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A Neural Schema Architecture for Autonomous Robots
 

Abstract
As autonomous robots become more complex in their behavior, more sophisticated software
architectures are required to support the ever more sophisticated robotics software. These
software architectures must support complex behaviors involving adaptation and learning,
implemented, in particular, by neural networks. We present in this paper a neural based schema
[2] software architecture for the development and execution of autonomous robots in both
simulated and real worlds. This architecture has been developed in the context of adaptive
robotic agents, ecological robots [6], cooperating and competing with each other in adapting to
their environment. The architecture is the result of integrating a number of development and
execution systems: NSL, a neural simulation language; ASL, an abstract schema language; and
MissionLab, a schema-based mission-oriented simulation and robot system. This work
contributes to modeling in Brain Theory (BT) and Cogniti ve Psychology, with applications in
Distributed Artificial Intell igence (DAI), Autonomous Agents and Robotics.
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1 Introduction
To enable the development and execution of complex behaviors in autonomous robots
involving adaptation and learning, sophisticated software architectures are required.
The neural schema architecture provides such a system, supporting the development
and execution of complex behaviors, or schemas [3][2], in a hierarchical and layered
fashion [9] integrating with neural network processing.

In general, schema theory helps define brain functionalit y in terms of concurrent
activity of interacting behavioral units called schemas. Schema-based modeling may
be specified purely on behavioral data (ethology), while becoming part of a neural
based approach to adaptive behavior when constrained by data provided by, e.g., the
effects of brain lesions upon animal behavior (neuroethology). Schema modeling
provides a framework for modeling at the purely behavioral level, at the neural
network level or even below [28]. In terms of neural networks, neural schema theory
provides a functional/structural decomposition, in strong contrast with models which
employ learning rules to train a single, otherwise undifferentiated, neural network to
respond as specified by some training set. Neural schema-based modeling proceeds
at two levels: (1) model behavior in terms of schemas, interacting functional units;
(2) implementation of schemas as neural networks based on neuroanatomical and
neurophysiological studies. What makes the linking of structure and function so
challenging is that, in general, a functional analysis proceeding "top-down" from
some overall behavior need not map directly into a "bottom up" analysis proceeding
upwards from the neural circuitry.

The work described in this paper is the product of a collaborative research depicted in
Figure 1.



Neural Simulation 
Language (NSL)

Abstract Schema 
Language (ASL)

Perceptual-Motor
Schema Model

MissionLab (Mlab)

Predictions

Results

Biological Data Robot ExperimentsSimulations

Common Language

Figure 1. Collaboration Map

Biological data from behavioral studies in the praying  mantis "Chantitlaxia" [11] and
the frog and toad prey acquisition and predator avoidance behaviors [12][14], are
used to generate neural schema models: perceptual schemas, dealing with sensory
input or perceptions; motor schemas, dealing with motor action; and sensorimotor
schemas, integrating between sensory input and motor action. These studies are
modeled in terms of computational schemas in the Abstract Schema Language (ASL)
[25], implemented as neural networks in the Neural Simulation Language (NSL) [27],
and simulated in a virtual world or executed in the real world with the MissionLab
(Mlab) robotic system [23].

2 Schemas, Neural Networks and Autonomous Robots
The neural schema architecture for autonomous robots comprises the integration of
three separately developed architectures, each built to support a different aspect of
schema modeling.

2.1 Schemas

As a computational model, schemas define a hierarchical and distributed architecture
for the development of complex adaptive systems. A number of schema-based
architectures have been developed for different application domains, e.g. VISIONS
[18], in vision; RS (Robot Schemas) [22] and MissionLab [3], in robotics. Based on
these domain specific architectures, a unified schema computational model, ASL
(Abstract Schema Language) [25], was designed with the ability to integrate with
neural networks processing across different domains as well . Schemas in ASL are
hierarchical and distributed autonomous agents, where ASL integrates concurrent
object-oriented programming methodologies [29] with agent modeling [8]. As a
language ASL corresponds more to a specification language rather than to an explicit
programming language. The detailed implementation is left unspecified, only
specifying what is to be achieved. Different implementations may correspond to a
single schema, where implementation are in terms of neural networks or other schema
process. The ASL computational model is shown in Figure 2.

