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Abstract— While robots have long been proposed as a tool to
reduce human personnel’s exposure to danger in subterranean
environments, these environments also present significant chal-
lenges to the development of these robots. Fundamental to this
challenge is the problem of autonomous exploration. Frontier-
based methods have been a powerful and successful approach to
exploration, but complex 3D environments remain a challenge
when online employment is required. This paper presents a
new approach that addresses the complexity of operating in
3D by directly modelling the boundary between observed free
and unobserved space (the frontier), rather than utilising dense
3D volumetric representations. By avoiding a representation
involving a single map, it also achieves scalability to problems
where Simultaneous Localisation and Matching (SLAM) loop
closures are essential. The approach enabled a team of seven
ground and air robots to autonomously explore the DARPA
Subterranean Challenge Urban Circuit, jointly traversing over
8 km in a complex and communication denied environment.

I. INTRODUCTION

Underground environments, such as mines, are notoriously
hazardous to the safety of personnel, particularly during
emergencies or disasters. In the last century, there were
more than 500 mine disasters in the United States alone
[1]. Subterranean environments are difficult to traverse due to
terrain which may be rough, dynamic, unstable and prone to
landslides [2], flooded, full of methane gas or heavy smoke,
and have extreme temperatures [3]. Further, communications
is inherently challenging, making reliance on teleoperation
problematic, motivating the use of autonomous operation.

The DARPA Subterranean (SubT) Challenge [4], is stimu-
lating the development of integrated systems for operations
within underground environments such as mines, tunnels,
natural caves and the urban underground. This paper discusses
the solution developed by Team CSIRO (consisting of CSIRO,
Emesent and Georgia Tech) for autonomously exploring
unknown environments using a team of robots. The system
was deployed in the SubT Urban Circuit (UC) Competition
to explore the abandoned Satsop Nuclear Power Plant, a large
multi-level facility with lead-lined concrete walls that blocked
wireless communications. A heterogeneous team of seven
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Fig. 1. Example operation of method. Top-left shows mesh representing
visible space from viewpoint at axes shown; top-right shows frontiers yet to
be explored. Lower-left shows Emesent Hovermap UAV platform used in
testing, while lower-right shows BIA 5 OzBot Titan-based platform capturing
data, and CSIRO test environment corresponding to results in top figures.

robots autonomously explored the facility, traversing corridors,
rubble, doorways, stairways and vertical shafts. The team
consisted of three small Superdroid-LT2 based Unmanned
Ground Vehicles (UGVs) and two BIA 5 OzBot Titan
UGVs, each carrying and launching an Emesent Hovermap
Unmanned Aerial Vehicle (UAV). All platforms are equipped
with rotating Velodyne Puck Light Detection and Ranging
(LiDAR) sensors, as well as cameras (four cameras on UGVs,
and a single gimbal-mounted camera on the UAVs). Figure 1
shows two of the platforms and an example of operation.

The key differentiator is that the method directly models
the boundary between observed free and unobserved space
(the frontier [5]), as opposed to relying on dense volumetric
representations. This is achieved by utilising the efficient
direct point cloud visibility algorithm of [6]. The algorithm is
demonstrated through results obtained at the SubT UC, where
it operated in real time on both UGVs and UAVs providing a
core piece of the autonomy capability that permitted a single
operator to control seven agents.

II. RELATED WORK

This section presents a brief overview of the current state
of practice of frontier-based exploration of unknown environ-



ments, describes their limitations, and discusses how this work
addresses some of those limitations. First introduced in [5],
frontier methods explore a region by repeatedly navigating
to the boundary between open space and unexplored space.
The concept has been widely used by representing the region
as a 2D occupancy grid (e.g., [7], [8]) due to the simplicity
and effectiveness of the approach. However, to address more
complex environments in a scalable manner, methods beyond
2D occupancy grids are needed.

