (sunlight or a charging station).
The motivational variable is the level of internal energy (like
hunger) that drives the agent to move towards the food source.
A detailed description of computing internal energy for an
autonomous land agent by modeling the energy consumption
pathway is described in [24] and we use a simplified version to
compute the internal energy of the agent. The response vector
magnitude (1a) and direction (1b) can be given as follows:

me E < Emin

Vimaz —Vmin
W * (E - Em.am) + Vmam Enn'n < E < Emam
Vinaw otherwise

(1a)

Viirection = towards perceived charging area (1b)

The vector magnitude in (1a) is a function of internal energy
E. This function maps the vector magnitude to a value that is
bounded by a minimum (V,,,;,, = 0.0) and maximum (V,,4, =
5.0). The gain G associated with this behavior is set to 1.0.

B. Comfort Seeking or Attachment Behavior

The Attachment behavior is implemented as described in
[16], by modeling a comfort function that influences the
behavior of an agent in the presence of an attachment object.
The area around the attachment object is divided into a safe
zone and comfort zone (fig. 3):

Object af attschment

Figure 3: The safe and comfort zones of the robot around
the object of attachment [16]



The agent behavior in each of these zones is dependent
of the Attachment Intensity which is the magnitude of the
attachment vector, denoted here as Vi agnitude:

Vmagnitude =a*xNxDx ¢(C) (23)
Viirection = towards object of attachment (2b)

where « is the attachment bonding quality between the
robot and attachment object (preset to 1.0), N is the maximum
intensity level for normal attachment (preset to 4.0), D is the
proximity factor which is a function of distance between the
agent and the attachment object and lastly, ¢(C) is the comfort
component which is a function of the comfort level of the
agent. These functions are described in detail in [16]. The gain
G associated with the Attachment behavior, as in [16], is set to
1.0. As described in their results, reducing comfort level also
reduces mean distance maintained over time from the object of
attachment. The direction of the attachment vector is towards
the attachment object.

C. Awake-Exploring or Wandering Behavior

This behavior causes the agent to randomly explore its
environment. The gain G associated with this behavior is fixed
to a value (set to 5.0) and a random direction is generated after
p time steps, where p denotes persistence.

Vinagnitude = fized to unit vector (3a)

Viirection = random direction change every p time steps

(3b)

The behavior as implemented in [16] combines wandering

and attachment behaviors via Behavioral Fusion. This causes

the agent’s exploration to be influenced by its comfort level
and attachment intensity.

IV. BEHAVIORAL CONTROLLER DESIGN

We discuss two different coordination mechanisms for the
behaviors described in the previous section.

A. Action Selection Arbitration

In this arbitration mechanism, the behavior is chosen cor-
responding to the highest scaled response vector magnitude,
G * Vinagnitude.- For example, if the scaled response vector
for the Charging behavior has the highest magnitude, then the
Charging behavior is selected and the corresponding response
vector < Vinagnitude, Vdirection > (Eq 1a, 1b) is sent as output
for execution (fig. 4). In the figures, ¢ denotes Vyjrection-

This form of arbitration often leads to behavioral dithering
where there is rapid fluctuation between the behaviors chosen,
due to equal Vi,qgnitude Oof multiple behaviors which creates
a conflict during the max selection. To overcome dithering,
hysteresis or a short-term memory (STM) of past behavior
is often employed. The implementation of STM in obstacle
avoidance behavior is described in [13]. Here, we explore the
implementation of two types of hysteresis. In the first method,
the agent executes the chosen behavior for a given number
of time steps independent of the other behaviors. This helps

Action Selection
Charging Behavior \
Attachment Behavior

| Wandering Behavior |/

Figure 4: Action Selection Coordination Strategy. Selects
the behavior with the highest scaled component vector
magnitude and outputs the corresponding response vector for
execution. ¢ corresponds to Vyirection
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overcome dithering and is a form of STM implementation. In
the second approach, the agent executes the chosen behavior
until completion of some trigger. For instance, if the agent
chooses the Charging behavior, the agent will not choose
another behavior until it has reached and completed charging
at the food source. This also helps overcome dithering but is
a much stronger form of hysteresis.

