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A Neural Schema Architecturefor Autonomous Robots

Abstract

As autonomous robots become more complex in their behavior, more sophisticated software
architectures are required to support the ever more sophisticated robotics oftware. These
software architectures must support complex behaviors involving adaptation and learning,
implemented, in particular, by neurd networks. We present in this paper a neura based schema
[2] software achitecture for the development and execution of autonomous robots in both
simulated and real worlds. This architecture has been developed in the mntext of adaptive
robotic agents, ecological robots [6], cooperating and competing with each other in adapting to
their environment. The achitecture is the result of integrating a number of development and
execution systems: NSL, a neural simulation language; ASL, an abstract schema language; and
MissonLab, a schema-based mission-oriented simulation and robot system. This work
contributes to modeling in Brain Theory (BT) and Cognitive Psychol ogy, with applications in
Distributed Artificia Intelligence (DAI), Autonomous Agents and Robotics.

Areas. Robotics, Agent-oriented programming, Neural Nets

Keywords: Autonomous Robots, Autonomous Agents, Schemas, Neura Networks,
Architecture

1 Introduction

To enablethe development and exeaution of complex behaviors in autonomous robas
involving adaptation and leaning, sophisticated software achitedures are required.
The neura schema achitedure provides such a system, supporting the development
and exeaution of complex behaviors, or schemas[3][2], in a hierarchical and layered
fashion [9] integrating with neural network processng.

In general, schema theory helps define brain functiondity in terms of concurrent
activity of interacting behavioral units cdled schemas. Schema-based modeling may
be specified puely on behaviord data (ethology), while becoming part of a neura
based approach to adaptive behavior when congtrained by data provided by, e.g., the
effeds of brain lesions upon animal behavior (neuroethology). Schema modeling
provides a framework for modding at the purely behaviora level, at the neurd
network level or even below [28]. In terms of neural networks, neural schema theory
provides a functional/structural decomposition, in strong contrast with models which
employ learning rulesto train a single, otherwise undfferentiated, neural network to
respond as spedfied by some training set. Neural schema-based modeling proceals
at two levels: (1) model behavior in terms of schemas, interacting functional units;
(2) implementation of schemas as neural networks based on neuroanatomicd and
neurophysiological studies. What makes the linking of structure and function so
chdlenging is that, in general, a functional anaysis procealing "top-down" from
some overal behavior nead not map diredly into a "battom up* anaysis proceeading
upwards from the neura circuitry.

The work described in this paper isthe product of a coll aborative reseach depicted in
Figure 1.
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Figure 1. Collaboration Map

Biological data from behavioral studiesin the praying mantis " Chantitlaxia' [11] and
the frog and toad prey acquisition and predator avoidance behaviors [12][14], are
used to generate neural schema models: perceptual schemas, deding with sensory
input or perceptions, motor schemas, deding with motor action; and sensorimotor
schemas, integrating between sensory input and motor action. These studies are
modeled in terms of computationa schemas in the Abstract Schema Language (ASL)
[25], implemented as neura networksin the Neural Simulation Language (NSL) [27],
and smulated in a virtual world o exeauted in the real world with the MissionLab
(Mlab) robdic system [23].

2 Schemas, Neural Networ ks and Autonomous Robots

The neural schema achitedure for autonomous robots comprises the integration of
three separately developed architectures, each built to support a different aspect of
schema modeling.

2.1 Schemas

As a computational model, schemas define ahierarchical and distributed architedure
for the development of complex adaptive systems. A number of schema-based
architedures have been developed for different application domains, e.g. VISIONS
[18], in vision; RS (Robat Schemas) [22] and MisdonLab [3], in robdics. Based on
these domain spedfic architedures, a unified schema computational mode, ASL
(Abstract Schema Language) [25], was designed with the ability to integrate with
neura networks processing across different domains as well. Schemas in ASL are
hierarchical and dstributed autonomous agents, where ASL integrates concurrent
object-oriented programming methodologies [29] with agent modeling [8]. As a
language ASL corresponds more to a spedfication languege rather than to an explicit
programming language. The detailed implementation is left unspedfied, only
spedfying what is to be achieved. Different implementations may correspond to a
single schema, where implementation are in terms of neura networks or other schema
process. The ASL computationa model is siown in Figure 2.