Representation of the entire space via a single occupancy
grid is problematic for large scale problems, where agent
localisation is continually optimised via SLAM. Integration
of frontier search with SLAM was discussed recently in [9],
which utilises the 2D submap occupancy grids generated by
Cartographer [10]. The relative position of these occupancy
grids is optimised, e.g., due to loop closure. Frontiers are
detected locally in each submap, and combined into global
frontiers applying the relative pose estimate of each submap.
A frontier point in a local submap is only a frontier in the
global map if it is unexplored (or a frontier) in all submaps.

The DARPA SubT challenge involves environments that
are fundamentally 3D (e.g., mine shafts, stairs, ramps, multi-
floor urban environments), and vehicles (e.g., UAVs) that are
capable of 3D motion; thus the goal of this work is to develop
a method that can directly identify 3D frontiers in LiDAR
point cloud data. Previous work on 3D frontiers includes
[11], [12]. Both utilise an octree representation of global 3D
space, updated using raytracing, walking along the ray for
each LiDAR return and updating each traversed voxel. The
first seeks to model both frontiers and voids (unobserved
volume), where the volume of the void serves to inform the
utility of a frontier. The next view is selected to maximise
the amount of void space observed. The second presents
methods for multiagent coordination. Despite the efficient
tree-based methods, neither achieves real-time operation, and
integration with a SLAM system performing loop closures is
not addressed.

The approach described in this paper provides a fast
technique that efficiently generates 3D frontiers and plans
observer positions while avoiding walking dense voxel grids
for each LiDAR return. It integrates with a conventional
graph SLAM pipeline enabling both online operation in
complex environments, and scalability to large areas where
loop closures are essential. Efficiency is gained by directly
representing the frontier as the boundary between observed
free and unobserved space, as a mesh, rather than maintaining
a dense 3D grid of the probability of occupancy in each voxel.
This is motivated by the observation that the LiDAR sensor
payload has very high SNR, and observes the region around
the agent with high confidence, so that the probability grid
is effectively binary. Longer range areas need to be visited
to map with adequate confidence, and to detect objects using
the camera, which is the ultimate goal in the SubT challenge.

III. FRONTIER GENERATION

This section describes the method for generating 3D fron-
tiers. The memoryless processing that is applied independently

to each frame to obtain candidate frontiers is described in
Section III-A. The sequential processing which fuses these
candidate frontiers with the data from previous time steps is
described in Section III-B. Finally, methods for accounting
for the reachability of frontiers, and multi-agent problems
are described in Sections III-C and III-D.

A. Single viewpoint frontier generation

Our approach uses the direct visibility algorithm of [6],
which has previously been applied to robotics problems includ-
ing vehicle navigation [13] and point cloud colourisation [14].
The method efficiently approximates point cloud visibility via
a convex hull in a transformed space, yielding a watertight
mesh of the visible space from the current viewpoint.

1) Pre-processing of point cloud: To reduce computation
and provide the most complete surface possible, a cached,
voxelised point cloud is used with resolution dyox = 0.3m,
limited in range to dp,x = 9m. The voxelisation maintains a
count n;, mean pu, and covariance X; of points within each
voxel ¢, updating with each new point recursively. We will see
that surfaces close to the agent can result in errors in visibility
determination. This can be mitigated by using the voxel data
to subsample points within a range of Nsupsample = 1.5m of the
agent. Specifically, we replace the single point represented
by the mean p; by nine points p; ;. ; where k,1 € {~1,0, 1},
and:
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where \; ; is the j-th largest eigenvalue of X;, and §; ; is the
corresponding eigenvector. Note that &; | provides an estimate
of the normal vector of the surface. Since the sign of the
eigenvector is free, we choose it such that £Zl(p —a) <0,
where p is the latest point added to the voxel, and a is the
agent position at the time of that point. A voxel is excluded
if the normal vector points away from the current sensor
position, as shown below (2).