B. Behavioral Fusion

In this coordination mechanism, a combination of the vari-
ous behaviors is generated as output. As opposed to selecting
a single behavior, the output generated is a weighted sum of
the response vectors of the different behaviors, each weighted
by their corresponding gains (G) (fig. 5).
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Figure 5: Behavioral Fusion Coordination Strategy.
Outputs the vector sum of the individual response vectors
weighted by the corresponding gains

This form of coordination mechanism is free from behav-
ioral dithering since it is a combination of the different behav-
iors. The output is thus influenced by each of the individual
behaviors, in varying degrees based on their corresponding
gains.

V. EXPERIMENT

We compare the performance of the various coordination
mechanisms discussed above: Action Selection without hys-
teresis, with Strong Hysteresis, Weak Hysteresis and lastly,
Behavioral Fusion.

A. Simulation Environment

To test the different strategies, we created a simple environ-
ment for the agent that consists of an obstacle-free area with
a point of attachment (or nest) at the origin. The radius of
the safe zone and comfort zone is initialized to 5.0 units. The
sunlit zone or charging station is indicated by a wall at the
top of the area (similar to a forest canopy) and is outside the
comfort zone of the agent. This requires the agent to traverse
its environment and navigate to the top of the area to charge
its energy. The agent is represented by a white box as shown
in figure 6.



&

Figure 6: Simulation Environment in Gazebo. Agent is
represented by the white box. The charging area is indicated
by the wall outside of the comfort zone

B. Dependent Variables

The agent does not perform any specific task except ex-
ploring its environment and moving to the charging station
based on its internal variables. The primary experimental goal
is to compare the different coordination mechanisms based
on various metrics. The energy consumption metric is the
average total energy consumed over the entire run. The total
run time for each coordination strategy is fixed to 3 minutes
of simulation time (simulation runs at a significantly higher
speed than an actual robot would). The average distance from
the attachment object indicates how far the agent strayed from
the attachment object. Finally, we measure the average times
spent and area explored within the safe, comfort and outside
of comfort zones. We compare the different strategies based
on these metrics and plot the real-time variation in internal
variables of comfort and hunger as well.

C. Experiment details

The comfort level is varied from -1 (maximum discomfort)
to 1 (maximum comfort) in steps of 0.25 for each coordination
strategy. All other internal variables are initialized to zero.
The agent starts at the origin. There are no power constraints
imposed on the agent since our goal is to measure and compare
overall energy consumption across the different arbitration
mechanisms.

VI. RESULTS

The results from each of the experimental runs are shown.
Figure 7 shows the variation of internal variables for a small
portion of the run for Action Selection: purple plot indicates
internal energy and blue indicates attachment intensity. Green
plot indicates the switching between the two active behaviors:
Charging (indicated by 1) and Attachment (indicated by 0).
As shown in Figure 7, the chosen behavior is dependent on
the highest internal variable. Figure 7a, shows how the simple
Action Selection mechanism results in behavioral dithering
since the levels of attachment intensity and internal energy
become equal and increase concurrently causing a fast switch-
ing between the two behaviors. This is eliminated by the
introduction of hysteresis, shown in Figure 7b.
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(b) Behavioral dithering eliminated using hysteresis
Figure 7: Variation of Internal Variables vs. Time for
Partial Run

The average distance from the attachment object for various
comfort levels is shown in Figure 8a. As the comfort level
increases, the average distance from the attachment object
increases for all the different arbitration strategies. This is in
accordance with the results described in [16]. As the comfort
level increases, the attachment intensity reduces and mean
distance of the agent from the attachment object increases.

The total average energy consumption over the entire run
for the different behavioral strategies is shown in Figure 8b
for various comfort levels. For three out of the four strategies:
Action Selection, Action Selection with Weak Hysteresis and
Behavioral Fusion, the total energy consumption decreases as
comfort level increases. In the experimental environment, the
food source is located outside the comfort zone. A higher com-
fort level reduces the attachment intensity allowing the agent to
navigate towards the food source with only reduced attachment
towards the attachment object. However, Action Selection with
Strong Hysteresis does not exhibit this trend since even the
slightest increase in internal energy within the comfort zone
where attachment intensity is 0 (As per the implementation
in [16]), selects the Charging behavior. While this results in
overall low energy consumption, it is not desirable. The overall
energy consumption is also low for Behavioral Fusion, when
compared to the remaining two strategies. In contrast to Action
Selection, the output of Behavioral Fusion is influenced by
all the three behaviors in varying degrees depending on the
internal variables and the respective gains.