At the top of Figure 2, a schema is $rown decompaosed into aher schemas. This
decomposition gives rise to schema agregation, or schema assemblages. Schemas
are spedfied and implemented either through wrapping, which enables gatic
integration of external programs, or through task delegation, which enables dynamic
integration of schemas as sparate spedfication and implementation tasks. (Solid
arrows between boxes represent connedions between objects, while dashed arrows



represent task delegation.)
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Figure 2. SchemaHierarchy

Schema interfaces consists of multiple unidiredional control or data, input and output
ports, and amethod sedion where schema behavior is gedfied. Communication isin
the form of asynchronous message passng, hierarchically managed, internaly,
through anonymous port reading and writing, and externally, through d/namic port
connections and relabelings. When doing connections, output ports from one schema
are connected to input ports from other schemas, and ports from schemas at different
hierarchies are linked to each other when doing relabelings. The hierarchical port
management methodology enables the development of distributed systems where
objeds may be designed and implemented independently and without prior
knowledge of their final exeaution environment, encouraging model reusability. This
supports bath top-down and battom-up system designs as required by neural schema
modeling.

In order to support complex schema modeling, ASL is design as a distributed
multithreaded system architedure, exeaiting on different platforms [10], as shown in
Figure 3.
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Figure 3. Abstract Schema Language (ASL) System Architecture
2.2 Neural Networks

Neural networks srve as the underlying implementation for neural schemas. Lower
level neural network comporents integrate with higher level schemas, as $iown in



Figure 4:

Figure 4. Neura Schema Hierarchy

The Neural Schema Language (NSL) [27] provides the linkage to ASL, enabling the
integration of neura networks as shema implementations. The ability to implement
schemas through different neural networks resultsin the added benefit of enabling the
construction of distributed neura networks. Mapping between schemas and neura
networks may not only be 1 to 1, but also many to many. The neural schema model
not only enables the encapsulation of neura networks into schemas, but also provides
an extended model where neurons themselves may have their task delegated by neural
implementations of different levels of detail, from the very simple neuron models to
the very complex ones[26].

User Models

NSL Graphics Interface

NSL Tcl/Tk Scrippting Language
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NSL Model ClassLibrary

NSL Runtime System

Operating System

Figure5. NSL System Architecture

The NSL system architedure is shown in Figure 5. Models are described via a
compiled language, where graphics displays and a scripting language provide the
interfacing mechanisms between the model and the user. Two implementations of the
system currently exist: NSLC in C++ and NSLJin Java.



2.3 Schema-based control for autonomousrobots

In robaics, schemas have been used to provide the underlying software control
mechanisms for a number of systems, e.g. MissonLab [3] and RS [22]. In particular,
in the @ntrol of autonomous robds, such as with MisgonLab, motor schemas have
been encoded as a variant of the potential field methodology [21]. In this context,
schemas have the foll owing characterigtics:

1. Each is an independent asynchronous computational agent executing in parallel
with other schemas.

2. Sensing isdirectly tied to motor control following the action-oriented perception
paradigm, where information is obtained via sensing on a need-to-know basis [4].

3. Each active schema produces a vector that encodes the behavioral response for a
given stimulus.

4. Coordination of schemas is typicdly conducted via behavioral fusion: vector
summation and normalization of the individual schemas outputs.

5. Schemas can be aggregated into aseemblages, which provide a higher level of
abstradion.

6. Their useisroated in neuroscientific and psychalogical theory.

This particular form of behavioral control has been tested on a wide range of robatic
systems: from teams of small robas used for competitions to military sized vehicles
[5], as ownin the Figure 6.

Figure 6. Callection of schema-based robots
MissonLab [23] is a tool that has been recently developed for the testing and
deployment of schema-based reactive ntrollers for autonamous robots. It
incorporates a graphical user interface, reusable software libraries, a simulation
facility, and the caability to download executable roba code for a range of rea

mobhile platforms. MissonL ab serves as the testbed for the results in this project. The
architecture of MisgonLab is saownin Figure 7.
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Figure 7. MissionLab System Architecture

2.4 Integrated Architecture

In order to enable the described schema modeling, the threearchitedures: ASL, NSL
and Missonlab, were integrated under a single system environment. ASL was first
integrated to NSL [10], and then the ASL/NSL system to MissonLab [24]. The
integrated architedure is own in Figure 8.
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Figure 8. ASL/NSL/MissionLab Integrated Architecture

Integration is carried aut through binding mints between ASL/NSL and MisionLab.
Sensor input from MissonLab, smulated data or real world data from actual robas,
is read by the perceptua neural schemas in the ASL/NSL system. Sensorimotor



neural schemas in ASL/NSL generate output to the motor schemas exeauting in
MissonLab, either in the simulated or red world.