We supplement the observed points with those sampled on
the surface of a sphere centred on the agent position. Points
on this sphere which are determined to be visible represent
frontiers, since they are maximum-range points which are
unobscured by closer observed points. We refer to S(a, dmax)
as the set of points sampled on the sphere centred on the agent
position a with radius dp,x. In practice, these are limited to
elevation angles that are able to be viewed by the sensor.

The complete point cloud is denoted as the set:

P = U {m;}u
1€Camax \Cnsubsumplc
U {H’i,k,l} U S(O'a dmax) (2)
(i’k’l)ecnsubsample x {_1’071}2

where C, = {i|||u; —al| <, &1 (n; — a) < 0}, the latter
condition of which excludes voxels for which the surface
faces away from the agent.



2) Generation of visible mesh: We distinguish between
visible and non-visible points based on the direct point cloud
visibility method of [6]. In particular, using the exponential
inversion kernel, a point p is transformed to:
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where a denotes the observer position for the viewpoint. This
yields a transformed point cloud:

P=t(P)={t(p)lp € P} 4)

Using a small negative value for ~, the transformation reflects
about the unit sphere and compresses range making distant
points closer to the origin, and close points further away, as
illustrated in Figure 2(a)-(b) (depicted with the value that we
adopt in our experiments, v = —0.018). Subsequently, the
convex hull of points in the transformed space is calculated
using ghull [15], which has complexity O(nlogn) in the
number of query points. We denote this operation:

(V,T) = ghull(P) (5)

where V C P is the set of visible points, and T - p~3
describes the triangulated mesh, where V~3 denotes the set
of three-element subsets of points in V. Subsequently, we
can obtain V and T by passing V and 7 through the inverse
of the transformation (3); practically, this calculation can be
avoided by tracking the indexing in reference to P. The set
of frontier points is initialised as the visible sphere points:

F=VNS(a,dnx) (6)

We use the term viewpoint to refer to the tuple (7, a,V,T),
which incorporates the time 7, agent position and mesh of
visible points. An example of a viewpoint is shown in the
top of Figure 1. We use the notation H to refer to the set of
viewpoints collected by an agent at different times.

3) Discontinuity frontiers: In addition to points on the
maximum range sphere, frontiers can also be identified by
searching for long edges (> ngisc = 0.8m) in the resulting
mesh of visible points, 7. These edges generally represent
depth discontinuities which could be openings, as illustrated
in yellow in Figure 2(c) and (g).

Consider a triangle R € T with a single long edge £ C R.
The vertices are usually' observed LiDAR points, representing
occupied space. Since the frontier is the boundary between
observed free and unobserved space, we need to introduce
a new point along the long edge representing the frontier.
This is used to test visibility, and determine when the frontier
has been observed. Therefore, we split the long edge at its
halfway point z = mean(&) = |71| > pce P» replacing the
single triangle by two:

Vv =v-u{z}; Ft=F u{z}
TH=T \{Ryu U {{y.p,2}} @
peé

'In limited cases they will be maximum-range sphere points.

Data: (V, 7, F) from discontinuity splitting
Result: Segmented frontiers G = {(Vy, Ty, Fr)} 5
U:={R eT|IRNF #0} // Set of frontier triangles
G := 0 // Set of segmented frontiers
while U/ # () do
Pick R, € U; set O := {R,} / Anchor, Open list
Vi=0, Tr =0, Fr =0 // New frontier
while O # () do
Pick R € O; set O := O\{R}, U :=U\{R}
Vi =VsUR, Fr:=FrU(RNF)
T =T U{R)
// Add neighbouring triangles to open list
O:=0U{XclU|lXxXNR|>1,

|| mean(X) — mean(R,)|| < aia }

end
if Area(7F) > Narea then
| G=GU{(Vs, Tr. Fy)}

end

end

Algorithm 1: Frontier segmentation algorithm, taking
the set of vertices, triangles and frontier points, and
returning set of frontiers, resulting from the region
growing algorithm. Area(7;) denotes the sum of areas
of triangles in 7.

