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ABSTRACT 
The brief history of human-robot teams can be traced through 
the changing perspective of a robot’s role within the team, which 
has evolved from being treated as a tool to a recent shift toward 
the desire to have the robot act as an equal partner. While 
researchers have made tremendous strides in recent years, 
“making robots into team players” [1] that can work with 
humans as peers still presents a multitude of challenges. One key 
characteristic of a synergistic team is the ability to intervene or 
backup each other as necessary (e.g., when the other is 
underperforming). Hence, in this article, we formulate 
distributed human-robot teamwork in the framework of mixed-
initiative interaction, which is an interaction strategy that lets 
the best-suited member of the team to perform the work by 
allowing team members to interleave their contributions to the 
overall team performance through opportunistic seizure and 
relinquishment of task initiatives. Specifically, this paper aims to 
address the issue of initiative decision-making – that is, when 
should a robot take over (relinquish) control from (to) a human 
teammate. 

CCS CONCEPTS 
• Computing methodologies → Intelligent agents • Computing 
methodologies → Multi-agent planning 

KEYWORDS 
Mixed-initiative interaction, human-robot team, search and 
rescue 

ACM Reference format: 
Shu Jiang and Jonathan Odom. 2018. Toward Initiative-Decision Making 

for Distributed Human-Robot Teams. In Proceedings of the 6th Annual 
International Conference on Human-Agent Interaction (HAI’18), December 
15-18, 2018, Southampton, United Kingdom. ACM, 7 pages. 

https://doi.org/10.1145/as-assigned-during-rightsreview 

1 INTRODUCTION 

Recent years have seen an increase in the use of robots in 
hazardous emergency response situations (i.e., potentially 
harmful to first responders) that range from natural disasters 
(e.g., Fukushima nuclear plant meltdown) to terrorist attacks 
(e.g., the World Trade Center (WTC) disaster). In these 
situations, human-robot teams are employed in a manner where 
the robots are controlled by one or more operators at a remote 
location, away from the danger zone. However, this distance 
creates a disconnect between the human and robot that presents 
some unique challenges for effective collaboration within the 
human-robot team (e.g., situational awareness, time delay). 
Moreover, once a disaster occurs, the human condition and 
physical site exacerbate the issues of fostering effective human-
robot teamwork. Typical disaster sites caused by earthquakes are 
permeated with rubble piles, confined spaces, and unstable 
structures can greatly impair a robot’s mobility and perceptual 
capabilities [2]. In addition, critical emergency situations also 
put first responders under constant stressors (e.g., time pressure 
and high-stake risks) that can cause fatigue and make them 
error-prone while operating and/or supervising robots [3]. 

Despite both the human and the robot having their own 
respective limitations when operating under the extreme 
conditions of disaster response missions, they each also have a 
set of complementary skills that if interleaved properly, can 
enable the human and robot to collaborate as an effective team. 
Several models have been proposed for the design of human-
robot systems. The earliest and most primitive form of human-
robot teamwork is teleoperation, where the robot complements 
the human’s physical limitations and extends her physical 
presence. Supervisory control is then proposed to alleviate the 
significant workload of teleoperation by having the human act as 
a supervisor, who monitors the robot and intervenes whenever 
necessary. However, humans are found to be negligent as a 
supervisor [4]. In recent years, new models of human-robot 
systems have emerged that have both the human and the robot 
playing active roles in the overall performance of the team [5-
13]. These advancements can be contributed to the adoption of 
theories and models of teamwork from the areas of human-
automation interaction, human-computer interaction, 
psychology, cognitive science, and human teamwork [14-20].  

However, many challenges still remain for “making robots 
into team players” [1].  One important aspect of distributed 
human-robot teamwork is where the robot can freely intervene 
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and take over control of the task from the human teammate 
when it is deemed necessary to do so. This aspect of teamwork is 
especially important during critical disaster response missions 
where the human operator is prone to errors [3]. Furthermore, 
the behavior of backing up fellow team members has been 
identified as one of the “Big Fives” core components of effective 
teamwork [21]. Hence in this article, we formulate human-robot 
teamwork in the framework of mixed-initiative interaction, 
which is an interaction strategy that allows the human and robot 
to work together to achieve a common goal in a way that 
exploits their complementary capabilities through efficient 
interleaving of contributions [22-24]. The basic idea is to 
interleave team members’ contributions to the overall team 
performance through opportunistic seizure and relinquishment 
of task initiatives. 

