Predicting the Robot Learning Curve based on Properties of Human Interaction

Sekou Remy, Dr. Ayanna M. Howard
Human-Automation Systems (HumAnS) Lab.
School of Electrical and Computer Engineering
Georgia Institute of Technology

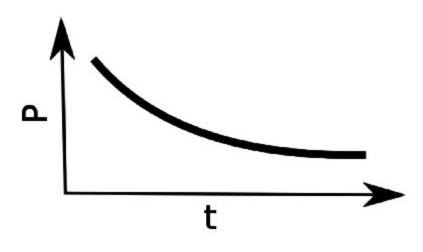
Introduction

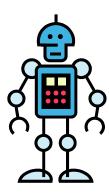
- Motivation Statement 1
 - Bullet 1

- Motivation Statement 2
 - Bullet 2

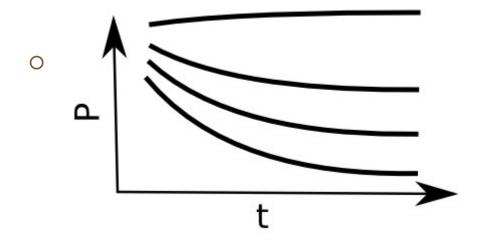
Purpose (1)

O To show that robotic students can demonstrate a learning curve, and that the properties of the curve are affected by the human teacher's capabilities in a measurable manner.


Purpose (2)


• To show that without a detailed model of the target behavior, or of the human teacher, it is possible to autonomously estimate learning progress by observing properties of the provided instruction.

Background



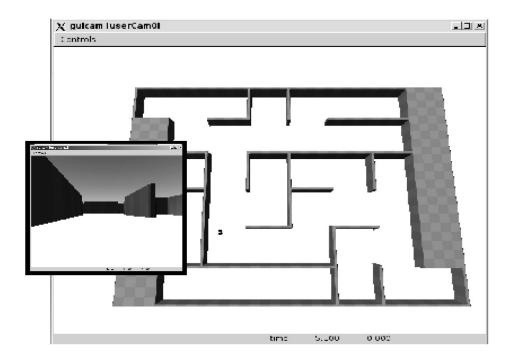
Background

• The learning curve will likely vary based on instruction.

Learning Curves

- Families of equations
 - Exponential:

$$P(N) = A + Be^{\beta(N+N_0)}$$

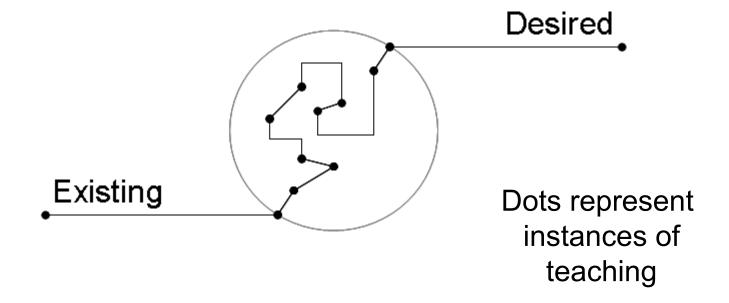

• Power law:

 $^{\rm o} \ {\bf Applicability} \ P(N) = A + B(N+N_0)^{\beta}$

Application Domain

Mobility and navigation.

The Task


- Wall following.
 - Based on:
 - Proximity sensors.
 - O Differential drive actuation.
 - Evaluation:

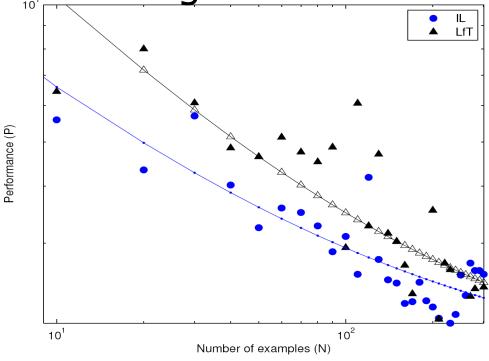
performance =
$$\alpha_1 d + \alpha_2 t$$

Approach to Learning

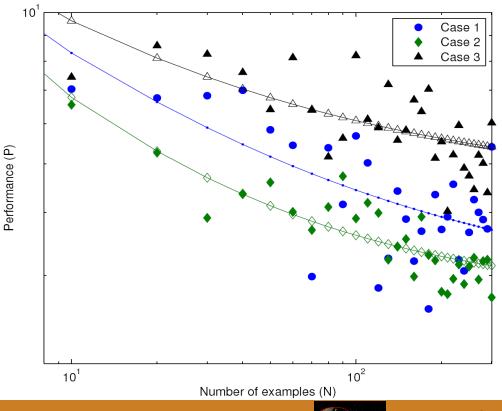
 Interactive Learning with a robotic student and human teachers

Making Learning Easier

- How to make learning tractable problem.
 - Dimensionality reduction:
 - Principal Component Analysis.
 - Self organizing maps.
 - Requirements of reduction:
 - Local geometry preservation


Representing Behaviors

- Mapping from sensing to actuation.
 - $F_N: X \rightarrow Y$
 - In the limit, $F_N \rightarrow F$
 - o in theory...
 - as N increases:
 - Over training.
 - User fatigue/discomfort.