where ~ and T respectively denote pre-update and post-update
quantities, and {y} = R\E is the point opposite the edge
being split. Triangles with more than one long edge can be
split similarly. We denote the operation splitting all long
edges as:

VYV, 7T+, Ft) =Disc(V", T ,F") 8)

4) Frontier segmentation: Connected groups of frontier
triangles are extracted via a region growing algorithm oper-
ating on the mesh, and those with area < fyeq = 0.2m? are
discarded. Region growing proceeds by marking all triangles
containing a frontier point as frontier, selecting a frontier
triangle, then adding triangles which share an edge with
a triangle in the frontier set. The diameter of a frontier is
limited to 74, to ensure that navigating to the mean position
of vertices is a reasonable approach for observing the frontier.
Each frontier is assigned a unique identifier (uid) for use in
establishing sequential correspondence and frontier selection.
The segmentation method is summarised in Algorithm 1.

5) Examples: The operation of the point cloud visibility
and frontier generation is illustrated in Figure 2; details are
described in the caption. Figure 1 provides a 3D example from
data collected in the CSIRO test tunnel, showing the adaptive
voxelisation, the determination of visible points and resulting
watertight mesh, and the resulting frontiers (the agent entered
the tunnel from the left). The frontiers are represented via a
triangulated mesh, summarised by a covariance ellipsoid.

B. Sequential updating

This section describes the sequential processing that
combines information between viewpoints. The processing
described in this section is repeated after moving a distance



dmin = 1m, at a minimum interval of T;, = 0.5s. A
viewpoint is stored permanently after each d,, = 5m of
vehicle motion for subsequent visibility processing. The data
required for long-term storage is similar to that retained for
a graph SLAM system. Since frontiers and viewpoints are
each localised in time, they are stored relative to the SLAM
trajectory at the time of observation, so that their positions
are adjusted as SLAM corrections are made.

The sequential update process takes candidate frontiers
from the memoryless processing described above, and re-
moves triangles that had already been explored by previous
viewpoints. Likewise, it examines frontiers carried over from
previous processing steps, and removes triangles that have
now been observed by the new viewpoint. Triangles are
removed if all frontier vertices are visible in a viewpoint,
according to the tests described below.

The visibility test compares frontier vertices of new (or old)
frontiers to triangles in old (or new) viewpoint(s). The frontier
point p € F is not visible if there exists a triangle /R which
is intersected by the line from the agent a to p; in practice we
consider a point observed if it is at least 7, = bmm in front
of a triangle. This can be done using well-known methods,
e.g., [16]. Whilst this is a raytracing operation, it is applied
to a relatively small number of frontier points, and thus has
manageable complexity. This is in contrast to dense mapping
frontier methods, where raytracing must be performed for
every LiDAR point. The test is skipped for frontiers with no
points within the maximum range of a viewpoint.

The visibility test removes triangles from the mesh for
which all frontier points were observed in the new viewpoint:

T, =T, \{ReT; |Vis(p) =1V p e RNF;}

+ . . + . —
V= U R, Fi= U RNF; ©)
ReT; ReT;"

We refer to the operation in (9) as (V]‘f, T, .7-“]2") =
NotVis((Vy, Ty, Ff), (W, T,F)). In order to perform the
visibility test, the old frontier or viewpoint is transformed into
the current coordinate frame of the agent using our SLAM
method, based on [17]. It is possible to defer tests for which
there is insufficient knowledge of the frame (i.e., which need
loop closures to improve precision), but this was not found
to be necessary in our application.