While there are many issues when designing effective mixed-
initiative human-robot teamwork, this paper focuses on the issue 
of initiative decision-making, or what is the computational 
mechanism for the robot to determine when it is appropriate to 
take control or to defer to its human teammate. The goal is 
toward building mixed-initiative human-robot teamwork, where 
the robot can freely intervene and take over control of the task 
from (or relinquish control to) the human teammate when it is 
deemed necessary to do so. In the next section, we briefly survey 
the state of practice of human-robot teamwork. In section 3, we 
present the interactive partially observable Markov decision 
process (I-POMDP) as the computational framework for 
initiative decision-making. Section 4 presents a victim search 
task as an application of initiative decision-making along with 
the simulation results of the task to illustrate the effectiveness of 
initiative decision-making mechanism. The last section 
concludes the paper and proposes the necessary future work. 

2 RELATED WORK 

The brief history of human-robot teams can be traced from the 
changing perspective of a robot’s role within the team, which 
has evolved from being treated as a tool to a recent shift toward 
the desire to have the robot act as an equal partner/peer. 
Teleoperation is an early example of the teaming perspective 
where the robots are treated as tools. On the other extreme of 
the spectrum is supervisory control, where the robot is fully 
autonomous and able to carry out the designated task without 
human intervention [28]. In this paradigm, the robot is seen as a 
subordinate and the human as the supervisor, who can intervene 
to assist the robot whenever it is needed. However, humans are 
found to be easily bored and negligent as a supervisor [4].  

While teleoperation and supervisory control are still active 
areas of research, the perspective of human-robot teamwork has 
shifted toward the middle between teleoperation and 
supervisory control, where the control of the task is shared 
between the human and robot. A notable shared control strategy 
is the autonomy-centered approach [25, 26], where the basic 
tenet is to let the autonomy of the robot change as the situation 
evolves. Before a system can adjust its autonomy based on 
situational demands, there first needs to be well-defined levels of 
autonomy. However, there are no widely accepted levels of 

autonomy for human-robot teamwork. Furthermore, Baker and 
Yanco [27] noted that human operators rarely change autonomy 
modes even when it would improve performance. Another 
critical issue of autonomy-centered approach is the issue of 
control decision authority [28] – that is, who decides when the 
control function must be shifted (e.g., from human to robot), a 
function that is distinct from the “direct controlling” function 
[29]. Principles of human-centered automation requires the 
human operator to be the final authority and that only she can 
decide when and how automation is changed [30]. However, 
Moray et al. [31] argued that final authority for decisions and 
action must be allocated to automation in time-critical situations.  

Recent research efforts in human-robot teaming have also 
started to take advantage of the insights (i.e., theories and 
models) drawn from research in cognitive science, psychology, 
and human teamwork for building effective human-robot teams 
where the robot is envisioned as a partner. Hoffman and 
Breazeal [6] presented a human-robot collaboration architecture 
based on joint intention theory [15]. This theory predicts that 
effective teamwork requires team members to maintain a set of 
shared beliefs, demonstrate joint intention toward a shared goal 
and to provide mutual support [15]. The resulting collaborative 
system is able to dynamically assign sub-tasks between team 
members while taking into consideration the collaborator’s 
abilities and the current task state [6]. Several works have drawn 
on recent findings in cognitive science on joint action. Sebanz et 
al. [16] identified several cognitive mechanisms that are involved 
in joint action: 1) joint attention, 2) action observation, 3) task-
sharing, 4) action coordination, and 5) agency in joint action. 
Mutlu et al. explored how these mechanisms might be used to 
design collaborative robot behaviors through gaze cues to 
improve joint attention and action observation to monitor task 
breakdowns [7].  