At the top of Figure 2, a schema is shown decomposed into other schemas. This
decomposition gives rise to schema aggregation, or schema assemblages. Schemas
are specified and implemented either through  wrapping,  which enables static
integration of external programs, or through  task delegation, which enables dynamic
integration of schemas as separate specification and implementation tasks. (Solid
arrows between boxes represent connections between objects, while dashed arrows



represent task delegation.)
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Figure 2. Schema Hierarchy

Schema interfaces consists of multiple unidirectional control or data, input and output
ports, and a method section where schema behavior is specified. Communication is in
the form of asynchronous message passing, hierarchically managed, internally,
through anonymous port reading and writing, and externally, through dynamic port
connections and relabelings. When doing connections, output ports from one schema
are connected to input ports from other schemas, and ports from schemas at different
hierarchies are linked to each other when doing relabelings. The hierarchical port
management methodology enables the development of distributed systems where
objects may be designed and implemented independently and without prior
knowledge of their final execution environment, encouraging model reusabil ity. This
supports both top-down and bottom-up system designs as required by neural schema
modeling.

In order to support complex schema modeling, ASL is design as a distributed
multithreaded system architecture, executing on different platforms [10], as shown in
Figure 3.

Figure 3. Abstract Schema Language (ASL) System Architecture

2.2 Neural Networks

Neural networks serve as the underlying implementation for neural schemas. Lower
level neural network components integrate with higher level schemas, as shown in



Figure 4:
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Figure 4. Neural Schema Hierarchy

The Neural Schema Language (NSL) [27] provides the linkage to ASL, enabling the
integration of neural networks as schema implementations. The abil ity to implement
schemas through different neural networks results in the added benefit of enabling the
construction of distributed neural networks. Mapping between schemas and neural
networks may not only be 1 to 1, but also many to many. The neural schema model
not only enables the encapsulation of neural networks into schemas, but also provides
an extended model where neurons themselves may have their task delegated by neural
implementations of different levels of detail , from the very simple neuron models to
the very complex ones [26].

Operating System
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NSL Tcl/Tk Scrippting Language

NSL Model Class Library

NSL Graphics Interface

NSL Runtime System

NSL Java/C++ Compiled Language

Figure 5. NSL System Architecture

The NSL system architecture is shown in Figure 5. Models are described via a
compiled language, where graphics displays and a scripting language provide the
interfacing mechanisms between the model and the user. Two implementations of the
system currently exist: NSLC in C++ and NSLJ in Java.



2.3 Schema-based control for autonomous robots

In robotics, schemas have been used to provide the underlying software control
mechanisms for a number of systems, e.g. MissionLab [3] and RS [22]. In particular,
in the control of autonomous robots, such as with MissionLab, motor schemas have
been encoded as a variant of the potential field methodology [21]. In this context,
schemas have the following characteristics:

1. Each is an independent asynchronous computational agent executing in parallel
with other schemas.

2. Sensing is directly tied to motor control following the action-oriented perception
paradigm, where information is obtained via sensing on a need-to-know basis [4].

3. Each active schema produces a vector that encodes the behavioral response for a
given stimulus.

4. Coordination of schemas is typically conducted via behavioral fusion: vector
summation and normalization of the individual schemas outputs.

5. Schemas can be aggregated into assemblages, which provide a higher level of
abstraction.

6. Their use is rooted in neuroscientific and psychological theory.

This particular form of behavioral control has been tested on a wide range of robotic
systems: from teams of small robots used for competitions to military sized vehicles
[5], as shown in the Figure 6.