New frontiers and those which have been observed in the
viewpoint are then clustered, collecting groups of nearby
triangles into new frontiers. Due to the real-time requirement,
this is performed using a non-iterative kd-tree approach based
on [18]. Subsequently, the correspondence of old and new
frontiers is determined based on Gaussian approximations of
the points in each. This is performed calculating an optimal
2D assignment using the Jonker-Volegant algorithm [19],
where the cost of assigning old frontier f to new frontier g is
the KL divergence ¢(f,g) = DN(f)||N(g)), where N'(f)
and N (g) respectively refer to the Gaussian approximation
of the old and new frontiers f and g. The assignment is used
as an aid in frontier selection, allowing easy continuation of
the same task between updates.
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Fig. 2. 2D example of point cloud visibility algorithm for a simple
hallway scenario. (a) shows input point cloud, consisting of observed points,
supplemented by points on sphere, and the observer located at the black +.
(b) shows transformed points, colouring visible points (those lying on the
convex hull) and non-visible points (corresponding points in (a) coloured
similarly). Note the sparse distribution of points at azimuths where the
wall is close to the observer. (c) shows the visible points, connected by
straight edges, with color denoting frontiers identified via points on the
sphere, and those identified via long edges. Note the anomalous frontier
caused by a point marked as visible on the other side of the near wall. (d)
shows the inverse transform of the convex hull of (b), revealing the implied
visible region, again showing the consequence of the sparse sampling of
near surfaces in the transformed space in (b). (e)-(h) shows the same results
where the sampling density is increased by 3 X in the region within 1.5m of
the observer, eliminating the anomalous frontier, demonstrating how adaptive
subsampling mitigates the reconstruction error in (c).



Data: Time 7, agent position a, point cloud P from
(2), previous frontiers G and viewpoints H
Result: New set of frontiers G and viewpoints H
Calculate P from 4)
(V,T) := qhull(P) (5)
Calculate (V, T) by correspondence of V and V
Initialise F by (6)
YV, T,F) :=Disc(V,T,F) (8)
Calculate new frontiers G’ from (V, T, F) using
Algorithm 1
for each new frontier (V¢, 77, F¢) € G’ and old
viewpoint (7/,a’,V’, T") € H within range do
(Vf Ty, Fy ) =
NonVis((Vy, Ty, Fy), (7', a’, V', T")) 9)
end
G := 0 // Set of updated frontiers
for each old frontier (V¢, Ty, Ff) € G in range of
new viewpoint do

(V7> T}, Fj) = NotVis(Vy, Ty, Fy), (7, @, V. T))
)
if (V3,77 F}) # (vf,n,ff) then
G:= g U{(V},T;. F}p)} // Frontier updated
g:= g\{(va f’)}
end
end

G’ := Cluster(G' U G) // New frontier clusters

G’ := Assign(G’,G) // Old/new correspondence

G":=A{(Vy, Ty, Fy) € G'|Area(Ts) > Narca}

G := GUG // New set of frontiers

H:=HU{(r,a,V,T)} // New set of viewpoints
Algorithm 2: Processing performed to generate and
update frontiers at each iteration.

The complete process for generating and updating frontiers
is given in Algorithm 2.

C. Observer planning

While the algorithm of Sections III-A and III-B yields
frontiers that are robust to variations in ground slope and are
suitable for ground and aerial vehicles, additional checks are
required to determine from where it will be best to observe
the frontier. The first step of this process is to determine a
collection of potential observer locations; as with [13], this
is performed using the mesh generated in (5). Mesh vertices
are initially classified as traversable if the angle between the
normal and the z-axis is less than 7yom = 30°, i.e.,

A ={peV]lel¢

where e, = [0,0,1]7, and &, 1 denotes the eigenvector corre-
sponding to the voxel from which p originated. Subsequently,
traversable regions are found as those for which there are
no non-traversable points within a neighbourhood of size
Niray = 0.5m:

i,l‘ > COSnnorm} (10)

"={peA|pecAVp eVstlp—p| <N}
(11)
Points in A" are subsequently subsampled, retaining a
single point within a 0.8m neighbourhood, but retaining

the connectivity between neighbourhoods according to the
constituent points. Only points that are reachable from the
agent according to this simplified graph are retained. We refer
to this final set of traversable points as A.