Perspective taking has been shown to occur in various 
collaborative situations, which is the ability of people to take one 
another’s perspective, and may be used to predict what other 
people will do [8]. Trafton et al. [8] presented a computational 
cognitive model of perspective taking for human-robot 
teamwork. Ros et al. [10] used perspective taking for ambiguity 
resolution for ambiguous descriptions generated by the human 
partner. Research on mirror neurons [17] has inspired models of 
human-robot collaboration that involved a robot imitating or 
simulating the behaviors of its partner in order to make 
inferences about her actions [7]. Gray et al. proposed a model of 
teamwork that enabled a robot to observe the actions of its 
partner by using self as the simulator and make inferences about 
the partner’s beliefs states to anticipate and offer help to the 
human partner as needed [11].  

Recent work has also started to take advantage of the 
findings from research into human team interaction. Shah et al. 
presented a robot plan execution system that uses insights from 
human-human teaming such as the use of explicit and implicit 
coordination behaviors; the executive system is able to choose 
and schedule the robot’s action, adapt to the human operator, 
and minimize the human’s idle time [32]. Nikolaidis and Shah 
applied a shared mental model, a key teamwork process of 
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human teams [19], for effective human-robot teaming [12]. 
Nikolaidis and Shah also presented a computational formulation 
of the robot’s inter-role knowledge based on cross-training 
methodology, a widely used human team training strategy [20], 
for human-robot teamwork [13]. 

While significant advances have been made in human-robot 
teamwork, multitudes of challenges still remained. One such 
challenge is the backup behavior within the team, which is 
defined as “the provision of task-efforts to another when there is 
recognition that there is a problem in the team” [21]. The backup 
behavior would allow the robot to take over control of the task 
from the human teammate when it is necessary to do so, which 
is especially important during critical disaster response missions 
where the human operator is prone to errors [3]. Thus, our 
research aims to explore the use of backup behavior within a 
distributed human-robot team. The hypothesis is that backup 
behavior would afford a human-robot team fewer errors and 
greater adaptability. This work formulates the backup behavior 
in the framework of mixed-initiative human-robot interaction 
[33], which we examine in more detail in the following section. 

3 COMPUTATIONAL MODEL OF INITIATIVE 
DECISION-MAKING 

This section presents a computational model of initiative 
decision-making as the first step toward building effective 
mixed-initiative teams. The goal of mixed-initiative teaming 
strategy is to interleave contributions of team members in an 
effective manner to achieve a common goal. Interleaving of 
contributions reflects the basic idea of mixed-initiative 
interaction by letting the best operator perform the task. While 
effective interleaving of contributions is a desired manifestation 
of the mixed-initiative system, opportunistic intervention is a 
requirement to achieve such a desired effect. Hence, initiative 
decision-making is concerned with the question of when should 
a robot seize (relinquish) initiative from (to) a human teammate. 
Or more specifically, what is the appropriate reasoning 
mechanism the robot should employ to evaluate whether or not 
it should take control (relinquish) control from (to) the human 
operator? In the context of distributed human-robot teams, 
initiative decision-making can simply be viewed as an arbiter 
that switches between actions of human and robot over the 
course of a task, Figure 1.  
 

 

Figure 1: Initiative Decision-Making for Distributed Human-Robot 
Teams 

However, “inescapable uncertainties” about human intention 
and the benefit of intervention at different times is an inherent 

issue for real world operations [34]. Furthermore, inappropriate 
timing of intervention could have severe consequences beyond 
mission failure, depending on the criticality of the mission. That 
means a successful mixed-initiative human-robot team would 
require an inherent capability of the mixed-initiative system for 
recognizing the opportunity (i.e., when) to assist the human 
operator (or ask for help) during a collaborative task in a timely 
manner. Consequently, effective teamwork necessitates each 
team member to factor fellow teammates’ decision-making into 
consideration when deliberating among action choices. Thus, in 
the context of a human-robot team, the robot needs to take the 
human partner’s actions into consideration when deciding 
whether to seize initiative from the human teammate. Hence, the 
issue of initiative decision-making is essentially a partially 
observable stochastic game. 