3 Computational Neuroethology

Neuroethology, the study of the nervous system and animal behavior, has inspired a
number of computational models, such as Rana Computatrix, the computational frog
[1], the computational cockroach [7], and the computational hoverfly [13]. Such
computational models involve a rich number of neural based behaviors, such as the
Chantlitaxia, seaching from a proper habitat, taken from the Praying Mantis behavior
[11], asdescribed in the ethogram in Figure 9.
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Figure9. Praying Mantis Chantlitlaxia Ethogram

Different models are arrently being developed under the ASL/NSL/MissonLab
neural schema architedure. Besides the Chantlittaxia behavior [6], we have
prototyped the adaptive toad's prey acquisition behavior due to a static barrier [14],
and developing a prey acquisition and predator avoidance behavior modulated by
leaning processes in neural networks [20)].

3.1 Prey Acquistion with Detour Behavior

As an example of amodel developed under the neural based schema architedure we
describe the toad's detour behavior due to stationary objects on its way to a prey [14].
The experiment being modeled consists of a barrier placed between a prey and a toad,
as shown in Figure 10.

Two different barrier sizes were tried, 10 and 20 cm. Both barriers are made of
fenceposts, where each fencepost has a very small width, but tall enough not to have
the toad jump over it. The fence posts are distanced 2 cm from each other. The toad is
20 cm away from the barrier, and the prey is 10 cm away opposite the barrier.



barrier

Figure 10. Toad's prey acquisition with detour behavior experiment

When the barrier is 10 cm wide the toad approaches diredly to the barrier edges and
from there mntinues to the prey, as shown in Figure 10. When the barrier is 20 cm
wide, the toad advances to the midd e of the barrier, more predsdly to the dosest gap
between the fenceposts. Not being able to go through the gap, the robot backs up,
reorients and tries again. This adaptive processcontinues until the edge of the barrier
isin sight. Figure 11 shows the toad's behavior with a 20 cm barrier without and with
leaning. These experiments are further described in [17][15].

Toad approximation to 20cm barrier Toad approximation to 20cm barrier
after learning

Figure 11. Toad's prey acquisition model for a20 cm barrier, without and with learning.

Schemas

In order to reproduce these experiments we developed a schema based model with a
robaic agent taking the place of the toad. At the highest level, model behavior is
described by means of schema specifications. The mmplete model at this level is
described by a network of interconneded schemas as siown in Figure 12:

The model consists of visual and tactile sensory input, perceptual schemas for
recognizing stationary objects and prey moving olhjeds, sensorimotor schemas for
prey approach and static object avoidance and motor schemas for performing
forward, backward, sidestep and orient motions. Visual input is used to recognize
both the static barrier and the moving prey, while tactile input is triggered when the
robdic agent bumpsinto the barrier (not being able to go through the gap).

Rather than processng input symbolsto yield output symbals, the individual schemas

have activation levels which measure their degree of confidence. In resporse to the
perceptual schemas input, the more active of the two sensorimotor schemas will



trigger the appropriate motor schemato yield the gpropriate resporse.
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Figure 12. Schemas for toad's prey acquisition with detour behavior.

In ather words, the sensorimotor schemas compete to control the behavior of the
animal. Thisisa very smple example of the type of mechanisms of competition and
cooperation that can be exhibited by a network of schemas. In particular multiple
motor schemas may be coactivated to control subtle behaviors. The perceptua
schemas are not Smply yes-no recognizes, being equipped with a corfidence level to
provide a parametric description which can be used in tuning motor behavior
appropriately. When the toad recognizes the prey, the animal does not respord by
moving in a standard or random direction, bur rather it snaps at the position in space
where the prey islocated as indicated by the "prey-recognizer" schema

Neur al Networks

Some of the schemas in the toad's prey acquisition model are implemented all the way
down to neural networks. Other schemas, for which the detailed neura circuitry is not
known or involves unnecessary computation for the range of phenomena under study,
are modeled in a ssimpler manner. For example, motor schemas in this moddl were not
implemented through reura circuitry for simplification reasons. The neural network
level implementing higher level schemasis $own in Figure 13.