We consider the points in A as potential locations from
which we may observe the frontier. The reward for observing a
frontier triangle R € 7T from a location a € A is a heuristic
based on an approximation of the volume that would be
observed from the frontier triangle to the maximum distance
dmax 1f viewed from agent position a, assuming that the
view was unimpeded. The approximation is based on the
volume of a spherical sector. The area of the sector with
radius r is A = Qr2, where Q is the solid angle of the sector,
while the volume is QT Therefore, if the triangle has an
area A = Area(R) at range r = || mean(R) — a|| from the
agent the new volume observed could be approximated as
525 (d3,, — r%). Further accounting for the angle 6 between
the triangle’s normal vector and the vector from the triangle
midpoint to the agent, we arrive at an estimate of

. AcosT 0 Acost 0 (d3,.
i(a,R) = S o) = 20 (e )
(12)
where cosT § £ max{cos ,0}. Empirically, it was found that
the resulting frontier selection performs better if the dynamic
range of the reward is reduced. One way of achieving that
is to replace the term d;‘;" with %o this may be viewed as
accounting for a limiting of growth in the z axis due to the
floor and ceiling.
The observer position and reward for a new or newly
updated frontier is then calculated as the position which

observes the largest total new volume:

7 = max Z 7(a,R)
RET;
(13)

Observer positions for frontiers that are not updated in a
given iteration are left unchanged.

D. Multi-agent frontiers

While it would be preferable to replicate the viewpoints
of each agent at every other agent, the communications
involved in doing so would be prohibitive. The data already
transmitted to solve the multiagent SLAM problem (i.e.,
submaps of 3D surfels, as described in [17]) was found to be
insufficient to reconstruct a reliable estimate of the boundary
between known free and unknown space. For this reason, the
approach taken was to share summaries of frontiers (i.e., the
mean and covariance of the points in a frontier, the reward
estimate and the best observer location) between agents, and
penalise the rewards according to agents’ trajectories. Thus,
if a remote agent’s trajectory passes through a frontier from
the local agent, its reward is discounted, and likewise, if
the local agent’s trajectory (or that of another remote agent)
passes through a frontier from a remote agent, its reward
is discounted. Since trajectories are shared for the purpose
of multiagent SLAM, the communications overhead is very
small. The concept is similar to the implicit communication



of the grazing behaviour in [20]. The reward discount is
achieved by storing a point every five seconds along each
agent’s trajectory; we refer to the set of points for all agents
up to and including the current time as £. The discounted
reward is then:

=g 11

peL | llp—osl|<na

dpny(llp = ofll)  (14)

where d, ,,(r) = p+ (1 — p) sin’ (%5)- The discount reduces
the reward by a factor of p = 0.2 if the goal is in a position
previously visited by the agent, and increases according to
a sine wave to have no discount if ||p — o¢|| > 14 = 6m.
Similar discounts are applied to goal locations which have
been attempted and found to be unreachable.

IV. FRONTIER-BASED EXPLORATION

To explore the environment, each robot repeatedly selects,
and navigates to, frontiers in a distributed manner. The
selection mechanism differs between the UGV and UAV
platforms, due to different planners, and a rapid integration
effort onto the UAV before the event.

A. UGV frontier selection

The most common methods for frontier selection choose
the nearest frontier to an agent, or the largest frontier. In
the complex environments presented by the SubT Urban
Challenge, both of these were found to be ineffective. The
solution adopted was a utility function, which selects the
frontier which provides the highest reward per unit distance:

f* = arg maxu(f,a); u(f,a)=7s/d(os,a) (15)
f

This performed adequately for both well-structured areas and

more open regions. The distance in (15) is calculated using

the topometric map, described in Section I'V-C.

Agents operate independently, and coordinate when com-
munications are available through two mechanisms. Firstly,
other agents’ latest goals were included in the set £ when
calculating the frontier discounts in (14). Secondly, agents are
prevented from selecting a frontier that is currently selected
by another agent.