There are two general perspectives governing approaches 
employed to the problem of decision-making in stochastic games 
[35]: objective and subjective. Objective approaches try to find 
plans for all agents centrally, which are then distributed and 
executed by the agents independently. Decentralized POMDP 
(Dec-POMDP) is a common objective approach to planning for a 
team of cooperative agents. Dec-POMDP is a generalization of 
the single-agent POMDP to multi-agent systems by considering 
joint actions and observations [35]. The goal is to find a joint 
policy that maximizes the expected cumulative reward under the 
assumption that the agents are fully cooperative. While Dec-
POMDP is a natural framework for multi-robot teamwork, we 
argue that it may not be an appropriate for human-robot 
teamwork since the human might not execute a policy faithfully 
even if one can be assigned to them. 

On the other hand, subjective approaches for multi-agent 
decision-making reason from the perspective of one particular 
agent. The subjective approaches consider each agent 
independently and have each agent maintain an explicit models 
of the other agents [35]. In essence, the goal of each agent is to 
take the best actions by predicting the actions of other agents in 
the environment. Interactive POMDP (I-POMDP) is a subjective 
approach that extends POMDP to multi-agent settings by 
Gmystrasiewicz and Doshi [36] to include the concept of agent 
models into the state space, which they termed the interactive 
state space. As a result, in addition to the beliefs about the 
physical environment, the interactive state space can also 
include the preferences, capabilities, and beliefs of other agents. 
Hence, I-POMDP allows planning from the robot’s perspective 
while taking into account the beliefs and actions of the human 
teammate. 

Formally, an I-POMDP for agent 𝑖 is defined as a tuple 

𝐼𝑃𝑂𝑀𝐷𝑃𝑖 =< 𝐼𝑆𝑖 , 𝐴, 𝑇𝑖 , Ω𝑖 , 𝑂𝑖 , 𝑅𝑖 > 

where [36]: 

 𝐼𝑆𝑖 is a set of interactive states defined as 𝐼𝑆𝑖 = 𝑆 × 𝑀𝑗, 
where 𝑆  is the set of states of the physical 
environment, and 𝑀𝑗 is the set of possible models of 
agent 𝑗 

 𝐴 = 𝐴𝑖 × 𝐴𝑗  is the set of joint moves of all agents 
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 𝑇𝑖 is the transition model  

 Z𝑖 is observation space  

 𝑂𝑖 is an observation function  

 𝑅𝑖 is defined as 𝑅𝑖: 𝐼𝑆𝑖 × 𝐴 → ℛ 

Solving I-POMDP is computationally very expensive. In 
addition to the complexity issues that it inherits from POMDP, I-
POMDP also suffers from the curse of nested beliefs, where the 
agent’s belief include the beliefs of other agents and their beliefs 
about the agent’s beliefs, and so on [37]. Fortunately, for our 
application of initiative decision-making in distributed human-
robot teams, we can take advantage of the partial observability 
of human actions to simplify the problem. In distributed human-
robot teams, the human operator’s actions are directly (albeit 
partially) observable to the robot since their commands are sent 
to the robot to be executed, Figure 1. The physical environment 
is then changed by the robot, which either carries out the 
human’s desired action, modifies the action, or takes over as 
necessary. Hence, modeling the beliefs of the human teammate 
can be replaced with the directly observed actions of the human 
for initiative decision-making. 

With the simplified I-POMDP as our computational 
framework, the algorithm for initiative decision-making is 
shown in Figure 2. The algorithm takes as input the model of the 
decision problem and outputs the initiative decision – that is, to 
seize, relinquish, or follow initiative. The algorithm first 
generates an initiative policy (using a POMDP solver [38]) in the 
form of a policy graph, where each node consists of an action 
and edges represent transitions based on observations. At every 
time step, the task state and human action are estimated, which 
form the observation state that is used to query the policy for the 
initiative decision. The initiative decision is then executed by the 
robot through either carrying out the human command or acting 
on its own initiative. 