The percentage of time spent within and outside the comfort
and safe zones is shown in Figure 9. For two out of the three
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Figure 8: Plots showing average distance to attachment
object and average total energy consumption

arbitration strategies: Action Selection, Action Selection with
Weak Hysteresis and Behavioral Fusion, the time spent within
the comfort and safe zones decreases as comfort levels increase
due to the reduced attachment intensity. For Action Selection
with Strong Hysteresis, the percent time spent in safe and
comfort zones is relatively equal for various comfort levels
due to the frequent switching between Charging and Attach-
ment behaviors regardless of comfort level. Additionally, the
percentage of time spent within the safe and comfort zones is
higher on an average for the various comfort levels for Action
Selection and Behavioral Fusion. However, the percentage time
spent within the various zones is not proportional to the amount
of area the agent explores since some of the coordination
strategies could cause the agent to spend considerably more
time within small areas near the attachment point rather than
covering the whole area. Hence, we additionally measure the
percentage area explored by the agent for each coordination
strategy.

The percentage area explored within and outside the comfort
zones is shown in Fig 10. The area explored outside the
comfort zone increases as comfort level increases allowing the
agent to explore further away from the attachment point. It is
highest for Behavioral Fusion since the output is a weighted
summation of individual behaviors rather than selection of a
single behavior. In contrast, Action Selection covers the least
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Figure 9: % Time spent in comfort zone and safe zones.
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area since behavioral dithering limits the exploration of the
agent.

VII. DISCUSSION

The results highlight various aspects of the different coor-
dination mechanisms.

Energy consumption: For the three behaviors discussed,
Action Selection with Strong Hysteresis results in lower overall
energy consumption. However, this strategy causes the agent
to move towards the food source for the slightest increase in
energy consumption as described in the previous section. This
may not be the most efficient strategy given that the agent
can continue to explore its environment for a longer duration
before having to move towards the charging area. Behavioral
fusion also results in an overall low energy consumption.

Percent time in comfort zone: Action Selection arbitration
mechanism resulted in the highest amount of time spent within
the comfort zones. However, Action Selection is prone to
behavioral dithering. Among the other three strategies, the time
spent within comfort zones was highest for Behavioral Fusion.

Percent area covered: The agent explored the largest
area with the Behavioral Fusion arbitration strategy. Action
Selection resulted in the least coverage despite increased time
spent within comfort zone perhaps due to behavioral dithering
that limited the agent’s exploration.



Overall: For the three behaviors discussed, Behavioral Fu-
sion combines low total energy consumption with increased
time spent within the comfort zones and increased area cov-
erage. If the design choice employs Action Selection instead,
then Weak Hysteresis would be the preferred option for elim-
inating behavioral dithering as it has advantages over Strong
Hysteresis in terms of percent time spent within comfort zones
and percent area covered.

The behaviors discussed here are potentially useful with re-
spect to specific applications: Precision Agriculture or Surveil-
lance where environmental persistence and efficient energy
management is crucial. It is also desirable to explore within
the comfort zone and areas beyond in the absence of threats.

Tying these observations to our original sloth-inspired de-
sign, Behavioral Fusion aligns with the behavioral patterns of
Sloths and Slow Lorises better than the other coordination
strategies. Sloths rarely leave their trees for fear of preda-
tion and they do so only for excretion [25]. The Ingestive
behavior of sloths also highlights the notion of comfort. Sloths
exhibit increased attachment to a single tree for extended
periods of time and do not actively explore unless its current
tree is depleted of fresh leaves [26]. Given that Sloths and
Slow Lorises are exemplary models of energy conservation
in nature, spending increased periods of time within their
shelter, Behavioral Fusion appropriately combines low energy
consumption with increased time spent in comfort zones to
capture this notion. The Sloth and Slow Loris inspired design
allows development of long-term autonomous robotic models
that are energy efficient, thus persistent in their environment
while exploring within their safety zones.

Future work aims at including additional behaviors such
as obstacle avoidance, resting behaviors and incorporating
3D navigation which may be relevant to the design. Further,
including a notion of stimulus strength of a food source may
be beneficial for the agent to evaluate its food source and the
extent of its on influence on the agent behavior.
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