In challenging real-world environments, it is common for
navigation to a frontier to fail. Progress towards the frontier is
monitored, and if the closest distance reached to the currently
selected frontier does not improve by at least 1m in any 15s
period, an additional penalty pg,; is applied to the frontier,
which is cleared when the frontier is updated.

The frontier selection is summarised in Algorithm 3.

B. UAV frontier selection

Frontier selection for the UAV did not use the set of sparse
candidate observer positions and instead navigates to the mean
of the selected frontier. Due to flight time, selection was biased
to avoid backtracking, and the drones were only launched
near large novel spaces. Frontier selection is independent of
other agents, and uses the reward:

min{Q\/m, \/ Af7 Xsize}2

max{ Xplacklist: dw (0 f, @)}

’Ff =ps (16)

Data: Agent position a; frontier observer positions
oy; L containing agents’ historical trajectories,
failed goals, and current goals; frontiers
selected by other agents M

Result: Newly selected frontier f*

for each frontier f ¢ M do

Calculate oy and 7y using (13), 7y using (14)
if f has failed and not been updated since then
| T i=Tf— pPrail
end
end

Calculate f* using (15), excluding f € M
Algorithm 3: Algorithm for multiagent frontier selection.

The term 2,/5A¢ 2 (where Ay o is the second-largest eigen-
value of the covariance matrix of frontier vertices) and the
square root of the frontier area both represent estimates of
the minimum dimension of the frontier, taken as information
regarding whether it is likely that the UAV will be able to
proceed through the region. The limit on maximum size
Xsize = om limits the pull associated with large, distant
frontiers. The weighted distance d,, (o, a) from the agent
position a to the frontier centre oy weights the z-component
by a factor of two in order to discourage movement to
frontiers far above or below, while the limit on minimum
SiZe Xblacklist = 9m prevents fixation on very close frontiers.

The multiplier py = s fwf’?f’l provides momentum, where
sy = 4 if the frontier is the same as that selected at the
previous iteration, and one otherwise. The weight w = 2 is
raised to the power of the dot product of the unit vector from
the agent to the frontier ¥ = (o; —a)/||os — a|| and ', the
same quantity when the frontier was first selected, in order
to encourage continuous motion in the same direction.

The same criterion is utilised to blacklist frontiers that
do not make sufficient progress within 15s. The minimum
size of frontiers considered for selection is Yz = 1.7m?. A
frontier is considered complete if the agent reaches within
Yblacklist Of the frontier centre.

C. Topometric map

When frontiers are in the local vicinity of the agent, local
navigation methods are employed to find a feasible path.
However, when the frontier being investigated by an agent is
completed (e.g., reaching a dead end), to achieve scalability
an alternate method must be employed to navigate to the
subsequently selected frontier, which may be distant.

To keep track of frontiers at a global scale, we have
developed a multi-agent topometric map (i.e., a topological
graph with metric information) for UGV navigation purposes.
The map consists of a graph, where nodes represent points
along agent trajectories (spaced by around 3m), and edges
represent the connections along the trajectory, supplemented
by edges generated when the logic in Section III-C detects a
path between two nodes. The map is shared between agents,
allowing one agent to navigate to another agent’s frontier.
Frontier nodes are incorporated into the graph by connecting



them to the node on the agent’s trajectory closest in time to
the time when the frontier was last updated. An example of
the topometric map generated over multiple agents over a
mission is shown below in Figure 3(b), in white. To navigate
to a distant frontier, we first navigate to the associated node
using the path generated by A* on the topometric graph. The
same A* planner is leveraged to compute the distance from
the agent to each frontier in the map, as used in (15).