Algorithm 1 Initiative Decision-Making 

Input: 𝐼𝑆, 𝐴, 𝑂, 𝑇, 𝑍, 𝑅    

Output:  𝑎𝑅       // initiative decision 

1:      // get policy in the form of a policy graph 

2:      𝜋 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑜𝑙𝑖𝑐𝑦(𝐼𝑆, 𝐴, 𝑂, 𝑇, 𝑍, 𝑅)         

4:      while !endOfTask do        

5:            𝑎𝐻𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝐻𝑢𝑚𝑎𝑛𝐴𝑐𝑡𝑖𝑜𝑛()  

6:            𝑠𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑇𝑎𝑠𝑘𝑆𝑡𝑎𝑡𝑒()         

7:            // observation = {task state} x {human action} 

8:            𝑧{𝑠, 𝑎𝐻} 

9:            // query the policy for initiative decision 

10:          𝑎𝑅𝜋(𝑧)      // e.g., follow or seize initiative            

11:          𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝑎𝑅)        

12:     end while 

Figure 2: Algorithm for Initiative Decision-Making 

The algorithm above presents the high-level steps of 
initiative decision-making, where the detailed implementation of 
each step depends on the specific task of concern and the type of 
initiative that the robot is allowed to take. We previously defined 
initiative as  “an element of a task that can range from low-level 
motion control of the robot to high-level specification of task goals” 
[39]. Consequently, the output of estimateHumanAction() would 
depend on the initiative type, which can be high-level verbal 
commands from human or low-level joystick inputs. One 
example of low-level type of initiative is the safety-initiative, 
where the robot is allowed to protect itself by engaging the 
obstacle avoidance behavior. For this safety-initiative, the 
function would estimate whether the human is driving forward, 
backward, turning left or right from the joystick inputs. On the 
other hand, for higher level initiative such as a search task, the 
estimateHumanAction() function would estimate high level 
behaviors such as whether the human is searching a local area or 
moving to new areas. Furthermore, different type of initiatives 
can be combined to form a more comprehensive backup 
behaviors that involves different type of initiatives. For instance, 
safety initiative and search initiative can be combined to result 
in robot that has the initiative to protect itself and the initiative 
to take over search task from the human operator when 
necessary to do so.  

Similarly, while the initiative decision space consists of a 
small set of actions, e.g., {seize, follow, relinquish}, the result of 
𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝑎𝑅) can be very different depends on the type of 
initiative. For instance, for the safety initiative, seize means the 
robot would engage the avoid obstacle behaviors; and for search 
initiative, seize when human is spending too much time 
searching a local area means that the robot would move to a new 
area. This, in effect, separates initiative decision-making from 
the actual low-level implementation of behavioral actions (e.g., 
obstacle avoidance), which simplifies problem formulation and 
render it more generalizable to different kinds of task and 
initiative types. 

3  EXPERIMENT AND RESULTS 

3.1 Initiative Decision-Making for Victim 
Search 

The Kobe earthquake and Oklahoma City bombing motivated 
the development of robots for humanitarian efforts in search and 
rescue of trapped victims and propelled the emergence of urban 
search and rescue (USAR) as an important area of research for 
robotics [3]. These efforts led to the first use of robots for search 
and rescue at the World Trade Center disaster in 2001 [3]. While 
the use of robots at disaster sites has found tremendous success, 
significant challenges still remain. For instance, researchers have 
found that 50% of the terminal failures in disaster robots are 
caused by human error [40]. We posit that with the presented 
mixed-initiative framework, these terminal failures can be 
drastically reduced and mitigated by allowing the robot to take 
initiative when human error occurs during disaster rescue 
operations.  
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Hence, as an illustrative example of initiative decision-
making, we examine a disaster response scenario where the 
distributed human-robot team is tasked to search within an 
unknown environment for disaster victims without a-priori 
information about their locations. In order to backup the human 
teammate effectively, the robot needs to decide at every moment 
in time whether to follow human commands or to take control to 
act autonomously. To formulate this initiative decision problem 
in the framework presented in the previous section, we start 
with the interactive state, which we simplified in this work to 
consists of the physical state of the search task, 𝑆, and human 
actions, 𝐴𝐻:  