Figure 6. Collection of schema-based robots

MissionLab [23] is a tool that has been recently developed for the testing and
deployment of schema-based reactive controllers for autonomous robots. It
incorporates a graphical user interface, reusable software libraries, a simulation
facil ity, and the capabil ity to download executable robot code for a range of real
mobile platforms. MissionLab serves as the testbed for the results in this project. The
architecture of MissionLab is shown in Figure 7.
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Figure 7. MissionLab System Architecture

2.4 Integrated Architecture

In order to enable the described schema modeling, the three architectures: ASL, NSL
and Missionlab, were integrated under a single system environment. ASL was first
integrated to NSL [10], and then the ASL/NSL system to MissionLab [24]. The
integrated architecture is shown in Figure 8.
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Motor Output
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Figure 8. ASL/NSL/MissionLab Integrated Architecture

Integration is carried out through binding points between ASL/NSL and MisionLab.
Sensor input from MissionLab, simulated data or real world data from actual robots,
is read by the perceptual neural schemas in the ASL/NSL system. Sensorimotor



neural schemas in ASL/NSL generate output to the motor schemas executing in
MissionLab, either in the simulated or real world.

3 Computational Neuroethology
Neuroethology, the study of the nervous system and animal behavior, has inspired a
number of computational models, such as Rana Computatrix, the computational frog
[1], the computational cockroach [7], and the computational hoverfly [13]. Such
computational models involve a rich number of neural based behaviors, such as the
Chantlitaxia, searching from a proper habitat, taken from the Praying Mantis behavior
[11], as described in the ethogram in Figure 9.
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Figure 9. Praying Mantis' Chantlitlaxia Ethogram

Different models are currently being developed under the ASL/NSL/MissionLab
neural schema architecture. Besides the Chantlitlaxia behavior [6], we have
prototyped the adaptive toad's prey acquisition behavior due to a static barrier [14],
and developing a prey acquisition and predator avoidance behavior modulated by
learning processes in neural networks [20].

3.1 Prey Acquisition with Detour Behavior

As an example of a model developed under the neural based schema architecture we
describe the toad's detour behavior due to stationary objects on its way to a prey [14].
The experiment being modeled consists of a barrier placed between a prey and a toad,
as shown in Figure 10.

Two different barrier sizes were tried, 10 and 20 cm. Both barriers are made of
fenceposts, where each fencepost has a very small width, but tall enough not to have
the toad jump over it. The fence posts are distanced 2 cm from each other. The toad is
20 cm away from the barrier, and the prey is 10 cm away opposite  the barrier.
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Figure 10. Toad's prey acquisition with detour behavior experiment

When the barrier is 10 cm wide the toad approaches directly to the barrier edges and
from there continues to the prey, as shown in Figure 10. When the barrier is 20 cm
wide, the toad advances to the middle of the barrier, more precisely to the closest gap
between the fenceposts. Not being able to go through the gap, the robot backs up,
reorients and tries again. This adaptive process continues until the edge of the barrier
is in sight. Figure 11 shows the toad's behavior with a 20 cm barrier without and with
learning. These experiments are further described in [17][15].

Toad approximation to 20cm barrier
 after learning

Toad approximation to 20cm barrier

Figure 11. Toad's prey acquisition model for a 20 cm barrier, without and with learning.

Schemas

In order to reproduce these experiments we developed a schema based model with a
robotic agent taking the place of the toad. At the highest level, model behavior is
described by means of schema specifications. The complete model at this level is
described by a network of interconnected schemas as shown in Figure 12:

The model consists of visual and tactile sensory input, perceptual schemas for
recognizing stationary objects and prey moving objects, sensorimotor schemas for
prey approach and static object avoidance, and motor schemas for performing
forward, backward, sidestep and orient motions. Visual input is used to recognize
both the static barrier and the moving prey, while tactile input is triggered when the
robotic agent bumps into the barrier (not being able to go through the gap).

Rather than processing input symbols to yield output symbols, the individual schemas
have activation levels which measure their degree of confidence. In response to the
perceptual schemas input, the more active of the two sensorimotor schemas will



trigger the appropriate motor schema to yield the appropriate response.
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Figure 12. Schemas for toad's prey acquisition with detour behavior.

In other words, the sensorimotor schemas compete to control the behavior of the
animal. This is a very simple example of the type of mechanisms of competition and
cooperation that can be exhibited by a network of schemas. In particular multiple
motor schemas may be coactivated to control subtle behaviors. The perceptual
schemas are not simply yes-no recognizes, being equipped with a confidence level to
provide a parametric description which can be used in tuning motor behavior
appropriately. When the toad recognizes the prey, the animal does not respond by
moving in a standard or random direction, bur rather it snaps at the position in space
where the prey is located as indicated by the "prey-recognizer" schema.