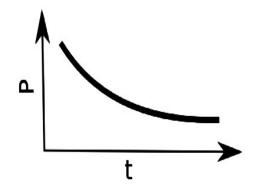

Learning from Teleoperation

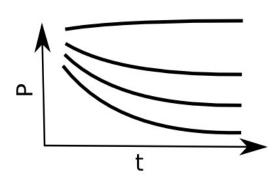
Interactive Learning

• Cases 1,2,3.

Uncovering parameters based on data.

$$P(N) = A + B(N + N_0)^{\beta}$$


	IL	LfT	Case 1	Case 2	Case 3
β	-0.55	-0.64	-0.51	-0.65	-0.50
B	18.20	39.06	18.20	18.28	16.34
A	1.490	1.440	2.715	2.695	4.456



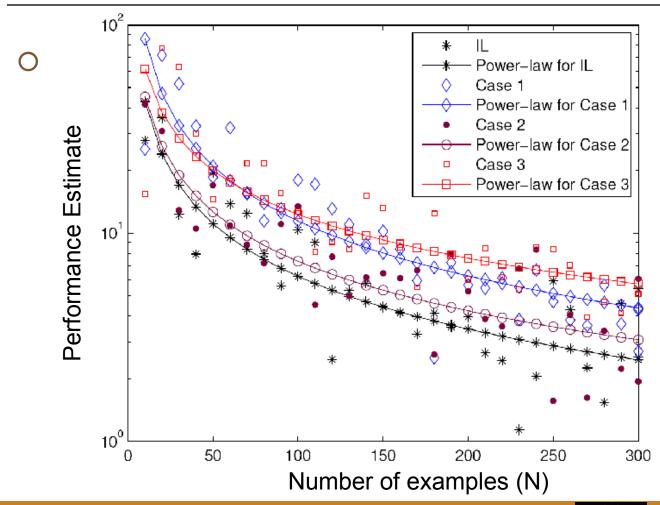
Summary (1)

• Purpose:

• To show that robotic students can demonstrate a learning curve, and that the properties of the curve are affected by the human teacher's capabilities in a measurable manner.

Refocus

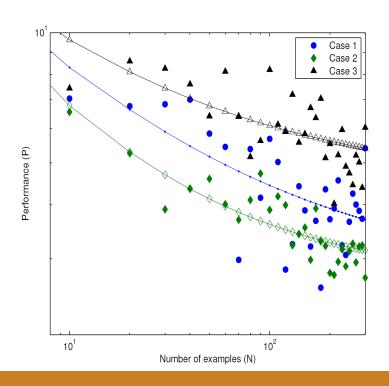
- \circ Remember $F_N: X \rightarrow Y$
 - Study how errors in X and Y change over time

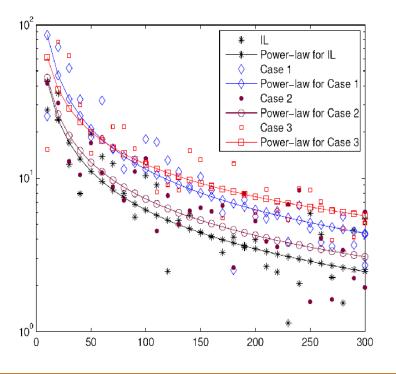

$$MQE = \frac{1}{u} \sum_{k} \frac{1}{n} ||m_i - a_k||$$
$$\frac{\delta MQE}{\delta i} \frac{\delta i}{\delta t}$$

• Study how entropy of F_x changes over time

$$H = -\sum_{i=0}^{k} P_j(A = a_{j+i}) \ln \left(P_j(A = a_{j+i}) \right)$$

$$\frac{\delta H}{\delta i} \frac{\delta i}{\delta t}$$





 Unfortunately cannot compare apples to apples (Further work needed!)

	IL	Case 1	Case 2	Case 3
β	-0.8402	-0.8751	-0.7900	6993
$\Box B$	297.24	643.85	278.6	308.4

Summary (2)

• Purpose:

• To show that without a detailed model of the target behavior, or of the human teacher, it is possible to autonomously estimate learning progress by observing properties of the provided instruction.

Future work

- Mapping from estimate to actual performance
- Expanded user pool
- More complex instruction
 - Sensing
 - Action
 - Behavior

Questions

0?