𝐼𝑆 = {𝑆} × {𝐴𝐻} 
Based on behavioral ecology literature of human foraging 

behaviors [41], human search behaviors can broadly be 
categorized into two high level behaviors: exploitation and 
exploration. Exploitation is the behavior of thoroughly searching 
a local area, which is limited by the robot’s visual sensory range 
for victim detection and identification. The goal of exploitation is 
to thoroughly search a local area to ensure completeness before 
leaving to search a distant area. However, the law of diminishing 
returns states that the probability of finding a victim in one area 
decreases as the area is exhaustively exploited. Hence, the 
exploration behavior is required to move the robot to a new area 
when it is no longer productive to stay in one area. The goal of 
exploration is to cover as much area as fast as possible by 
continually moving to the next best view location, or a location 
that provides the most information gain. While exploration 
ensures efficient area coverage in a given time interval, it can 
overlook some areas that might contain victims. An efficient 
search behavior is then simply the efficient tradeoff between 
exploiting one locale and exploring others. Consequently, we 
defined the human action space for the search task as  

𝐴𝐻 = {𝑒𝑥𝑝𝑙𝑜𝑖𝑡, 𝑒𝑥𝑝𝑙𝑜𝑟𝑒} 
Furthermore, the state of the search task is defined in terms 

of exploitation state, 𝑆𝑒, and victim status, 𝑆𝑣:   
𝑆 = {𝑆𝑒} × {𝑆𝑣} 

The exploitation state 𝑆𝑒 tries to capture whether the robot is 
spending sufficient time searching a local area before moving on 
to a new area. In the search task, 𝑆𝑒 is defined as the percentage 
of the robot’s surrounding area that has been searched (i.e., 
looked at using its onboard camera) for potential victims. The 
objective of search is to find a victim, hence, the state of whether 
a victim is found, 𝑆𝑣, is part of the state space. For this example, 
exploitation state is discretized into 10 levels, while victim-found 
status is a Boolean variable indicating whether a victim has been 
found. As a result, the interactive state becomes:  

𝐼𝑆 = {𝐴𝐻} × {𝑆𝑒} × {𝑆𝑣} 
At every moment in time, the robot needs to decide whether 

to follow human initiative (i.e., follow human command) or to 
seize initiative from a human (i.e., take control from a human). 
For instance, if the human is spending too much time exploiting 
a local area, the robot might seize the initiative to explore new 
areas. Hence, the initiative decision space represents the action 
space of the robot: 

𝐴𝑅 = {𝑓𝑜𝑙𝑙𝑜𝑤, 𝑠𝑒𝑖𝑧𝑒} 

The observation space is the same as the interactive state 
space, which includes the state of exploitation, victim status, and 
human action. The transition model describes how the 
interactive state changes after a specific action in executed; for 
this example, we assume human action has a tendency to stay 
the same from one time step to the next and the level of 
exploitation state can only change one level at a time. 
Furthermore, we assume the exploitation behavior has a higher 
probability of finding a victim than the exploration behavior. 
Lastly, the goal of search is to find a victim, hence a positive 
reward is given when a victim is found, i.e., when 𝑆𝑣 = 1:   

𝑅(𝑆𝑣 = 1) = 10 

3.2 Experimental Setup 

The operating hypothesis of this work is that the performance of 
a distributed human-robot team would be improved when the 
robot is allowed to back up, or take over control 
opportunistically from the human teammate. To validate the 
initiative decision-making for the victim search task, a 
simulation experiment was conducted to compare the search 
performances of different search behaviors. The experimental 
search environment is shown in Figure 3 in the Gazebo 
simulation framework. The area of the search environment is 
approximately 60m by 60m. Ten simulated victims are 
distributed across the environment along with blue markers for 
ease of victim detection (since victim detection is not the 
primary concern of this research). The robot used for the 
experiment is a simulated Pioneer 3-AT, a four-wheel drive 
mobile platform, equipped with a camera with a field of view of 
60 degrees and a laser range-finder. The robot has neither the 
prior knowledge of the environment nor the number and 
locations of the simulated disaster victims.  

 

Figure 3: Environment for Victim Search in Gazebo Simulation 

The experiment consists of two basic steps. First, we 
simulated three human search models, with different level of 
expertise at victim search, that generates joystick commands to 
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control the robot. The three simulated human search 
performance profiles are:  

1. Novice – this profile simulates a human operator who 
searches an environment by moving the robot in 
random directions; this constitutes a poor human search 
performance, which would present opportunities for the 
robot to seize initiative. 