Neural Networks

Some of the schemas in the toad's prey acquisition model are implemented all the way
down to neural networks. Other schemas, for which the detailed neural circuitry is not
known or involves unnecessary computation for the range of phenomena under study,
are modeled in a simpler manner. For example, motor schemas in this model were not
implemented through neural circuitry for simplification reasons. The neural network
level implementing higher level schemas is shown in Figure 13.
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Figure 13. Neural schemas for toad's prey acquisition with detour behavior.

The neural level consists of a Retina corresponding to the Visual input, T5_2 and
TH10 neural layers corresponding the moving prey and static object recognizer, and a



motor heading map where the static object and prey maps integrate. The motor
heading map produces a target heading angle corresponding to the strongest map
activity; providing inhibition between the prey approach and static object avoidance.
This inhibition is important to avoid activating antagonist motor schemas
simultaneously. A tactile modulation component provides adaptation to the model by
increasing the inhibition repetitively, every time the robot hits the barrier. (The
detailed model description can be found in [14].)

Autonomous Robots

The complete autonomous robotic agent is built by integrating the perceptual and
sensorimotor schemas in ASL/NSL with the motor schemas in MissionLab,  as
shown in Figure 14.
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Figure 14. Perceptual and Motor Schema Linkage for toad's prey acquisition model.

The robot provides visual and tactile input to the neural schema process. These
respond by producing appropriate forward, orient, sidestep and backward activations,
generating robot movement. The cycle continues indefinitely, terminating only when
reaching the prey. When executed in a real robot, only sensory and actuator binding is
modified in MissionLab without the need to change any of the actual model details.

4 Results

4.1 Prey Acquisition with Detour Behavior

As seen from the Missionlab simulation console, the robot (SP Frog) is initially
positioned in front of a barrier, with a prey away from it, as shown in the left of
Figure 15. The right hand side shows the resulting trajectory generated by the agent.

Figure 16, left, shows the agent's view of the barrier. Figure 16, right, the resulting
attraction field integrating the prey attraction and the barrier repulsion. The highest
value activity in the figure corresponds to the robot's preferred orientation (which
initiall y corresponds to the prey's direction).

As the robot bumps into the barrier, the barrier's gap inhibition gets incremented
resulting in a new attraction field in the motor heading map, Figure 17, left, producing
reorientation. Every time the frog hits the barrier, it backs down and sidesteps.
Following, the frog gets attracted by the prey again, hitting the barrier, this time on a
different gap. This process continues until the edge of the barrier is perceived,



generating a direct path to the prey, as shown in Figure 17, right.

 
Figure 15. MissionLab Console view of agent response to the 20cm wide barrier.

 
Figure 16. Attractant field integrating prey attraction and barrier repulsion.

 
Figure 17. Attractant field when barrier gap is in sight.

This specific trajectory was generated due to the model reorientation specifics. Other
simulated results, and more detailed results, can be found in [14].

5 Conclusions and Future Work
This paper has shown the fundamentals of the ASL/NSL/MissionLab neural schema
architecture for autonomous robots. A previous architecture is described in [19].

An important aspect of this architecture is the abil ity to incorporate adaptation and
learning through neural network processes in developing new behavioral architectures
for autonomous agents [16] as well as robots. This goes beyond architectures where
behaviors are described in terms of global states or architectures limited in terms of
adaptation and learning mechanisms. Furthermore, as models become more complex
in their nature, the distributed and concurrent nature of the ASL/NSL/MissonLab
architecture becomes of even greater importance. The prey acquisition model
presented in this paper reproduces one of a number of behavioral experiments with
toads. Other experiments are currently being tested under this architecture, in
particular, extensions to the toad's and praying mantis prey acquisition and predator
avoidance models as they are modulated by learning processes [17]. Furthermore, we
are also in the process of experimenting with these models with actual robots in the
real world [6].
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