Prey
Reagnizer Prey Approach

Schema Level

SR L g g g

Neural Level

TH10 layer Heaiing
Map

Figure 13. Neural schemas for toad's prey acquisition with detour behavior.

The neurd level consists of a Retina corresponding to the Visua input, TS5 2 and
TH210 neural layers corresponding the moving prey and static objed reagnizer, and a



motor heading map where the static objed and prey maps integrate. The motor
heading map produces a target heading angle rresponding to the strongest map
activity; providing inhibition between the prey approach and static object avoidance
This inhibition is important to avoid activating antagonist motor schemas
simultaneously. A tactile modulation component provides adaptation to the model by
increasing the inhibition repetitively, every time the roba hits the barrier. (The
detail ed model description can be found in [14].)

Autonomous Robots

The omplete autonomous robotic agent is built by integrating the perceptua and
sensorimotor schemas in ASL/NSL with the motor schemas in MissonLab, as

shown in Figure 14.

Robot Schema ad

Sensor Neural
and Motor Network

Binding Processng

]

Figure 14. Perceptud and Motor Schema Linkage for toad's prey acquisition modd.

The robot provides visual and tactile input to the neura schema process These
respond by producing appropriate forward, orient, sdestep and backward activations,
generating robot movement. The cycle continues indefinitely, terminating only when
reaching the prey. When exeauted in ared roba, only sensory and actuator bindingis
modified in MissonLab without the need to change any of the actual model details.

4 Reaults

4.1 Prey Acquisition with Detour Behavior

As ®e from the Misdonlab simulation console, the robot (SP Frog) is initialy
positioned in front of a barrier, with a prey away from it, as $own in the left of
Figure 15. Theright hand side shows the resulting trgjedory generated by the agent.

Figure 16, left, shows the agent's view of the barrier. Figure 16, right, the resulting
attraction field integrating the prey attraction and the barrier repulsion. The highest
value activity in the figure @rresponds to the robad's preferred orientation (which
initidly correspondsto the prey's diredion).

As the roba bumps into the barrier, the barrier's gap inhibition gets incremented
resulting in anew attraction field in the motor heading map, Figure 17, left, producing
reorientation. Every time the frog hits the barrier, it backs down and sidesteps.
Following, the frog gets attracted by the prey again, hitting the barrier, thistime on a
different gap. This process continues until the elge of the barrier is perceved,



generating a dired path to the prey, as shown in Figure 17, right.

Prey

Figure 15. MissionLab Console view of agent response to the 20cm wide barrier.

Figure 16. Attractant field integrati

S
(o)
q
2
2
8
(@]
=)
3
o
jon
2
Q
3
c
@
Q
=)

Figure 17. Attractant field when barrier gap isin sight.

This spedfic tragjedory was generated due to the model reorientation spedfics. Other
simulated results, and more detail ed results, can be found in [14].

5 Conclusions and Future Work

This paper has $1own the fundamentas of the ASL/NSL/MisdonLab neura schema
architedure for autonomous robas. A previous architedureisdescribed in [19].

An important asped of this architedure is the ability to incorporate adaptation and
leaning throughneural network processesin developing new behaviora architedures
for autonomous agents [16] as well as robds. This goes beyond architedures where
behaviors are described in terms of global states or architedures limited in terms of
adaptation and leaning mecdhaniams. Furthermore, as models become more @mplex
in their nature, the distributed and concurrent nature of the ASL/NSL/MisonLab
architedure becomes of even greater importance The prey acquisition model
presented in this paper reproduces one of a number of behavioral experiments with
toads. Other experiments are currently being tested under this architedure, in
particular, extensons to the toad's and praying mantis prey acquisition and predator
avoidance moddl s as they are modulated by learning processes [17]. Furthermore, we
are dso in the processof experimenting with these models with actual robds in the
red world [6].
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