2. Expert – this profile simulates a human operator who 
knows the victim locations, hence able to search the 
environment optimally; ideally, the robot would not 
need to intervene in this case. 

3. Intermediate –  this profile simulates an average human 
operator, who acts as a Novice operator half of the time 
and an Expert operator the other half of the time  

Second, we compare the condition of mixed-initiative, where 
the robot is allowed to take initiative to intervene and take over 
from the (simulated) human, to the condition of teleoperation, 
where the robot does not take initiative and simply follows the 
(simulated) human’s joystick commands. When taking initiative, 
without prior knowledge of the environment and victim 
locations, the robot utilizes a frontier-based exploration strategy 
that seeks the most gain in area coverage of the unknown 
environment when deciding where to move next [39]. In effect, 
this search behavior would always move the robot toward the 
largest frontier in current area covered, where a frontier is 
defined as the boundary between explored and unexplored areas. 

Our hypothesis is that by allowing the robot to seize initiative 
opportunistically to backup the human operator, the 
performance of the human-robot system would be better than 
the case where the robot does not take such initiatives. 
Furthermore, we also hypothesize that the number of 
interventions would decrease as the competency of the human 
operator is increased. In our case, that is, the robot would 
intervene most often with the Novice human operator and least 
frequently with the Expert operator. 

3.3  Results 

Using thirty Monte-Carlo runs, the results of the experiment 
are summarized in Figures 4 and 5. Figure 4 shows the 
performances of the search task of the human-robot system with 
the three different types of human operators, for both the mixed-
initiative and teleoperation conditions respectively, in terms of 
the number of victims found and the time at which each victim 
was found. First, as expected, regardless of the teaming strategy, 
the human-robot system with the Novice human operator has the 
worst performance while the system with the Expert human has 
the best performance. Second, the performances of the human-
robot systems are significantly improved for both the Novice 
(p = 0.0025) and Intermediate (p = 0.027) human operators. 
Lastly, there is no significant difference ( p = 0.565)  in 
performances between the human-robot systems with and 
without robot initiative for the Expert human operator. This 
makes sense since the robot would not need to intervene the 
Expert human operator who is able to perform the search task 
optimally. This is also evident in Figure 5, where the result 
shows that the robot rarely intervened when the Expert operator 

was in control of the robot. On the other hand, we found that the 
robot intervened most frequently when the Novice human was 
operating the robot. The results illustrated that the robot was 
able to seized initiative appropriately to improve the 
performance of the human-robot team.  

 
Figure 4: Search Performances of the Human-Robot Team with 
Different Levels of Search Expertise and Initiative Conditions 

 

Figure 5: The Average Number of Times that the Robot Seized 
Initiative for Operators of Different Search Expertise 

4 DISSCUSSIONS AND FUTURE WORK  

Motivated by the importance of backup behaviors in human 
teams, this work addressed the question of when such behaviors 
should be engaged by a robot while working with a remote 
human teammate. We formulated this problem of initiative 
decision-making in the framework of I-POMDP, which offers a 
subjective approach in solving stochastic games. A simulation 
experiment of a search task was conducted to illustrate the 
effectiveness of the initiative decision-making mechanism, 
which allows the robot to seize initiative from a simulated 
human teammate. The results of the experiment validated our 
hypothesis that when the robot is allowed to opportunistically 
intervene and take over from a poorly-performing teammate, the 
overall performance of team can be improved.  

While this experiment is limiting due to the nature that 
simulated human search behaviors were used, it nonetheless 
demonstrated the effectiveness of the mixed-initiative strategy in 
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improving the team performance when the robot is able to 
backup a poorly-performing teammate. Our next step is to 
further validate our hypotheses of backup behavior and the 
model of initiative decision-making with human subject studies. 
Furthermore, this work did not address the issue of trust when 
the robot is allowed to seize initiative from a human teammate. 
Trust is an important issue of human-robot teamwork, and robot 
taking control from human could exacerbate the issue. Hence, 
another future work is to study how to seize initiative after the 
decision to intervene is made such that trust can be maintained. 
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