V. EXPERIMENTAL RESULTS

Frontier exploration was the primary method used by the
CSIRO team to explore the abandoned Satsop Nuclear Power
Plant, as part of the DARPA SubT UC. A heterogeneous
robot team of seven UGVs and UAVs was deployed (Figure
3(a)), commanded by a single operator during four one-
hour trials. The operator had no prior knowledge of the
courses, which spanned multiple levels, included stairwells,
vertical shafts and had lead-lined concrete walls blocking
direct communications. Each robot was equipped with a
LiDAR based perception package, and ran the same SLAM
and frontier generation algorithms. The goal of the challenge
was to detect as many artefacts as possible, e.g., backpacks,
“survivors”, and cell phones. The inset in Figure 3(a) provides
an example of an artefact detected during an explore mission,
annotated and relayed to the operator for confirmation.

The most successful strategy used at the UC depended on
the explore-sync behaviour: An agent explores into the facility,
rapidly losing communication contact, while building a map.
After three minutes it drives back to communication range and
uplinks data (maps, remaining frontiers, and object detections)
to the operator. Given this new map, subsequent robots were
commanded to drop relay nodes (expanding communication
range), or were sent on their own explore-sync missions.
Communication was performed using Rajant ES1 (UGVs and
relay nodes), and DX2 (UAV) radios. Agents communicate
with each other and with the operator station in a peer-to-
peer, disruption-tolerant fashion as links are available. The
distributed processing described in Section III-D tolerates high
latency due to dropped communications; this is mitigated by
the fact that agents operating in the same vicinity generally
have good communications.

The UAV was explicitly launched from the BIA 5 Titan
UGVs near vertical shafts, or areas hard to observe from
the ground. Robots without directed commands would au-
tomatically start explore-sync behaviours. When the system
worked well, the operator was required only to confirm object
detections, but due to the complexity of the course, the
operator also had to provide commands to descend stairwells,
or command robots to a global pose to help direct exploration.

The explore-sync behaviour accounted for the majority of
detected objects and distance travelled: One UGV covered
782m after descending a stairwell and detecting 3 of 5
potential objects in that area; Another UGV traversed 1.3km
on an upper level, observing 7 of 11 objects. Not all observed
objects were scored due to perception and communications.
Explore-sync also produced several difficulties: Agents often
did not return to the distant region being explored after

completing their sync task, as frontier selection was myopic.
In hindsight, a simple heuristic for addressing this would have
been to return to the region being explored after sync. Rooms
with small doors were often not explored as observer positions
were not found due to the insufficient voxel resolution.

Snapshots of exploration are shown in Figure 4 (for the
UGV) and Figure 5 (for the UAV). In both cases, each frontier
is shown in magenta (depicted via the mean of the frontier’s
vertices). Figure 3(b) shows the final map merged from all
agents, with frontiers and the topometric map overlaid.

The Satsop facility contained vastly different building
scales and structure types compared to environments consid-
ered during development and prior testing. Highly complex
roof structures were found to provide many frontiers; the UGV
observer planning and UAV frontier selection largely avoided
undesirable effects due to these. Improvements are expected
by tuning the logic that selects which viewpoints to retain, and
performing finer splitting of the long edges in discontinuity
frontiers. Occasional instances were observed where frontiers
reappear in previously explored space; again, this can be
improved by tuning the logic for retaining viewpoints.

One challenge for the UGVs was an instance where the 3D
frontier was correctly identified, but due to barriers the path
to the frontier was not autonomously planned. This highlights
the need for a traversability frontier to plan paths to the 3D
frontiers. The relative performance of a method based purely
on a traversability frontier, to the proposed and alternate 3D
frontier methods, and hybrid traversability/3D methods is an
interesting question for further study.

VI. CONCLUSION

This paper presents an approach to 3D frontier generation
which enables online application in complex environments by
directly modelling the boundary of explored and unexplored
space rather than computing and storing dense 3D spatial
maps. The method works alongside a graph SLAM pipeline to
scale to large environments being explored by multiple agents.
The method was a core part of the autonomy capability in
our team’s entry to the SubT UC, where it was utilised on
seven agents, including both UGVs and UAVs. A major focus
of future work will be on incorporating frontier assignment
into a more general multi-agent task allocation framework,
considering non-myopic plans.
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